Ecotoxicology of Nanoparticles

$30.00

Ecotoxicology of Nanoparticles

Muhammad Zubair, Noor Fatima, Habibullah Nadeem, Sabir Hussain, Tanvir Shahzad, Muhammad Afzal, Sana Fatima, Muhammad Imran, Muhammad Hussnain Siddique

The escalating concern within the field of ecotoxicology pertains to the burgeoning impacts of nanoparticles (NPs) on the environment. Owing to their distinctive physicochemical attributes, engineered nanomaterials have found pervasive use in many different fields, causing their dispersion into natural ecosystems. It summarizes nanoparticle ecotoxicology, concentrating on their environmental impacts. This provides NP bioavailability, toxicity processes, and exposure routes. It emphasizes risk assessment and sustainable nanomaterial innovation to reduce environmental damage. Addressing nanoparticle ecotoxicity is essential for nanotechnology’s long-term sustainability and ecosystem protection. Furthermore, the chapter uncovering the toxicity mechanisms and implementing regulations to protect ecosystems from nanoparticle induced environmental hazards.

Keywords
Nanoparticles, Nanomaterials, Ecotoxicology, Reactive Oxygen Species, Bottom-Up, Top-Down

Published online 2/10/2024, 20 pages

Citation: Muhammad Zubair, Noor Fatima, Habibullah Nadeem, Sabir Hussain, Tanvir Shahzad, Muhammad Afzal, Sana Fatima, Muhammad Imran, Muhammad Hussnain Siddique, Ecotoxicology of Nanoparticles, Materials Research Foundations, Vol. 161, pp 225-244, 2024

