HNT-Cellulose based Nano-Composite and Applications


HNT-Cellulose based Nano-Composite and Applications

Anirudh Pratap Singh Raman, Prashant Singh, Pallavi Jain

Halloysite, a naturally occurring nanoclay has unique characteristics like nanometric size range, tubular structure, high biocompatibility, low cost and opposite charges on its surface is driving attraction as a versatile and important component of biomaterials. The incorporation of functionalized Halloysite nanotubes (HNT) with the cellulose biopolymer is to obtain enhanced and desirable properties like mechanical strength, and barrier properties and to have controlled pore size. The enhanced properties of bio-nano composites are employed in wide areas including food packaging, the automobile industry, drug delivery and many more. In this chapter, extended work on various HNT-cellulose-based bio- nanocomposites is provided along with their structural, and functional properties including their applications.

Halloysite, Cellulose Bio-Nanocomposite, Food Packaging, Nanoclay, HNT

Published online 6/2/2022, 21 pages

Citation: Anirudh Pratap Singh Raman, Prashant Singh, Pallavi Jain, HNT-Cellulose based Nano-Composite and Applications, Materials Research Foundations, Vol. 125, pp 254-274, 2022


Part of the book on Advanced Applications of Micro and Nano Clay

[1] F. Sadegh-Hassani, A. Mohammadi Nafchi, Preparation and characterization of nanocomposite films based on potato starch/halloysite nanoclay, Int. J. Biol. Macromol. 67 (2014) 458-462.
[2] V. Vergara, E. Abdullayev, Y.M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, S. Leporatti, Cytocompatibility and uptake of halloysite clay nanotubes, Biomacromolecules. 11 (2010) 820-826.
[3] Z.W. Abdullah, Y. Dong, Biodegradable and water resistant poly(vinyl) alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) nanocomposite films for sustainable food packaging, Front. Mater. 6 (2019).
[4] Z. Rozynek, T. Zacher, M. Janek, M. Čaplovičová, J.O. Fossum, Electric-field-induced structuring and rheological properties of kaolinite and halloysite, Appl. Clay Sci. 77-78 (2013) 1-9.
[5] D.A. Dean, T. Ramanathan, D. Machado, R. Sundararajan, Electrical impedance spectroscopy study of biological tissues, J. Electrostat. 66 (2008) 165-177.
[6] J.H. Kim, H. Eguchi, M. Umemura, I. Sato, S. Yamada, Y. Hoshino, T. Masuda, I. Aoki, K. Sakurai, M. Yamamoto, Y. Ishikawa, Magnetic metal-complex-conducting copolymer core-shell nanoassemblies for a single-drug anticancer platform, NPG Asia Mater. 9 (2017).
[7] Y. Zhang, H. Yang, Halloysite nanotubes coated with magnetic nanoparticles, Appl. Clay Sci. 56 (2012) 97-102.
[8] D.G. Shchukin, G.B. Sukhorukov, R.R. Price, Y.M. Lvov, Halloysite nanotubes as biomimetic nanoreactors, Small. 1 (2005) 510-513.
[9] F. Xie, J. Bao, L. Zhuo, Y. Zhao, W. Dang, L. Si, C. Yao, M. Zhang, Z. Lu, Toward high-performance nanofibrillated cellulose/aramid fibrid paper-based composites via polyethyleneimine-assisted decoration of silica nanoparticle onto aramid fibrid, Carbohydr. Polym. 245 (2020).
[10] K. Yoo, A. Deshpande, S. Banerjee, P. Dutta, Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries, Electrochim. Acta. 176 (2015).
[11] Y. He, W. Kong, W. Wang, T. Liu, Y. Liu, Q. Gong, J. Gao, Modified natural halloysite/potato starch composite films, Carbohydr. Polym. 87 (2012) 2706-2711.
[12] Y. Liu, X. Wang, X. Gao, J. Zheng, J. Wang, A. Volodin, Y.F. Xie, X. Huang, B. Van der Bruggen, J. Zhu, High-performance thin film nanocomposite membranes enabled by nanomaterials with different dimensions for nanofiltration, J. Memb. Sci. 596 (2020).
[13] M. Rahimnejad, M. Ghasemi, G.D. Najafpour, M. Ismail, A.W. Mohammad, A.A. Ghoreyshi, S.H.A. Hassan, Synthesis, characterization and application studies of self- made Fe 3O4/PES nanocomposite membranes in microbial fuel cell, Electrochim. Acta. 85 (2012) 700-706.
[14] L. Bellani, L. Giorgetti, S. Riela, G. Lazzara, A. Scialabba, M. Massaro, Ecotoxicity of halloysite nanotube-supported palladium nanoparticles in Raphanus sativus L, Environ. Toxicol. Chem. 35 (2016) 2503-2510.
