New Polymeric Composite Materials, Chapter 4


A Concise Overview of Biofuel Cells

Sufia ul Haque and Inamuddin

Nowadays, the amount of implantable devices with lots of applications has increased the need for supplying the required energy to sense, monitor, vibrate, pump and report the collected data of such devices. This tendency has concerned the scientists and engineers around the world. Such a power source should have a long life time and be of ecofriendly nature. It should be capable of producing energy directly from the living organisms’ fluids or organic matter. These required properties, light up the idea of using enzymatic biofuel cells (EBFCs) to generate the power. Unfortunately, EBFCs are limited by their short life time and poor electron transfer from the enzyme active site to the electrode surface. This issue can be overcome by using certain biocompatible mediators and some enzyme immobilization techniques such as: physical adsorption, electrostatic attraction, covalent coupling and entrapment. These techniques enhance the power density obtained from EBFCs.

Biofuel Cell, Enzyme Catalysis, Enzyme Electrodes, Glucose

Published online 11/1/2016, 52 pages


Part of New Polymeric Composite Materials

[1] S. Kerzenmacher, U. Kräling, T. Metz, R. Zengerle, F. von Stetten, A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability, J. Power Sources. 196 (2011) 1264–1272.
[2] D. Bhatnagar, S. Xu, C. Fischer, R.L. Arechederra, S.D. Minteer, Mitochondrial biofuel cells: expanding fuel diversity to amino acids, Phys. Chem. Chem. Phys. 13 (2011) 86–92.
[4] B. Cook, Introduction to fuel cells and hydrogen technology, Eng. Sci. Educ. J. 11 (2002) 205–216.
[5] A. Demirbas, Political, economic and environmental impacts of biofuels: A review, Appl. Energy. 86 (2009) S108–S117.
[6] A.T. Yahiro, S.M. Lee, D.O. Kimble, Bioelectrochemistry, Biochim. Biophys. Acta – Spec. Sect. Biophys. Subj. 88 (1964) 375–383.
[7] S. Cheng, H. Liu, B.E. Logan, Increased performance of single-chamber microbial fuel cells using an improved cathode structure, Electrochem. Commun. 8 (2006) 489–494.
[8] J. Giner, Electrochemical Glucose Oxidation on a Platinized Platinum Electrode in Krebs-Ringer Solution, J. Electrochem. Soc. 128 (1981) 2106.
[9] H. Liu, S. Grot, B.E. Logan, Electrochemically Assisted Microbial Production of Hydrogen from Acetate, Environ. Sci. Technol. 39 (2005) 4317–4320.
[10] M.C. Potter, Electrical Effects Accompanying the Decomposition of Organic Compounds, Proc. R. Soc. B Biol. Sci. 84 (1911) 260–276.
[11] I. Karube, T. Matsunaga, S. Tsuru, S. Suzuki, Biochemical fuel cell utilizing immobilized cells of clostridium butyricum, Biotechnol. Bioeng. 19 (1977) 1727–1733.
[12] H. Liu, S. Cheng, B.E. Logan, Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell, Environ. Sci. Technol. 39 (2005) 658–662.
[13] B.C.H. Steele, A. Heinzel, Review article Materials for fuel-cell technologies, Nature. 414 (2001) 345–352.
[14] J.B. Davis, H.F. Yarbrough, Preliminary Experiments on a Microbial Fuel Cell, Science (80-. ). 137 (1962) 615–616.
[15] H. Liu, B.E. Logan, Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane, Environ. Sci. Technol. 38 (2004) 4040–4046.
[16] P. Clauwaert, D. van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey, W. Verstraete, Open Air Biocathode Enables Effective Electricity Generation with Microbial Fuel Cells, Environ. Sci. Technol. 41 (2007) 7564–7569.
[17] N. Kakehi, T. Yamazaki, W. Tsugawa, K. Sode, A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell, Biosens. Bioelectron. 22 (2007) 2250–2255.
[18] S. Cosnier, A. Le Goff, M. Holzinger, Towards glucose biofuel cells implanted in human body for powering artificial organs: Review, Electrochem. Commun. 38 (2014) 19–23.
[19] D.L. HAYES, S. FURMAN, Cardiac Pacing:. How It Started, Where We Are, Where We Are Going, Pacing Clin. Electrophysiol. 27 (2004) 693–704.