DOI: https://doi.org/10.21741/9781644902998-8

Part of the book on Nanoparticle Toxicity and Compatibility

References
[1] E. Hood, Nanotechnology: Looking as we leap, Environ. Health Perspect. 112 (2004). https://doi.org/10.1289/ehp.112-a740.
[2] E.A.J. Bleeker, W.H. de Jong, R.E. Geertsma, M. Groenewold, E.H.W. Heugens, M. Koers-Jacquemijns, D. van de Meent, J.R. Popma, A.G. Rietveld, S.W.P. Wijnhoven, F.R. Cassee, A.G. Oomen, Considerations on the EU definition of a nanomaterial: Science to support policy making, Regul. Toxicol. Pharmacol. 65 (2013) 119–125. https://doi.org/10.1016/j.yrtph.2012.11.007.
[3] H. peng Feng, L. Tang, G. ming Zeng, Y. Zhou, Y. cheng Deng, X. Ren, B. Song, C. Liang, M. yun Wei, J. fang Yu, Core-shell nanomaterials: Applications in energy storage and conversion, Adv. Colloid Interface Sci. 267 (2019) 26–46. https://doi.org/10.1016/j.cis.2019.03.001.
[4] M.R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials, Environ. Sci. Technol. 40 (2006) 4336–4345. https://doi.org/10.1021/es062726m.
[5] V.L. Colvin, The potential environmental impact of engineered nanomaterials, Nat. Biotechnol. 21 (2003) 1166–1170. https://doi.org/10.1038/nbt875.
[6] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front. Microbiol. 14 (2023) 1188743. https://doi.org/10.3389/fmicb.2023.1188743.
[7] G. Oberdörster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. Monteiro-Riviere, D. Warheit, H. Yang, Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy, Part. Fibre Toxicol. 2 (2005). https://doi.org/10.1186/1743-8977-2-8.
[8] M.C. Roco, Nanotechnology: Convergence with modern biology and medicine, Curr. Opin. Biotechnol. 14 (2003) 337–346. https://doi.org/10.1016/S0958-1669(03)00068-5.
[9] S. Ammar, I.A.W. Ma, K. Ramesh, S. Ramesh, Polymers-based nanocomposite coatings, Nanomater. Coatings Fundam. Appl. (2019) 9–39. https://doi.org/10.1016/B978-0-12-815884-5.00002-8.
[10] D. Letchumanan, S.P.M. Sok, S. Ibrahim, N.H. Nagoor, N.M. Arshad, Plant-based biosynthesis of copper/copper oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicity, Biomolecules. 11 (2021) 564. https://doi.org/10.3390/biom11040564.
[11] A.C. Anselmo, S. Mitragotri, Nanoparticles in the clinic: An update, Bioeng. Transl. Med. 4 (2019). https://doi.org/10.1002/btm2.10143.
[12] H. Otsuka, Y. Nagasaki, K. Kataoka, PEGylated nanoparticles for biological and pharmaceutical applications, Adv. Drug Deliv. Rev. 55 (2003) 403–419. https://doi.org/10.1016/S0169-409X(02)00226-0.
[13] N.S. Alsaiari, F.M. Alzahrani, A. Amari, H. Osman, H.N. Harharah, N. Elboughdiri, M.A. Tahoon, Plant and Microbial Approaches as Green Methods for the Synthesis of Nanomaterials: Synthesis, Applications, and Future Perspectives, Molecules. 28 (2023) 463. https://doi.org/10.3390/molecules28010463.
[14] M.C. Newman, Y. Zhao, Ecotoxicology Nomenclature: LC, LD, LOC, LOEC, MAC, Encycl. Ecol. Five-Volume Set. (2008) 1187–1193. https://doi.org/10.1016/B978-008045405-4.00404-3.
[15] R. Truhaut, Ecotoxicology: Objectives, principles and perspectives, Ecotoxicol. Environ. Saf. 1 (1977) 151–173. https://doi.org/10.1016/0147-6513(77)90033-1.
[16] A. Kahru, H.C. Dubourguier, From ecotoxicology to nanoecotoxicology, Toxicology. 269 (2010) 105–119. https://doi.org/10.1016/j.tox.2009.08.016.
[17] A. Zielinska, F. Carreiró, A.M. Oliveira, A. Neves, B. Pires, D. Nagasamy Venkatesh, A. Durazzo, M. Lucarini, P. Eder, A.M. Silva, A. Santini, E.B. Souto, Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology, Molecules. 25 (2020) 3731. https://doi.org/10.3390/molecules25163731.
