Basic Concepts and Properties of Superconductors


Basic Concepts and Properties of Superconductors

Shoomaila Latif, Muhammad Husnain, M. Hassan Siddique, Muhammad Imran

The phenomenon of super conductance is quite fascinating due to enormous applications and hence intense research in this area attracted engineers, scientists and businessmen. In this Chapter, we will briefly elaborate the conversion of a normal conductor to a superconductor which is a fascinating material since its discovery as well as the role of critical temperature and critical magnetic field for the super phenomenon of superconductivity. A short historical journey of superconductors from 1911 to date is also the part of this chapter that started with the work of Onnes on extreme low temperatures in cryogenic laboratories. The difference between perfect conductor and superconductor, classification of superconductors and finally the fundamental properties of superconductors have been discussed precisely.

Superconductors, Critical Temperature, Critical Magnetic Effect, Meissner Effect

Published online 10/5/2022, 16 pages

Citation: Shoomaila Latif, Muhammad Husnain, M. Hassan Siddique, Muhammad Imran, Basic Concepts and Properties of Superconductors, Materials Research Foundations, Vol. 132, pp 1-16, 2022


Part of the book on Superconductors

[1] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108 (1957) 1175.
[2] J. Bardeen, Electron-vibration interactions and superconductivity, Rev. Mod. Phys. 23 (1951) 261.
[3] P. G. De Gennes, P. A. Pincus, Superconductivity of metals and alloys, CRC Press, (2018).
[4] J. Hara, K. Nagai, Superconducting transition-temperature of thin-films in magnetic-field, J. Phys. Soc. Jpn. 63 (1994) 2331-2336.
[5] M. R. Beasley, A History of Superconductivity. In Advances in Superconductivity, Springer, Tokyo, 1989.
[6] J.G. Bednorz, K. A. Muller, Earlier and recent aspects of superconductivity, 1990.
[7] E.H. Brandt, The flux-line lattice in superconductors. Rep. Prog. Phys. 58 (1995) 1465.
[8] P. Jung, A. V. Ustinov, S. M. Anlage, Progress in superconducting metamaterials, Supercond. Sci. Technol. 27 (2014) 073001.
[9] E. M. Towsif, Analysis of Prospective Elements and Crystal Lattice Structures via Computer Algorithms to Identify Standard Temperature Pressure (STP) Superconductors, arXiv preprint arXiv. (2021) 2110.15201.
[10] P.F. Dahl, K. Onnes and the discovery of superconductivity: The leyden years, 1911-1914, Hist. Stud. Phys. Sci. 15 (1984) 1-37.
[11] R. L. Fagaly, Superconducting quantum interference device instruments and applications, Rev. Sci. Instrum. 77 (2006) 101101.
[12] V. Kozhevnikov, Meissner Effect: History of Development and Novel Aspects. J. Supercond. Nov. Magn. 34 (2021) 1979-2009.
[13] W. Meissner, R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfähigkeit, Naturwissenschaften, 21 (1933) 787-788. for English translation see A. M. Forrest, Meissner and Ochsenfeld revisited, A new effect concerning the onset of superconductivity, Eur. J. Phys. 4 (1983) 117.
[14] P. J. Ford, G. A. Saunders, The rise of the superconductors, CRC press, 2004.
[15] Goodstein, David, J. Goodstein, Richard Feynman and the history of superconductivity, Phys. Perspect. 2 (2000) 30-47.
[16] C. M. Rey, A. P. Malozemoff, Fundamentals of superconductivity, In Superconductors in the Power Grid, Woodhead Publishing, 2015, pp. 29-73.
[17] J. Orenstein, A. J. Millis, Advances in the physics of high-temperature superconductivity, Sci. 288 (2000) 468-474.
[18] V. V. Schmidt, V. V. Schmidt, P. Müller, A. V. Ustinov, The physics of superconductors: Introduction to fundamentals and applications. Springer Science & Business Media, 1997.
[19] F. S. Henyey, Distinction between a Perfect Conductor and a Superconductor. Phys. Rev. Lett. 49 (1982) 416.
[20] J. R. Schrieffer, Theory of superconductivity, CRC press, 2018.
[21] L. Greene, T. O. M. Lubensky, M. Tirrell, P. Chaikin, H. Ding, K. Faber, S. Zinkle, Front. Mater. Research, A Decadal Survey (No. Doe-Nasem-16257). The National Academies of Sciences, Engineering and Medicine, 2019.