[20] J.D. Salamone, M. Correa, The Mysterious Motivational Functions of Mesolimbic Dopamine, Neuron. 76 (2012) 470–485.
[21] P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, T.C. Green, Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices, Proc. IEEE. 96 (2008) 1457–1486.
[22] V. Leonov, T. Torfs, P. Fiorini, C. Van Hoof, Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes, IEEE Sens. J. 7 (2007) 650–657.
[23] M.W. Baker, R. Sarpeshkar, Feedback Analysis and Design of RF Power Links for Low-Power Bionic Systems, IEEE Trans. Biomed. Circuits Syst. 1 (2007) 28–38.
[24] G.A. Covic, J.T. Boys, Inductive Power Transfer, Proc. IEEE. 101 (2013) 1276–1289.
[25] Prutchi. Nuclear Pacemakers, [Accessed: 2/3/2016] Available from:
[26] S. Kerzenmacher, J. Ducrée, R. Zengerle, F. von Stetten, Energy harvesting by implantable abiotically catalyzed glucose fuel cells, J. Power Sources. 182 (2008) 1–17.
[27] A. Zebda, S. Cosnier, J.-P. Alcaraz, M. Holzinger, A. Le Goff, C. Gondran, F. Boucher, F. Giroud, K. Gorgy, H. Lamraoui, P. Cinquin, Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices, Sci. Rep. 3 (2013).
[28] L. Halámková, J. Halámek, V. Bocharova, A. Szczupak, L. Alfonta, E. Katz, Implanted Biofuel Cell Operating in a Living Snail, J. Am. Chem. Soc. 134 (2012) 5040–5043.
[29] E. Katz. Evgeny Katz, [Accessed: 10/03/2016] Available from Scherson.
[30] W.E. Farneth, M.B. D’Amore, Encapsulated laccase electrodes for fuel cell cathodes, J. Electroanal. Chem. 581 (2005) 197–205.
[31] T. Miyake, K. Haneda, N. Nagai, Y. Yatagawa, H. Onami, S. Yoshino, T. Abe, M. Nishizawa, Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms, Energy Environ. Sci. 4 (2011) 5008.
[32] A. Szczupak, J. Halámek, L. Halámková, V. Bocharova, L. Alfonta, E. Katz, Living battery – biofuel cells operating in vivo in clams, Energy Environ. Sci. 5 (2012) 8891.
[33] X. Wei, J. Liu, Power sources and electrical recharging strategies for implantable medical devices, Front. Energy Power Eng. China. 2 (2008) 1–13.
[34] P. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier, F. Boucher, J.-P. Alcaraz, K. Gorgy, F. Lenouvel, S. Mathé, P. Porcu, S. Cosnier, A Glucose BioFuel Cell Implanted in Rats, PLoS One. 5 (2010) e10476.
[35] M. Southcott, K. MacVittie, J. Halámek, L. Halámková, W.D. Jemison, R. Lobel, E. Katz, A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system – battery not included, Phys. Chem. Chem. Phys. 15 (2013) 6278.
[36] M. Holzinger, A. Le Goff, S. Cosnier, Carbon nanotube/enzyme biofuel cells, Electrochim. Acta. 82 (2012) 179–190.
[37] S. Cosnier, D. Shan, S.-N. Ding, An easy compartment-less biofuel cell construction based on the physical co-inclusion of enzyme and mediator redox within pressed graphite discs, Electrochem. Commun. 12 (2010) 266–269.
[38] L. Ren, D. Yan, W. Zhong, Enhanced enzyme activity through electron transfer between single-walled carbon nanotubes and horseradish peroxidase, Carbon N. Y. 50 (2012) 1303–1310.
[39] S. Calabrese Barton, J. Gallaway, P. Atanassov, Enzymatic Biofuel Cells for Implantable and Microscale Devices, Chem. Rev. 104 (2004) 4867–4886.
[40] S. Rengaraj, V. Mani, P. Kavanagh, J. Rusling, D. Leech, A membrane-less enzymatic fuel cell with layer-by-layer assembly of redox polymer and enzyme over graphite electrodes, Chem. Commun. 47 (2011) 11861.