[18] F.S. Alves, J.N. Cruz, I.N. de Farias Ramos, D.L. do Nascimento Brandão, R.N. Queiroz, G.V. da Silva, G.V. da Silva, M.F. Dolabela, M.L. da Costa, A.S. Khayat, J. de Arimatéia Rodrigues do Rego, D. do Socorro Barros Brasil, Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine, Separations. 10 (2023) 21. https://doi.org/10.3390/separations10010021.
[19] N.A. Monteiro-Riviere, R.J. Nemanich, A.O. Inman, Y.Y. Wang, J.E. Riviere, Multi-walled carbon nanotube interactions with human epidermal keratinocytes, Toxicol. Lett. 155 (2005) 377–384. https://doi.org/10.1016/j.toxlet.2004.11.004.
[20] L. Yang, D.J. Watts, Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxicol. Lett. 158 (2005) 122–132. https://doi.org/10.1016/j.toxlet.2005.03.003.
[21] K. Fukushi, T. Sato, Using a surface complexation model to predict the nature and stability of nanoparticles, Environ. Sci. Technol. 39 (2005) 1250–1256. https://doi.org/10.1021/es0491984.
[22] C.M. Sayes, J.D. Fortner, W. Guo, D. Lyon, A.M. Boyd, K.D. Ausman, Y.J. Tao, B. Sitharaman, L.J. Wilson, J.B. Hughes, J.L. West, V.L. Colvin, The differential cytotoxicity of water-soluble fullerenes, Nano Lett. 4 (2004) 1881–1887. https://doi.org/10.1021/nl0489586.
[23] G. Pandey, P. Jain, Assessing the nanotechnology on the grounds of costs, benefits, and risks, Beni-Suef Univ. J. Basic Appl. Sci. 9 (2020). https://doi.org/10.1186/s43088-020-00085-5.
[24] N.R. Panyala, E.M. Peña-Méndez, J. Havel, Silver or silver nanoparticles: A hazardous threat to the environment and human health?, J. Appl. Biomed. 6 (2008) 117–129. https://doi.org/10.32725/jab.2008.015.
[25] P. Sharma, N.Y. Jang, J.W. Lee, B.C. Park, Y.K. Kim, N.H. Cho, Application of ZnO-based nanocomposites for vaccines and cancer immunotherapy, Pharmaceutics. 11 (2019) 493. https://doi.org/10.3390/pharmaceutics11100493.
[26] R.M. Touyz, F.J. Rios, R. Alves-Lopes, K.B. Neves, L.L. Camargo, A.C. Montezano, Oxidative Stress: A Unifying Paradigm in Hypertension, Can. J. Cardiol. 36 (2020) 659–670. https://doi.org/10.1016/j.cjca.2020.02.081.
[27] X. Zhou, L. Zhao, J. Luo, H. Tang, M. Xu, Y. Wang, X. Yang, H. Chen, Y. Li, G. Ye, F. Shi, C. Lv, B. Jing, The toxic effects and mechanisms of Nano-Cu on the spleen of rats, Int. J. Mol. Sci. 20 (2019) 1469. https://doi.org/10.3390/ijms20061469.
[28] J.R. Lead, K.J. Wilkinson, Aquatic colloids and nanoparticles: Current knowledge and future trends, Environ. Chem. 3 (2006) 159–171. https://doi.org/10.1071/EN06025.
[29] M. Ammann, H. Burtscher, H.C. Siegmann, Monitoring volcanic activity by characterization of ultrafine aerosol emissions, J. Aerosol Sci. 21 (1990) S275–S278. https://doi.org/10.1016/0021-8502(90)90237-R.
[30] S. Hasegawa, S. Wakamatsu, T. Ohara, Y. Itano, K. Saitoh, M. Hayasaki, S. Kobayashi, Vertical profiles of ultrafine to supermicron particles measured by aircraft over Osaka metropolitan area in Japan, Atmos. Environ. 41 (2007) 717–729. https://doi.org/10.1016/j.atmosenv.2006.09.031.
[31] R.D. Handy, B.J. Shaw, Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology, Heal. Risk Soc. 9 (2007) 125–144. https://doi.org/10.1080/13698570701306807.
[32] P.G. Barlow, K. Donaldson, J. MacCallum, A. Clouter, V. Stone, Serum exposed to nanoparticle carbon black displays increased potential to induce macrophage migration, Toxicol. Lett. 155 (2005) 397–401. https://doi.org/10.1016/j.toxlet.2004.11.006.
[33] D.A. Taylor, Dust in the wind, Environ. Health Perspect. 110 (2002). https://doi.org/10.1289/ehp.110-a80.
[34] P. Kumar, L. Pirjola, M. Ketzel, R.M. Harrison, Nanoparticle emissions from 11 non-vehicle exhaust sources – A review, Atmos. Environ. 67 (2013) 252–277. https://doi.org/10.1016/j.atmosenv.2012.11.011.
