Micro- and Nanomechanical Testing

Claim This Listing

Please login in order to be able to claim this listing.

Accurion, Goettingen, Germany
Stresemannstrasse 30, D-37079 Goettingen, Germany
Accurion provides high-end and reliable state-of-the-art technology in two product lines: Imaging Ellipsometry and Active Vibration Isolation.

Accurion provides high-end and reliable state-of-the-art technology in two product lines: Imaging Ellipsometry and Active Vibration Isolation.
In 2009, Halcyonics GmbH, specialist for Active Vibration Isolation Solutions and Nanofilm Technology GmbH, expert for surface analyzing tools merge to Accurion GmbH. Both divisions are well-established and look back on a long-term experience in developing and producing scientific instruments. Nanofilm has been the leader in Brewster Angle Microscopy and Imaging Ellipsometry since 1991. Halcyonics was founded in 1996 as specialist in Active Vibration Isolation. The existing product brands Nanofilm and Halcyonics are continued as product divisions of Accurion.
Since the introduction of the „Brewster Angle Microscope BAM1 1991, we have become the leader in Brewster Angle Microscopy, Imaging Ellipsometry and UV/VIS reflectometry. We provide instrumentation for optical surface analysis of monolayers and thin film coatings at the air/water, the liquid/liquid, the solid liquid and the solid/gas interface.
In today`s world of nanotechnology, optimal vibration isolation is absolutely essential for creating and analysing very small structures. Active vibration isolation is the most effective solution to isolate high-resolution measurement equipment from disturbing vibrations. We at Accurion are specialized in providing various solutions for a wide range of applications
Thin Film Characterization Products:
Imaging Ellipsometer
Brewster Angle Microscope
UV / VIS Reflectometer

Active Vibration Isolation Products:
Desktop Units
Isolation Elements
Laboratory Workstations

http://www.accurion.com/
Claim This Listing

Please login in order to be able to claim this listing.

AGS Plasma Systems, Inc., Santa Clara CA, USA
3064 Kenneth St., Santa Clara, CA 95054, USA

AGS Plasma Systems, Inc. is the preeminent manufacturer of affordable vacuum plasma systems used for etching and deposition of patterns needed in the microelectronics and optoelectronics industries. The company was formed in 1991 to assist people with their plasma system’s parts and service needs. We sell and service plasma systems and have designed and installed a variety of product enhancements. We also supply a Windows/PC process tool controller to add the ease and flexibility of GUI automation to your existing vacuum systems. We offer a complete line of vacuum systems for all your dry processing needs.

Systems include
Reactive ion etcher
Plasma enhanced deposition tool
Physical vapor deposition tool
High density plasma tool
Toxic/corrosive compatible
Plasma etcher
Dual chamber research testbed
Cluster tool versions

http://www.agsplasma.com/
Claim This Listing

Please login in order to be able to claim this listing.

BaySpec, San Jose CA, USA
1101 McKay Drive, San Jose, CA 95131, USA

BaySpec, Inc., founded in 1999 with 100% manufacturing in the USA (San Jose, California), is a vertically integrated spectral sensing company. The company designs, manufactures and markets advanced spectral instruments, including UV-VIS-NIR-SWIR spectrometers, benchtop and portable NIR/SWIR and Raman analyzers, confocal Raman microscopes, hyperspectral imagers, mass spectrometers, and OEM spectral engines and components. R&D Applications include:

Materials: Material characterization is an ideal application area for Raman spectroscopy, due to its high chemical specificity and rapid, non-contact measurement. Solid, liquid, or gaseous, nearly all materials possess a unique Raman spectral fingerprint. The technique can be readily scaled to microscopic approaches, allowing interrogation of extremely small volumes and samples, such as nanomaterials. Characterization of nanomaterials is critical to determining structural and conformational properties. Raman spectroscopy is a highly efficient technique to study the electronic properties, compositions, and mechanical stresses in these materials, all of which can manifest in Raman band shape and frequency shift.

Semiconductor: Raman spectroscopy has proven to be one of the most effective tools for characterization of semiconductor properties and for manufacturing process/quality control because materials such as Si, SiGe, InGaAs, GaAs, GaN, and graphene exhibit precise, distinct Raman bands. Applied in a microscopic approach, the Raman technique has been successfully implemented to determine microstructure composition on thin-films, strain in the multilayer device, and to identify defects across the wafer surface.