[41] J.A. Castorena-Gonzalez, C. Foote, K. MacVittie, J. Halámek, L. Halámková, L.A. Martinez-Lemus, E. Katz, Biofuel Cell Operating in Vivo in Rat, Electroanalysis. 25 (2013) 1579–1584.
[42] F.C.P.F. Sales, R.M. Iost, M.V.A. Martins, M.C. Almeida, F.N. Crespilho, An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes, Lab Chip. 13 (2013) 468–474.
[43] M. Bottini, S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, T. Mustelin, Multi-walled carbon nanotubes induce T lymphocyte apoptosis, Toxicol. Lett. 160 (2006) 121–126.
[44] K.F. O’Driscoll, Techniques of enzyme entrapment in gels, In: Methods in Enzymology 1976: pp. 169–183.
[45] A.C. Pierre, The sol-gel encapsulation of enzymes, Biocatal. Biotransformation. 22 (2004) 145–170.
[46] V. Andoralov, M. Falk, D.B. Suyatin, M. Granmo, J. Sotres, R. Ludwig, V.O. Popov, J. Schouenborg, Z. Blum, S. Shleev, Biofuel Cell Based on Microscale Nanostructured Electrodes with Inductive Coupling to Rat Brain Neurons, Sci. Rep. 3 (2013).
[47] M. Hakamada, M. Takahashi, M. Mabuchi, Enzyme electrodes stabilized by monolayer-modified nanoporous Au for biofuel cells, Gold Bull. 45 (2012) 9–15.
[48] U. Salaj-Kosla, M.D. Scanlon, T. Baumeister, K. Zahma, R. Ludwig, P.Ó. Conghaile, D. MacAodha, D. Leech, E. Magner, Mediated electron transfer of cellobiose dehydrogenase and glucose oxidase at osmium polymer-modified nanoporous gold electrodes, Anal. Bioanal. Chem. 405 (2013) 3823–3830.
[49] A. Chaubey, B.D. Malhotra, Mediated biosensors, Biosens. Bioelectron. 17 (2002) 441–456.
[50] R.A. Bullen, T.C. Arnot, J.B. Lakeman, F.C. Walsh, Biofuel cells and their development, Biosens. Bioelectron. 21 (2006) 2015–2045.
[51] Shaolin Mu, Huaiguo Xue, Bioelectrochemical characteristics of glucose oxidase immobilized in a polyaniline film, Sensors Actuators B Chem. 31 (1996) 155–160.
[52] Y. Degani, A. Heller, Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme, J. Phys. Chem. 91 (1987) 1285–1289.
[53] M.J. Moehlenbrock, S.D. Minteer, Extended lifetime biofuel cells, Chem. Soc. Rev. 37 (2008) 1188.
[54] N. Yuhashi, M. Tomiyama, J. Okuda, S. Igarashi, K. Ikebukuro, K. Sode, Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase, Biosens. Bioelectron. 20 (2005) 2145–2150.
[55] N. Mano, F. Mao, W. Shin, T. Chen, A. Heller, A miniature biofuel cell operating at 0.78 V, Chem. Commun. (2003) 518–519.
[56] J. Lim, N. Cirigliano, J. Wang, B. Dunn, Direct electron transfer in nanostructured sol–gel electrodes containing bilirubin oxidase, Phys. Chem. Chem. Phys. 9 (2007) 1809–1814.
[57] J.M. Bolivar, L. Wilson, S.A. Ferrarotti, R. Fernandez-Lafuente, J.M. Guisan, C. Mateo, Stabilization of a Formate Dehydrogenase by Covalent Immobilization on Highly Activated Glyoxyl-Agarose Supports, Biomacromolecules. 7 (2006) 669–673.
[58] B.Z. Egan, I. Chibata, Immobilized Enzymes: Research and Development, Kodansha Scientific Books, (1979) 481.
[59] T.-W. Tsai, G. Heckert, L.F. Neves, Y. Tan, D.-Y. Kao, R.G. Harrison, D.E. Resasco, D.W. Schmidtke, Adsorption of Glucose Oxidase onto Single-Walled Carbon Nanotubes and Its Application in Layer-By-Layer Biosensors, Anal. Chem. 81 (2009) 7917–7925.
[60] A. Guiseppi-Elie, C. Lei, R.H. Baughman, Direct electron transfer of glucose oxidase on carbon nanotubes, Nanotechnology. 13 (2002) 559–564.
