Novel Ceramic Materials, Chapter 10


Charge Density Distribution and Bonding in Calcite

T. K. Thirumalaisamy, S. Saravanakumar, R. Saravanan

An attempt to characterize the bonding and visualization of charge density distribution in calcite is achieved. From the X-ray diffraction data sets the experimental charge density distribution and its derived properties in calcite are derived and analyzed using an aspherical atom based multipole model refinement and the maximum entropy method (MEM). The multipole analysis is done for the refinement of the population parameters. The topology of the charge density is analyzed and the critical points in the charge density are determined. The covalent nature of the bonding between C – O is revealed in the 3D, 2D MEM maps and also in the one-dimensional electron density profiles. The quantitative analysis of the bonding is done using the charge density profiles along the bond path. The density at bond critical point along the bonding direction is found to be around 1.7856 e/Å3 and 0. 0.4994 e/Å3 for C –O and Ca – O respectively.

Charge Density, Planar CO3, Multipole, MEM

Published online 6/1/2016, 19 pages

DOI: 10.21741/9781945291036-10

Part of Novel Ceramic Materials

[1] E. M. Landau, M. Levanon, L. Leiserowitz, M. Lahav and J. Sagiv, Transfer of structural information from Langmuir monolayers to three-dimensional growing crystals, Nature 318 (1985) 353-356.
[2] S. Mann, B. R. Heywood, S. Rajam and J.D. Birchal, Controlled crystallization of CaCO3 under stearic acid monolayers, Nature 334 (1988) 692-695.
[3] J. Aizenberg, A. J. Black and G. M. Whitesides, Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports, Nature 394 (1998) 868-871.
[4] G. Falini, S. Albeck, S. Weiner and L. Adadi, Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules, Science 271 (1996) 67-69.
[5] D. Chakrabarty and S. Mahapatra, Aragonite crystals with unconventional morphologies, J. Mater. Chem. 9 (1999) 2953-2957.
[6] K. Naka, D.K. Keum, Y. Tanaka and Y. Chujo, Control of crystal polymorphs by a ‘latent inductor’: crystallization of calcium carbonate in conjunction with in situ radical polymerization of sodium acrylate in aqueous solution, Chem. Commun. 16 (2000) 1537-1538.
[7] N.A.J. M. Sommerdijk and G. With, Biomimetic CaCO3 Mineralization using Designer Molecules and Interfaces, Chem. Rev. 108 (2008) 4499-4550.
[8] E.N. Maslen, V.A. Streltsov and N.R. Streltsova, X-ray study of the electron density in calcite, CaCO3, Acta Cryst. B49 (1993) 636-641.
[9] G. Wullf, On the question of the speed of growth and dissolution of Krystallflächen, Z. Krystallogr. 34 (1901) 449-530.
[10] P.W. Bridgman, The high pressure behavior of miscellaneous minerals, Am. J. Sci. 237 (1939) 7-18.
[11] A.K. Singh and G.C.Kennedy, Compression of calcite to 40 KB. J. Geophys. Res. 79 (1974) 2615-2622.
[12] L. Merrill and W.A. Bassett, The crystal structure of CaCO3 (II), a high-pressure metastable phase of calcium carbonate, Acta Cryst. B31 (1975) 343-349.
[13] H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2 (1969) 65-71.
[14] D.M. Collins, Electron density images from imperfect data by iterative entropy maximization, Nature 298 (1982) 49-51.
[15] D.L. Wood and J. Tauc, Weak Absorption Tails in Amorphous Semiconductors, Phys. Rev. B5 (1972) 3144-3151.
[16] M.K. Aydinol, J.V. Mantese and S.P. Alpay, A comparative ab initio study of the ferroelectric behaviour in KNO3 and CaCO3, J. Phys. Condens. Matter. 19 (2007) 496210.
[17] V. Petříček, M. Dušsek and L.Palatinus, Crystallographic Computing System JANA2006: General features. Z. Kristallogr. 229(5) (2014) 345-352.
[18] P. Thompson, D.E. Cox and J.B. Hastings, Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3, J. Appl. Cryst. 20 (1987) 79-83.
[19] C.J. Howard, The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians, J. Appl. Crystallogr. 15 (1982) 615-620.
[20] A. March, Mathematische Theorie der Regelung nach der Korngestah bei affiner Deformation, Z. Kristallogr. 81 (1932) 285-297.
[21] W.A.J. Dollase, Correction of intensities for preferred orientation in powder diffractometry: application of the March model, J. Appl. Cryst. 19 (1986) 267-272.
[22] F. Izumi and R.A. Dilanian, Recent research developments in physics. Transworld research network Vol. 3, Part II, Trivandrum, (2002) 699.
[23] K. Momma and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Cryst. 41 (2008) 653-658.
[24] N.K. Hansen and P. Coppens, Testing aspherical atom refinements on small-molecule data sets. Acta Cryst. A34 (1978) 909-921.
[25] R.F.W. Bader, 1990. Atoms in Molecules-A Quantum Theory. Oxford University Press, Oxford.
[26] E. Clement and C. Roetti, Roothaan-Hartree-Fock atomic wavefunctions: Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, Z≤54, Atomic data and nuclear tables 14 (1974) 177-478.
[27] V.G. Tsierelson, Acta Cryst. A55 supplement, Abstract M13-OF-003, 1999.