[22] F. Parhizgar, A. M. Black-Schaffer, Diamagnetic and paramagnetic Meissner effect from odd-frequency pairing in multiorbital superconductors, Phys. Rev. B. 104 (2021) 054507.
[23] K. Sakamaki, H. Wada, H. Nozaki, Y. Ōnuki, M. Kawai, Carbosulfide superconductor. Solid State Commun. 112 (1999) 323-327.
[24] Huse, A. David, M. Fisher, D. S. Fisher, Are superconductors really superconducting? Nature 358 (1992) 553-559.
[25] L. R. Tagirov, Proximity effect and superconducting transition temperature in superconductor/ferromagnet sandwiches, Physica C. Superconductivity, 307 (1998) 145-163.
[26] G. Burns, High-temperature superconductivity, Elsevier Science & Technology, 1992.
[27] G. Krabbes, G. Fuchs, W. R. Canders, H. May, R. Palka, High temperature superconductor bulk materials. Fundamentals-processing-properties control-application aspects. 2006.
[28] V. Z. Kresin, S. A. Wolf, Fundamentals of superconductivity: Springer Science & Business Media, 2013.
[29] M. Strongin, A. Paskin, D. G. Schweitzer, O. F. Kammerer, P. P. Craig, Surface superconductivity in type I and type II superconductors. Phys. Rev. Lett. 12 (1964) 442.
[30] T. Yogi, G. J. Dick, J. E. Mercereau, Critical rf magnetic fields for some type-I and type-II superconductors, Phys. Rev. Lett. 39 (1977) 826.
[31] W. Buckel, R. Kleiner, Superconductivity: fundamentals and applications, John Wiley & Sons, 2008.
[32] D. J. Quinn III, W. B. Ittner III, Resistance in a Superconductor, J. Appl. Phys. 33 (1962) 748-749. 32
[33] P. F. Dahl, Kamerlingh onnes and the discovery of superconductivity, The leyden years, 1911-1914, Hist. Stud. Phy. Sci. 15 (1984) 1-37.
[34] F. Lacy, Using Electromagnetic Properties to Identify and Design Superconducting Materials, 2021.
[35] L. P. Lévy, Magnetism and superconductivity: Springer Science & Business Media, 2000.
[36] D. Shoenberg, Magnetic Properties of Superconductors, Nature, 142 (1938) 874-875.
[37] A. Bussmann-Holder, H. Keller, High-temperature superconductors: underlying physics and applications, Z. Naturforschung B, 75 (2020) 3-14.
[38] V. Cvetkovic, Z. Tesanovic, Multiband magnetism and superconductivity in Fe-based compounds, Europhys. Lett. 85 (2009) 37002.
[39] Brandt, E. Helmut, The flux-line lattice in superconductors, Rep. Prog. Phys. 58 (11) (1995) 1465.
[40] P. Nozières, W. F. Vinen, The motion of flux lines in type II superconductors, The Philosophical Magazine, J. Theor. Appl. Phys. 14 (1966) 667-688.
[41] H. A. Mook, M. D. Lumsden, A. D. Christianson, S. E. Nagler, B. C. Sales, R. Jin, C. D. Cruz, Unusual relationship between magnetism and superconductivity in Fe. Te. 0.5 Se 0.5, Phys. Rev. Lett. 104 (2010) 187002.
[42] C. E. Gough, M. S. Colclough, E. M. Forgan, R. G. Jordan, M. Keene, C. M. Muirhead, S. Sutton, Flux quantization in a high-Tc superconductor, Nature, 326 (1987) 855-855.
[43] V. L. Ginzburg, Magnetic flux quantization in a superconducting cylinder, Sov. Phys. JETP, 15, (1962) 207-209.
[44] R. Doll, M. Näbauer, Experimental proof of magnetic flux quantization in a superconducting ring, Phys. Rev. Lett. 7 (1961) 51.
[45] R. L. Fagaly, Superconducting quantum interference device instruments and applications, Rev. Sci. Instrum. 77 (2006) 101101.
[46] R. Kleiner, D. Koelle, F. Ludwig, J. Clarke, Superconducting quantum interference devices, State of the art and applications, Proceedings of the IEEE, 92 (2004) 1534-1548.
[47] Tanaka, Yukio, S. Kashiwaya, Theory of Josephson effects in anisotropic superconductors, Phys. Rev. B, 56 (1997) 892.
[48] M. V. Feigel’man, L. B. Ioffe, Microwave properties of superconductors close to the superconductor-insulator transition, Phys. Rev. Lett. 120 (2018) 037004.
[49] P. Seidel, Josephson effects in iron-based superconductors, Supercond. Sci. Technol. 24 (2011) 043001.
[50] T. Matsushita, Flux pinning in superconductors (Vol. 164). Berlin: Springer, 2007.
[51] T. Matsushita, Flux Pinning Phenomena: In Superconductivity and Electromagnetism, Springer, Cham., 2021, pp. 69-113.