[61] H. Qiu, C. Xu, X. Huang, Y. Ding, Y. Qu, P. Gao, Immobilization of Laccase on Nanoporous Gold: Comparative Studies on the Immobilization Strategies and the Particle Size Effects, J. Phys. Chem. C. 113 (2009) 2521–2525.
[62] E. Generalic. “Zwitterion.” Croatian-English Chemistry Dictionary & Glossary, [Accessed: 20/3/2016] Available from:
[63] H. du Toit, M. Di Lorenzo, Glucose Oxidase Directly Immobilized onto Highly Porous Gold Electrodes for Sensing and Fuel Cell applications, Electrochim. Acta. 138 (2014) 86–92.
[64] D. Stark, U. von Stockar, In Situ Product Removal (ISPR) in Whole Cell Biotechnology During the Last Twenty Years, Adv Biochem Eng Biotechnol 80 (2003) 149–175.
[65] J. Wang, Glucose Biosensors: 40 Years of Advances and Challenges, Electroanalysis. 13 (2001) 983–988.<983::AID-ELAN983>3.0.CO;2-#
[66] R. Sahney, S. Anand, B.K. Puri, A.K. Srivastava, A comparative study of immobilization techniques for urease on glass-pH-electrode and its application in urea detection in blood serum, Anal. Chim. Acta. 578 (2006) 156–161.
[67] K. Zeng, H. Tachikawa, Z. Zhu, V.L. Davidson, Amperometric Detection of Histamine with a Methylamine Dehydrogenase Polypyrrole-Based Sensor, Anal. Chem. 72 (2000) 2211–2215.
[68] Y. Liu, M. Wang, F. Zhao, Z. Xu, S. Dong, The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix, Biosens. Bioelectron. 21 (2005) 984–988.
[69] D. Ivnitski, B. Branch, P. Atanassov, C. Apblett, Glucose oxidase anode for biofuel cell based on direct electron transfer, Electrochem. Commun. 8 (2006) 1204–1210.
[70] S. Zhang, N. Wang, Y. Niu, C. Sun, Immobilization of glucose oxidase on gold nanoparticles modified Au electrode for the construction of biosensor, Sensors Actuators B Chem. 109 (2005) 367–374.
[71] M.K. Goel. Immobilized Enzymes, [Accessed: 20/3/2016] Available from:
[72] B.E. Logan, Scaling up microbial fuel cells and other bioelectrochemical systems, Appl. Microbiol. Biotechnol. 85 (2010) 1665–1671.
[73] C.M. Moore, N.L. Akers, A.D. Hill, Z.C. Johnson, S.D. Minteer, Improving the Environment for Immobilized Dehydrogenase Enzymes by Modifying Nafion with Tetraalkylammonium Bromides, Biomacromolecules. 5 (2004) 1241–1247.
[74] J. Kim, H. Jia, P. Wang, Challenges in biocatalysis for enzyme-based biofuel cells, Biotechnol. Adv. 24 (2006) 296–308.
[75] Y. Xiao, “Plugging into Enzymes”: Nanowiring of Redox Enzymes by a Gold Nanoparticle, Science (80-. ). 299 (2003) 1877–1881.
[76] D. Schumacher, J. Vogel, U. Lerche, Construction and applications of an enzyme electrode for determination of galactose and galactose-containing saccharides, Biosens. Bioelectron. 9 (1994) 85–89. doi:10.1016/0956-5663(94)80098-7.
[77] S. Ohkoshi, A. Fujishima, K. Hashimoto, Transparent and Colored Magnetic Thin Films: (Fe II x Cr II 1- x ) 1.5 [Cr III (CN) 6 ], J. Am. Chem. Soc. 120 (1998) 5349–5350.
[78] I. Willner, G. Arad, E. Katz, A biofuel cell based on pyrroloquinoline quinone and microperoxidase-11 monolayer-functionalized electrodes, Bioelectrochemistry Bioenerg. 44 (1998) 209–214.
[79] I. Willner, R. Blonder, E. Katz, A. Stocker, A.F. Bückmann, Reconstitution of Apo-Glucose Oxidase with a Nitrospiropyran-Modified FAD Cofactor Yields a Photoswitchable Biocatalyst for Amperometric Transduction of Recorded Optical Signals, J. Am. Chem. Soc. 118 (1996) 5310–5311.