[35] R.B.M. de Almeida, D.B. Barbosa, M.R. do Bomfim, J.A.O. Amparo, B.S. Andrade, S.L. Costa, J.M. Campos, J.N. Cruz, C.B.R. Santos, F.H.A. Leite, M.B. Botura, Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies, Pharmaceuticals. 16 (2023) 95. https://doi.org/10.3390/ph16010095.
[36] P. Gajjar, B. Pettee, D.W. Britt, W. Huang, W.P. Johnson, A.J. Anderson, Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440, J. Biol. Eng. 3 (2009). https://doi.org/10.1186/1754-1611-3-9.
[37] C.O. Dimkpa, D.E. Latta, J.E. McLean, D.W. Britt, M.I. Boyanov, A.J. Anderson, Fate of CuO and ZnO nano- and microparticles in the plant environment, Environ. Sci. Technol. 47 (2013) 4734–4742. https://doi.org/10.1021/es304736y.
[38] M. Simonin, A. Richaume, Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review, Environ. Sci. Pollut. Res. 22 (2015) 13710–13723. https://doi.org/10.1007/s11356-015-4171-x.
[39] T.Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut. 185 (2014) 69–76. https://doi.org/10.1016/j.envpol.2013.10.004.
[40] S.E. Smith, D.J. Read, Introduction, Mycorrhizal Symbiosis. (2002) 1–8. https://doi.org/10.1016/b978-012652840-4/50001-2.
[41] R.L. Berendsen, C.M.J. Pieterse, P.A.H.M. Bakker, The rhizosphere microbiome and plant health, Trends Plant Sci. 17 (2012) 478–486. https://doi.org/10.1016/j.tplants.2012.04.001.
[42] D.J. Burke, S. Zhu, M.P. Pablico-Lansigan, C.R. Hewins, A.C.S. Samia, Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance, Biol. Fertil. Soils. 50 (2014) 1169–1173. https://doi.org/10.1007/s00374-014-0938-3.
[43] Q. Wang, Z. Yang, Y. Yang, C. Long, H. Li, A bibliometric analysis of research on the risk of engineering nanomaterials during 1999-2012, Sci. Total Environ. 473–474 (2014) 483–489. https://doi.org/10.1016/j.scitotenv.2013.12.066.
[44] B.D. Chen, X.L. Li, H.Q. Tao, P. Christie, M.H. Wong, The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc, Chemosphere. 50 (2003) 839–846. https://doi.org/10.1016/S0045-6535(02)00228-X.
[45] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules. 28 (2023) 710. https://doi.org/10.3390/molecules28020710.
[46] C.O. Dimkpa, J.E. McLean, D.E. Latta, E. Manangón, D.W. Britt, W.P. Johnson, M.I. Boyanov, A.J. Anderson, CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat, J. Nanoparticle Res. 14 (2012). https://doi.org/10.1007/s11051-012-1125-9.
[47] R. Rafique, Z. Zahra, N. Virk, M. Shahid, E. Pinelli, T.J. Park, J. Kallerhoff, M. Arshad, Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: Alterations in chlorophyll content, H2O2 production, and genotoxicity, Agric. Ecosyst. Environ. 255 (2018) 95–101. https://doi.org/10.1016/j.agee.2017.12.010.
[48] H. Feizi, P. Rezvani Moghaddam, N. Shahtahmassebi, A. Fotovat, Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth, Biol. Trace Elem. Res. 146 (2012) 101–106. https://doi.org/10.1007/s12011-011-9222-7.
[49] C. Vannini, G. Domingo, E. Onelli, F. De Mattia, I. Bruni, M. Marsoni, M. Bracale, Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings, J. Plant Physiol. 171 (2014) 1142–1148. https://doi.org/10.1016/j.jplph.2014.05.002.
[50] B. Wu, L. Zhu, X.C. Le, Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.), Environ. Pollut. 230 (2017) 302–310. https://doi.org/10.1016/j.envpol.2017.06.062.
[51] C.M. Rico, M.I. Morales, R. McCreary, H. Castillo-Michel, A.C. Barrios, J. Hong, A. Tafoya, W.Y. Lee, A. Varela-Ramirez, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings, Environ. Sci. Technol. 47 (2013) 14110–14118. https://doi.org/10.1021/es4033887.
[52] A.K. Shaw, S. Ghosh, H.M. Kalaji, K. Bosa, M. Brestic, M. Zivcak, Z. Hossain, Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.), Environ. Exp. Bot. 102 (2014) 37–47. https://doi.org/10.1016/j.envexpbot.2014.02.016.