Process/Reaction: Unlike conventional UV-Vis and NIR monitoring techniques, Raman spectroscopy provides molecular specificity in real-time measurements of gas, liquid, and solid samples, both natural and synthetic. These attributes are responsible for the emerging reliance on Raman spectroscopy for a number of online process and reaction monitoring applications. Numerous sampling options, including fiber optic probes with long reach and stand-off probes for measuring inside containers and vessels make the technique adaptable to a myriad of environments and conditions.

Surface-Enhanced Raman: Surface-enhanced Raman spectroscopy (SERS) utilizes specialized metal substrates to allow Raman signal enhancement up to 10 orders of magnitude. This phenomenon occurs when the molecules of interest are in very close proximity to the metal substrate, and is generally used for evaporated solutions or particle-surface characterization. The enhanced Raman signal with SERS has extended its applications in many fields, such as biological studies, to quantify trace substances or identify very small structures such as cell surface proteins. Intracellular SERS is also possible, via the injection of metallic nanoparticles, to study internal structures and analytes.

http://www.bayspec.com/
Claim This Listing

Please login in order to be able to claim this listing.

Clemex Technologies, Longueil, Canada
800 Guimond, Longueuil, Quebec, Quebec J4G 1T5, Canada

Clemex provides manufacturers and researchers with image analysis software and hardware to make quantification of microstructures less demanding and more effective. We specialize in automating measurement of objects in digital images from and other precision optical devices.
Our strength lies in our ability to achieve a thorough understanding of our clients’ specific applications, leading to a high satisfaction rate among Clemex customers. Major quality control and research labs all over the world use our image analysis solutions to extract meaningful size, shape and volume measurements in applications as varied as particle shape analysis, heat-affected zone (HAZ) measurements in welds, fiber length and morphology, automated microhardness testing, and automated inclusion rating in steel.

http://www.clemex.com
Claim This Listing

Please login in order to be able to claim this listing.

ElektroPhysik USA, Arlington Heights IL, USA
778 W. Algonquin Road, Arlington Heights, IL 60005, USA

ElektroPhysik is one of the leading manufacturers of measuring instruments used for advancing surface technology, research and quality control. Being a pioneer in the field of non-destructive coating thickness measurement, ElektroPhysik, in cooperation with national and international standardizing institutes and universities has successfully advanced new product developments along with international standardization of the coating thickness measurement.
ElektroPhysik privately held company owned and managed by the Steingroever family. It is headquarters are in Köln Germany near the famous Rein River. ElektroPhysik still occupies the original building though it has gone through many expansions over the years to facilitate growth.
ElektroPhysik maintains branch offices including the U.S.A. and is represented by distributors and agents globally in almost every country in the world. It is this network and partnerships that enable ElektroPhysik to service its customers and provide the support required in today’s competitive global marketplace.
The first coating thickness testing gauge was developed by Dr. Steingroever. Utilizing the Magnetic Attraction principle, it was called the MikroTest (still manufactured today and even available in digital display format, it probably remains the most utilized coating thickness testing device utilized, even today) . Magnetic Attraction is a very reliable technique for measuring coatings however its only drawback is that it only works with coatings applied over ferrous materials such as steel and iron.
However, the Magnetic Attraction principle paved the way for the development of analog devices. First using Eddy Current and then later Magnetic Induction, these devices expanded coating thickness testing beyond just corrosion control.
Today all three of these principles are used to non-destructively measure a variety of coatings. Magnetic Attraction is the measuring principle used in the MikroTest, PenTest and MiniPen by ElektroPhysik.
Magnetic Induction is the measuring principle of choice for ferrous metal substrate application while the Eddy Current principle is the measuring principle of choice for non-ferrous metal substrate applications.
Both of these measuring principles are found in the MiniTest family of gauges as well as the eXacto by ElektroPhysik.
More recently ElektroPhysik developed yet another measuring principle primarily for non-metal substrate applications such plastic and wood. The QuintSonic utilizes a high level ultrasound approach which has enabled measurements to be conducted on these types of substrates non-destructively.
On April 20, 2007 ElektroPhysik launched a new model, the MiniTest 700 Series with SIDSP® digital sensor technology.
SIDSP® is an ElektroPhysik exclusive which took years of research and development. SIDSP® stands for Sensor Integrated Digital Signal Processing and the way that works is that entire coating thickness measurement is processed in the sensor at the point of measurement. SIDSP® is unlike previous conventional techniques where an analog signal was generated at the sensor and then that signal would be sent to a host gauge to processing. The vulnerability with that technique was that it was susceptible to environmental influences such as strong electro-magnetic fields and other signal disturbances that could affect the analog signal and therefore the reading.

http://epkusa.com/
Claim This Listing

Please login in order to be able to claim this listing.