[80] E. Katz, A. Riklin, V. Heleg-Shabtai, I. Willner, A.F. Bückmann, Glucose oxidase electrodes via reconstitution of the apo-enzyme: tailoring of novel glucose biosensors, Anal. Chim. Acta. 385 (1999) 45–58.
[81] S. Cosnier, C.H. Gondran, Fabrication of biosensors by attachment of biological macromolecules to electropolymerized conducting films, Analusis. 27 (1999) 558–563.
[82] I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, A.F. Bückmann, A. Heller, Electrical Wiring of Glucose Oxidase by Reconstitution of FAD-Modified Monolayers Assembled onto Au-Electrodes, J. Am. Chem. Soc. 118 (1996) 10321–10322.
[83] A. Ramanavičius, A. Ramanavičienė, A. Malinauskas, Electrochemical sensors based on conducting polymer—polypyrrole, Electrochim. Acta. 51 (2006) 6025–6037.
[84] W.J. Sung, Y.H. Bae, A Glucose Oxidase Electrode Based on Electropolymerized Conducting Polymer with Polyanion−Enzyme Conjugated Dopant, Anal. Chem. 72 (2000) 2177–2181. doi:10.1021/ac9908041.
[85] S. Cosnier, C. Gondran, J.-C. Watelet, A Polypyrrole-Bienzyme Electrode (Salicylate Hydroxylase-Polyphenol Oxidase) for the Interference-Free Determination of Salicylate, Electroanalysis. 13 (2001) 906–910.<906::AID-ELAN906>3.0.CO;2-L
[86] M. Yasuzawa, T. Nieda, T. Hirano, A. Kunugi, Properties of glucose sensors based on the immobilization of glucose oxidase in N-substituted polypyrrole film, Sensors Actuators B Chem. 66 (2000) 77–79.
[87] S. Cosnier, A. Senillou, M. Grätzel, P. Comte, N. Vlachopoulos, N. Jaffrezic Renault, C. Martelet, A glucose biosensor based on enzyme entrapment within polypyrrole films electrodeposited on mesoporous titanium dioxide, J. Electroanal. Chem. 469 (1999) 176–181.
[88] M. Trojanowicz, W. Matuszewski, M. Podsiadła, Enzyme entrapped polypyrrole modified electrode for flow-injection determination of glucose, Biosens. Bioelectron. 5 (1990) 149–156.
[89] S. Cosnier, A. Deronzier, J.-F. Roland, Electrocatalytic oxidation of alcohols on carbon electrodes modified by functionalized polypyrrole–RuO2 films, J. Mol. Catal. 71 (1992) 303–315.
[90] N.C. Foulds, C.R. Lowe, Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 82 (1986) 1259.
[91] M. Umana, J. Waller, Protein-modified electrodes. The glucose oxidase/polypyrrole system, Anal. Chem. 58 (1986) 2979–2983.
[92] Inamuddin, K.M. Shin, S.I. Kim, I. So, S.J. Kim, A conducting polymer/ferritin anode for biofuel cell applications, Electrochim. Acta. 54 (2009) 3979–3983.
[93] G. Inzelt, Conducting Polymers, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
[94] A.. Epstein, J.. Ginder, F. Zuo, H.-S. Woo, D.. Tanner, A. Richter, M. Angelopoulos, W.-S. Huang, A.. MacDiarmid, Insulator-to-metal transition in polyaniline: Effect of protonation in emeraldine, Synth. Met. 21 (1987) 63–70.
[95] G.G Wallace, G.M. Spinks, L.A. Kane-Maguire, P. R. Teasdale, Conductive Electroactive Polymers, 3rd Edition, CRC Press, 10 (2008) 22., n.d.
[96] J. Stejskal, R.G. Gilbert, Polyaniline. Preparation of a conducting polymer(IUPAC Technical Report), Pure Appl. Chem. 74 (2002).
[97] A.A. Karyakin, A.K. Strakhova, A.K. Yatsimirsky, Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions., J. Electroanal. Chem. 371 (1994) 259–265.
[98] D. Kumar, Synthesis and characterization of poly(aniline-co-o-toluidine) copolymer, Synth. Met. 114 (2000) 369–372.