[53] P. Boonyanitipong, B. Kositsup, P. Kumar, S. Baruah, J. Dutta, Toxicity of ZnO and TiO2 Nanoparticles on Germinating Rice Seed Oryza sativa L, Int. J. Biosci. Biochem. Bioinforma. (2011) 282–285. https://doi.org/10.7763/ijbbb.2011.v1.53.
[54] P. Zhang, Z. Guo, F.A. Monikh, I. Lynch, E. Valsami-Jones, Z. Zhang, Growing Rice (Oryza sativa) Aerobically Reduces Phytotoxicity, Uptake, and Transformation of CeO2Nanoparticles, Environ. Sci. Technol. 55 (2021) 8654–8664. https://doi.org/10.1021/acs.est.0c08813.
[55] P.M.G. Nair, I.M. Chung, Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings, Chemosphere. 112 (2014) 105–113. https://doi.org/10.1016/j.chemosphere.2014.03.056.
[56] C. Larue, J. Laurette, N. Herlin-Boime, H. Khodja, B. Fayard, A.M. Flank, F. Brisset, M. Carriere, Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase, Sci. Total Environ. 431 (2012) 197–208. https://doi.org/10.1016/j.scitotenv.2012.04.073.
[57] M.R. Castiglione, L. Giorgetti, C. Geri, R. Cremonini, The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L, J. Nanoparticle Res. 13 (2011) 2443–2449. https://doi.org/10.1007/s11051-010-0135-8.
[58] Antimicrobial Activity of Titanium Dioxide Nanoparticles Biosynthesized by Enterococcus hirae, Curr. Sci. Int. (2022). https://doi.org/10.36632/csi/2022.11.4.30.
[59] R. Zhang, H. Zhang, C. Tu, X. Hu, L. Li, Y. Luo, P. Christie, Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination, Environ. Sci. Pollut. Res. 22 (2015) 11109–11117. https://doi.org/10.1007/s11356-015-4325-x.
[60] Z. Wang, X. Xie, J. Zhao, X. Liu, W. Feng, J.C. White, B. Xing, Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.), Environ. Sci. Technol. 46 (2012) 4434–4441. https://doi.org/10.1021/es204212z.
[61] L.R. Pokhrel, B. Dubey, Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles, Sci. Total Environ. 452–453 (2013) 321–332. https://doi.org/10.1016/j.scitotenv.2013.02.059.
[62] E.Y. Krysanov, D.S. Pavlov, T.B. Demidova, Y.Y. Dgebuadze, Effect of nanoparticles on aquatic organisms, Biol. Bull. 37 (2010) 406–412. https://doi.org/10.1134/S1062359010040114.
[63] R. Hardman, A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors, Environ. Health Perspect. 114 (2006) 165–172. https://doi.org/10.1289/ehp.8284.
[64] R. Duncan, L. Izzo, Dendrimer biocompatibility and toxicity, Adv. Drug Deliv. Rev. 57 (2005) 2215–2237. https://doi.org/10.1016/j.addr.2005.09.019.
[65] I.N. Throbäck, M. Johansson, M. Rosenquist, M. Pell, M. Hansson, S. Hallin, Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil, FEMS Microbiol. Lett. 270 (2007) 189–194. https://doi.org/10.1111/j.1574-6968.2007.00632.x.
[66] K. Shahane, M. Kshirsagar, S. Tambe, D. Jain, S. Rout, M.K.M. Ferreira, S. Mali, P. Amin, P.P. Srivastav, J. Cruz, R.R. Lima, An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L., Pharmaceuticals. 16 (2023) 611. https://doi.org/10.3390/ph16040611.
[67] S. Smita, S.K. Gupta, A. Bartonova, M. Dusinska, A.C. Gutleb, Q. Rahman, Nanoparticles in the environment: Assessment using the causal diagram approach, Environ. Heal. A Glob. Access Sci. Source. 11 (2012). https://doi.org/10.1186/1476-069X-11-S1-S13.
[68] S. Rana, P.T. Kalaichelvan, Ecotoxicity of Nanoparticles, ISRN Toxicol. 2013 (2013) 1–11. https://doi.org/10.1155/2013/574648.
[69] D.H. Oughton, T. Hertel-Aas, E. Pellicer, E. Mendoza, E.J. Joner, Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms, Environ. Toxicol. Chem. 27 (2008) 1883–1887. https://doi.org/10.1897/07-578.1.
[70] C.A.M. van Gestel, Soil ecotoxicology: State of the art and future directions, Zookeys. 176 (2012) 275–296. https://doi.org/10.3897/zookeys.176.2275.
[71] R.D. Handy, R. Owen, E. Valsami-Jones, The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs, Ecotoxicology. 17 (2008) 315–325. https://doi.org/10.1007/s10646-008-0206-0.