Elliott Scientific, Harpenden, UK
3 Allied Business Centre, Coldharbour Lane, Harpenden AL5 4UT, UK

Elliot Scientific is a major supplier of Opto-Mechanic, Laser, Cryogenic, and Magnetic components and systems to the Scientific, Research and Industrial communities. We design and manufacture our own ranges that are marketed under the Elliot|Martock and Elliot Scientific brands, and also supply world class products sourced from many British, North American, European and Far Eastern companies.
We are uniquely positioned to assist our customers, being able to:
Supply competitive components and systems;
Source, integrate and manufacture complex systems;
Design and manufacture for Custom or OEM requirements
The Elliot|Martock and Elliot Scientific own brand products include our award winning optical tweezer systems, the lab essentials mirror mount range, fibre positioning components, waveguide manipulators, automated alignment systems, micropositioners and an expanding portfolio of other class-leading products.
All of our customers – from academic institutions and government agencies through to commercial researchers and industry – are provided with the highest levels of service backed up by solid technical support from our team of experienced engineers.
Development of novel materials and their characterisation is supported by Elliot Scientific’s close relationship with leading suppliers of high resolution equipment for examining the properties of materials at cryogenic temperatures, in magnetic environments, at the microscopic level, manually or automatically.

http://www.elliotscientific.com
Claim This Listing

Please login in order to be able to claim this listing.

FEI, Hillsboro OR, USA
5350 NE Dawson Creek Drive, Hillsboro, OR 97124, USA

With more than 60 years of innovation and leadership, FEI enables customers to find meaningful answers to questions that accelerate breakthrough discoveries, increase productivity, and ultimately change the world. FEI designs, manufactures, and supports the broadest range of high-performance microscopy workflows that provide images and answers in the micro-, nano-, and picometer scales.
Combining hardware and software expertise in electron, ion, and light microscopy with deep application knowledge in the materials science, life sciences, electronics, and natural resources markets, the worldwide FEI team of 2,700+ employees is dedicated to customers’ pursuit of discovery and resolution to global challenges.

http://www.fei.com/
+1 (503) 726-2570
Claim This Listing

Please login in order to be able to claim this listing.

FemtoTools AG, Zürich, Switzerland
Furtbachstrasse 4, CH-8107 Buchs, Switzerland

The FT-MTA02 Micromechanical Testing and Assembly Station is a highly versatile micromechanical testing instrument. Within a few minutes, the instrument can be reconfigured for almost any mechanical testing and manipulation task in the fields of material science, biomaterials testing and micro- and nanosystems characterization.The instrument is designed to perform highly accurate probe-based force-position-time measurements, which enable a large number of testing modes.

http://www.femtotools.com/
Claim This Listing

Please login in order to be able to claim this listing.

Fischer-Cripps, Killarney Heights, Australia
29 Londonderry Drive, Killarney Heights, NSW 2087, Australiia

Fischer-Cripps Laboratories Pty Ltd is a company first registered in New South Wales, Australia in 1966. The company has a long history of scientific manufacturing and consultancy. In 1999 Dr Cripps took over the UMIS project from Professor Swain at CSIRO and in 2005, the company formally took on the UMIS product as a commercial undertaking. Fischer-Cripps Laboratories redeveloped UMIS with numerous improvements and reduction in price to produce the IBIS nano-indenter. Fischer-Cripps Laboratories is is an independent private company and is not a subsidiary of, or part-owned by, any other company.
Fischer-Cripps Laboratories Pty Ltd has its own well-equipped mechanical and electrical workshops and test laboratory in the northern suburbs of metropolitan Sydney, about 12 kms from the city centre. The team consists of a small number of dedicated professionals who have been with the program for many years and are committed to maintaining our excellent reputation for reliability and precision nano-indentation. Every instrument is handmade in-house on top quality machine tools by qualified craftsmen. Each and every instrument is rigorously tested to ensure that your purchase will work accurately and reliably after installation and for many years to come.

Products:
Nano-indentation
Rheology
Accessories

Services:
Testing
Calibration
Modelling

http://www.ibisonline.com.au
Claim This Listing

Please login in order to be able to claim this listing.

Hegewald & Peschke Mess- und Prüftechnik GmbH, Nossen, Germany
Am Gründchen 1, 01683 Nossen, Germany

Since 1990, Hegewald & Peschke Mess- und Prüftechnik GmbH has been developing, producing and distributing high-quality machines, components and software solutions for material and component testing.
The product range includes universal testing machines, hardness testers, component and furniture test stands, micro testing systems, special testing solutions, and different length measuring devices for industry and research.

www.hegewald-peschke.com