[99] L.H.C. Mattoso, L.O.S. Bulhões, Synthesis and characterization of poly(o-anisidine) films, Synth. Met. 52 (1992) 171–181.
[100] J. Zhang, D. Shan, S. Mu, Electrochemical copolymerization of aniline with m-aminophenol and novel electrical properties of the copolymer in the wide pH range, Electrochim. Acta. 51 (2006) 4262–4270.
[101] R.E. Kim, S.-G. Hong, S. Ha, J. Kim, Enzyme adsorption, precipitation and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for highly stable enzymatic biofuel cells, Enzyme Microb. Technol. 66 (2014) 35–41.
[102] J.C. Cooper, E.A.H. Hall, Catalytic reduction of benzoquinone at polyaniline and polyaniline/enzyme films, Electroanalysis. 5 (1993) 385–397.
[103] O.A. Raitman, E. Katz, A.F. Bückmann, I. Willner, Integration of Polyaniline/Poly(acrylic acid) Films and Redox Enzymes on Electrode Supports: An in Situ Electrochemical/Surface Plasmon Resonance Study of the Bioelectrocatalyzed Oxidation of Glucose or Lactate in the Integrated Bioelectrocatalytic System, J. Am. Chem. Soc. 124 (2002) 6487–6496.
[104] J. Kopeček, K. Ulbrich, Biodegradation of biomedical polymers, Prog. Polym. Sci. 9 (1983) 1–58.
[105] O.A. Raitman, F. Patolsky, E. Katz, I. Willner, Electrical contacting of glucose dehydrogenase by the reconstitution of a pyrroloquinoline quinone-functionalized polyaniline film associated with an Au-electrode: an in situ electrochemical SPR study, Chem. Commun. (2002) 1936–1937.
[106] H. Xue, Z. Shen, C. Li, Improved selectivity and stability of glucose biosensor based on in situ electropolymerized polyaniline–polyacrylonitrile composite film, Biosens. Bioelectron. 20 (2005) 2330–2334.
[107] L. Cao, Immobilised enzymes: science or art?, Curr. Opin. Chem. Biol. 9 (2005) 217–226.
[108] R.A. Sheldon, Enzyme Immobilization: The Quest for Optimum Performance, Adv. Synth. Catal. 349 (2007) 1289–1307. doi:10.1002/adsc.200700082.
[109] A. Pizzariello, M. Stred’ansky, S. Miertuš, A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix, Bioelectrochemistry. 56 (2002) 99–105.
[110] V.B. Kandimalla, V.S. Tripathi, H. Ju, Immobilization of Biomolecules in Sol–Gels: Biological and Analytical Applications, Critical Reviews in Analytical Chemistry, 36 (2006) 73-106.
[111] C. Liu, S. Alwarappan, Z. Chen, X. Kong, C.-Z. Li, Membraneless enzymatic biofuel cells based on graphene nanosheets, Biosens. Bioelectron. 25 (2010) 1829–1833.
[112] W. Zheng, H.Y. Zhao, J.X. Zhang, H.M. Zhou, X.X. Xu, Y.F. Zheng, Y.B. Wang, Y. Cheng, B.Z. Jang, A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes, Electrochem. Commun. 12 (2010) 869–871.
[113] C. Liu, Z. Chen, C.-Z. Li, Surface Engineering of Graphene-Enzyme Nanocomposites for Miniaturized Biofuel Cell, IEEE Trans. Nanotechnol. 10 (2011) 59–62.
[114] S. Rengaraj, P. Kavanagh, D. Leech, A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability, Biosens. Bioelectron. 30 (2011) 294–299.
[115] D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources. 196 (2011) 4873–4885.
[116] Q. Zhang, S. Wu, L. Zhang, J. Lu, F. Verproot, Y. Liu, Z. Xing, J. Li, X.-M. Song, Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry, Biosens. Bioelectron. 26 (2011) 2632–2637.
[117] A.T.E. Vilian, S.-M. Chen, C.H. Kwak, S.-K. Hwang, Y.S. Huh, Y.-K. Han, Immobilization of hemoglobin on functionalized multi-walled carbon nanotubes-poly-l-histidine-zinc oxide nanocomposites toward the detection of bromate and H2O2, Sensors Actuators B Chem. 224 (2016) 607–617.
