Novel Ceramic Materials, Chapter 4


Effects of Cations Substitution on Structural and Magnetic Properties of LaCrO3 Ceramic Perovskites

N. Thenmozhi, R. Saravanan, Yen-Pei Fu

The co-doped lanthanum chromite (La0.8Ca0.2)(Cr0.9Co0.1)O3 was synthesized using the solid state reaction technique. The sample has been characterized by X-ray diffraction for a structural and charge density analysis. The sample was analyzed by UV-visible spectrometry for optical properties and scanning electron microscopy for surface morphology. Further, the sample was also investigated by the vibrating sample magnetometry for its magnetic properties. XRD data show that the grown sample is orthorhombic in structure with a single phase. The UV absorption spectra gives the energy band gap of the sample as 2.4450 eV. The M-H curve obtained from VSM measurements exhibit weak ferromagnetism of the grown sample.

X-Ray Diffraction, Ceramics, Charge Density, Magnetic Property, Scanning Electron Microscopy

Published online 6/1/2016, 15 pages

DOI: 10.21741/9781945291036-4

Part of Novel Ceramic Materials

[1] G. Setz Luiz Fernando, H. Sonia Regina, Mello-Castanho, Determining the Lanthanum Chromite Zeta Potential in Aqueous Media, Materials Science Forum 660-661 (2010) 1145-1150
[2] D. B. Meadowcroft, Some properties of strontium-doped lanthanum chromite, Brit. J. Appl. Phys. 2 (1969) 1225-1233
[3] N. Russo, D. Fino, G. Sanacco, V. Speechia, Studies on the redox properties of chromite perovskite catalysts for soot combustion, Journal of catalysis 229 (2005) 459-469
[4] S. Ifrah, A. Kaddomi, P. Gelin, G. Bergeret, On the effect of La-Cr-O phase composition on diesel soot catalytic combustion, Catalysis Communications 8 (2007) 2257-2262
[5] S. A. Suvorov and A. P. Shevchick, A heating module equipped with Lanthanum Chromite – Based heaters, Refractories and Industrial ceramics 45 (2004) 196-200
[6] D. L. West, F. C. Montgomery, T. R. Armstrong, Use of La0.85Sr0.15CrO3 in high-temperature NOx sensing elements, Sensors and Actuators B 106 (2005) 758-765
[7] [7] W.L. David, F.C. Montgomery, T.R. Armstrong, “NO-selective” NOx sensing elements for combustion exhausts, Sensors and Actuators B 111-112 (2005) 84-90
[8] Zhu Wei-zhong, Y. Mi, Perspectives on the metallic interconnects for solid oxide fuel cells, J. Zhejiang Univ Sci. 5(12) (2004) 1471-1503
[9] M. Suzuki, H. Sasaki, A. Kajimura, Oxide ionic conductivity of doped lanthanum chromite thin film interconnectors, Solid State Ionics 96 (1997) 83-88
[10] K. Hilpert, D. Das, M. Miller, D. H. Peck and R. Wei, Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes, J. Electrochem. Soc. 143 No. 11 (1996) 3642-3647
[11] H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic structures, J. Appl. Crystallogr. 2 (1969) 65-71
[12] V. Petricek, M. Dusek, L. Palatinus, Jana 2006, The Crystallographic Computing System, Institute of Physics, Prague, Czech Republic, (2006)
[13] K.P. Ong, Peter Blaha, Ping Wu, Origin of the light green color and electronic ground state of LaCrO3, Physical review B 77 073102 (2008) 1-4.
[14] K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Applied Crystallogr. 41 (2008) 653-658
[15] T. Brajesh, A. Dixit, R. Naik, G. Lawes and M.S.Rama Chandra Rao, Magneto structural and magneto caloric properties of bulk LaCrO3 system, Materials Research Express 2 (2015) 1-13
[16] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, (1976) 751-767.
[17] D.M. Collins, Electron density images from imperfect data by iterative entropy maximization, Nature 49 (1982) 298.
[18] A. D. Ruben, I. Fugio, Superfast program PRIMA for the Maximum Entropy Method, Advanced Materials Laboratory, National Institute for Material Science, Ibaraki, Japan (2004), 3050044.
[19] C.S. Montross, Elastic Modulus Versus Bond Length in Lanthanum Chromite Ceramics, Journal of the European Ceramic Society 18 (1997) 353-358.
[20] S. Natsuko, F Helmer, C. Hauback, Structural, Magnetic and thermal properties of La1-tCatCrO3 J. of Solid state Chemistry 121 (1996) 202-213.
[21] J. Tauc, R. Grigorvici, A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, Physica Status Solidi 15, 627–637 (1966).
[22] S. Qing-Gong, S. Lingling, Z. Hui, W. Tong and K. Jianhai, The Structural Stabilities and Electronic Properties of Orthorhombic and Rhombohedral LaCrO3-A First principles Study, Advanced Materials Research 622-623 (2013) 734-738.
[23] R.Saravanan, GRAIN software, Private Communication, (2008).
[24] B.D. Culllity, S.R. Stock, Elements of X-ray Diffraction, third ed. Prentice Hall, New Jersy, 2001.
[25] S.M. Khetre, H.V. Jadhav and S.R. Bamane, Synthesis and characterization of nanocrystalline LaCrO3 by combustion route, Rasayan J. Chem. 2 (2009) 174-178.
[26] I. Masato, T. Hirotsugu, U. Kyota, E. Tadashi and S. Masahiko, Microwave synthesis of LaCrO3, Journal of Materials chemistry 8 (1998) 2765-2768.
[27] J.P. Gonjal, R. Schmidt, J.J. Romero, D.U. Amador and E. Moran, Microwave-Assisted Synthesis, Microstructure, and Physical Properties of Rare-Earth Chromites, Inorg. Chem. 2013, 52, 313−320.
[28] G.A. Alvarez, X.L. Wang, G. Peleckis and S.X. Dou, J.G. Zhu and Z.W. Lin, Magnetotransport and magnetic properties of weak ferromagnetic semiconductors: Ca doped LaCrO3, Journal of applied physics 103 07B916 (2008) 1-3.
[29] H. Terashita, J.C. Cezar, F.M. Ardito, L.F. Bufaical and E. Granado, Element-specific and bulk magnetism, electronic, and crystal structures of La0.70Ca0.30Mn1−xCrxO3, Physical Review B 85, 104401 (2012).
[30] R. Shukla, J. Manjanna, A.K. Bera, S.M. Yusuf, and A.K. Tyagi, La1-xCexCrO3 (0.0 ≤x≤1.0): A New Series of Solid Solutions with Tunable Magnetic and Optical Properties, Inorg. Chem. 2009, 48, 11691–11696.