[118] E. Coşkun, E.A. Zaragoza-Contreras, H.J. Salavagione, Synthesis of sulfonated graphene/polyaniline composites with improved electroactivity, Carbon N. Y. 50 (2012) 2235–2243.
[119] J. Liu, Y. Qiao, C.X. Guo, S. Lim, H. Song, C.M. Li, Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells, Bioresour. Technol. 114 (2012) 275–280.
[120] B. Ma, X. Zhou, H. Bao, X. Li, G. Wang, Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors, J. Power Sources. 215 (2012) 36–42.
[121] A. Liu, W. Yuan, G. Shi, Electrochemical actuator based on polypyrrole/sulfonated graphene/graphene tri-layer film, Thin Solid Films. 520 (2012) 6307–6312.
[122] J. Lu, W. Liu, H. Ling, J. Kong, G. Ding, D. Zhou, X. Lu, Layer-by-layer assembled sulfonated-graphene/polyaniline nanocomposite films: enhanced electrical and ionic conductivities, and electrochromic properties, RSC Adv. 2 (2012) 10537.
[123] M. Cui, B. Xu, C. Hu, H.B. Shao, L. Qu, Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode, Electrochim. Acta. 98 (2013) 48–53.
[124] K.P. Prasad, Y. Chen, P. Chen, Three-Dimensional Graphene-Carbon Nanotube Hybrid for High-Performance Enzymatic Biofuel Cells, ACS Appl. Mater. Interfaces. 6 (2014) 3387–3393.
[125] Y. Tepeli, U. Anik, Comparison of performances of bioanodes modified with graphene oxide and graphene–platinum hybrid nanoparticles, Electrochem. Commun. 57 (2015) 31–34.
[126] Inamuddin, K. Ahmad, M. Naushad, Optimization of glassy carbon electrode based graphene/ferritin/glucose oxidase bioanode for biofuel cell applications, Int. J. Hydrogen Energy. 39 (2014) 7417–7421.
[127] A. de Poulpiquet, A. Ciaccafava, E. Lojou, New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells, Electrochim. Acta. 126 (2014) 104–114.
[128] J. Filip, J. Tkac, Is graphene worth using in biofuel cells?, Electrochim. Acta. 136 (2014) 340–354.
[129] I. V. Pavlidis, M. Patila, U.T. Bornscheuer, D. Gournis, H. Stamatis, Graphene-based nanobiocatalytic systems: recent advances and future prospects, Trends Biotechnol. 32 (2014) 312–320.
[130] P.N. Catalano, A. Wolosiuk, G.J.A.A. Soler-Illia, M.G. Bellino, Wired enzymes in mesoporous materials: A benchmark for fabricating biofuel cells, Bioelectrochemistry. 106 (2015) 14–21.
[131] Y. Su, P. Zhang, Y. Su, An overview of biofuels policies and industrialization in the major biofuel producing countries, Renew. Sustain. Energy Rev. 50 (2015) 991–1003.
[132] A.S. Campbell, Y.J. Jeong, S.M. Geier, R.R. Koepsel, A.J. Russell, M.F. Islam, Membrane/Mediator-Free Rechargeable Enzymatic Biofuel Cell Utilizing Graphene/Single-Wall Carbon Nanotube Cogel Electrodes, ACS Appl. Mater. Interfaces. 7 (2015) 4056–4065.
[133] J. Champavert, S. Ben Rejeb, C. Innocent, M. Pontié, Microbial fuel cell based on Ni-tetra sulfonated phthalocyanine cathode and graphene modified bioanode, J. Electroanal. Chem. 757 (2015) 270–276.
[134] A. Karimi, A. Othman, A. Uzunoglu, L. Stanciu, S. Andreescu, Graphene based enzymatic bioelectrodes and biofuel cells, Nanoscale. 7 (2015) 6909–
[135] M. Liu, J. Qian, Y. Zhao, D. Zhu, L. Gan, L. Chen, Core–shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes, J. Mater. Chem. A. 3 (2015) 11517–11526.
[136] B. Liang, X. Guo, L. Fang, Y. Hu, G. Yang, Q. Zhu, J. Wei, X. Ye, Study of direct electron transfer and enzyme activity of glucose oxidase on graphene surface, Electrochem. Commun. 50 (2015) 1–5.