[15] D. Czarnecka-Komorowska, K. Bryll, E. Kostecka, M. Tomasik, E. Piesowicz, K. Gawdzińska, The composting of PLA/HNT biodegradable composites as an eco- approach to the sustainability, Bull. Polish Acad. Sci. Tech. Sci. 69 (2021).
[16] L.F. Wang, J.W. Rhim, Functionalization of halloysite nanotubes for the preparation of carboxymethyl cellulose-based nanocomposite films, Appl. Clay Sci. 150 (2017) 138-146.
[17] P. Fathiraja, S. Gopalrajan, M. Karunanithi, M. Nagarajan, M.C. Obaiah, S. Durairaj, N. Neethirajan, Response surface methodology model to optimize concentration of agar, alginate and carrageenan for the improved properties of biopolymer film, Polym. Bull. (2021).
[18] N.A.N. Nik Malek, S.A. Mohd Hanim, Antibacterial Activity of Amine- Functionalized Silver-Loaded Natural Zeolite Clinoptilolite, Sci. Lett. 15 (2021).
[19] S. Saedi, M. Shokri, J.W. Rhim, Preparation of carrageenan-based nanocomposite films incorporated with functionalized halloysite using AgNP and sodium dodecyl sulfate, Food Hydrocoll. 106 (2020).
[20] M. Akrami-Hasan-Kohal, M. Ghorbani, F. Mahmoodzadeh, B. Nikzad, Development of reinforced aldehyde-modified kappa-carrageenan/gelatin film by incorporation of halloysite nanotubes for biomedical applications, Int. J. Biol. Macromol. 160 (2020) 669-676.
[21] M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan – A versatile semi- synthetic polymer in biomedical applications, Prog. Polym. Sci. 36 (2011) 981-1014.
[22] D. Huang, Z. Zhang, Y. Zheng, Q. Quan, W. Wang, A. Wang, Synergistic effect of chitosan and halloysite nanotubes on improving agar film properties, Food Hydrocoll. 101 (2020).
[23] S. Roy, J.-W. Rhim, Effect of chitosan modified halloysite on the physical and functional properties of pullulan/chitosan biofilm integrated with rutin, Appl. Clay Sci. 211 (2021) 106205.
[24] S. Shankar, S. Kasapis, J.W. Rhim, Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles, Int. J. Biol. Macromol. 118 (2018) 1824-1832.
[25] S. Kouser, S. Sheik, A. Prabhu, G.K. Nagaraja, K. Prashantha, J.N. D’souza, M.K. Navada, D.J. Manasa, Effects of reinforcement of sodium alginate functionalized halloysite clay nanotubes on thermo-mechanical properties and biocompatibility of poly (vinyl alcohol) nanocomposites, J. Mech. Behav. Biomed. Mater. 118 (2021).
[26] J.A. Burdick, M.M. Stevens, Biomedical hydrogels, in: Biomater. Artif. Organs Tissue Eng., Elsevier Inc., 2005: pp. 107-115.
[27] S. Tizchang, M.S. Khiabani, R.R. Mokarram, H. Hamishehkar, N.S. Mohammadi,
Y. Chisti, Immobilization of β-galactosidase by halloysite-adsorption and entrapment in a cellulose nanocrystals matrix, Biochim. Biophys. Acta – Gen. Subj. 1865 (2021).
[28] G. Gorrasi, Dispersion of halloysite loaded with natural antimicrobials into pectins: Characterization and controlled release analysis, Carbohydr. Polym. 127 (2015) 47-53.
[29] F. Topuz, T. Uyar, Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications, Food Res. Int. 130 (2020).
[30] J. Joung, A. Boonsiriwit, M. Kim, Y.S. Lee, Application of ethylene scavenging nanocomposite film prepared by loading potassium permanganate-impregnated halloysite nanotubes into low-density polyethylene as active packaging material for fresh produce, LWT. 145 (2021).
[31] S. Md Nor, P. Ding, Trends and advances in edible biopolymer coating for tropical fruit: A review, Food Res. Int. 134 (2020).
[32] L. Buendía−Moreno, M.J. Sánchez−Martínez, V. Antolinos, M. Ros−Chumillas, L. Navarro−Segura, S. Soto−Jover, G.B. Martínez−Hernández, A. López−Gómez, Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or hallosyte nanotubes. A case study for fresh tomato storage, Food Control. 107 (2020).
[33] Q. Li, T. Ren, P. Perkins, X. Hu, X. Wang, Applications of halloysite nanotubes in food packaging for improving film performance and food preservation, Food Control. 124 (2021).
[34] E. Abdullayev, Medical and health applications of halloysite nanotubes, in: Nat. Miner. Nanotub. Prop. Appl., 2015.
[35] A. Karewicz, A. Machowska, M. Kasprzyk, G. Ledwójcik, Application of halloysite nanotubes in cancer therapy-A review, Materials (Basel). 14 (2021).
[36] H.Y. Liu, L. Du, Y.T. Zhao, W.Q. Tian, In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application, J. Nanomater. 2015 (2015).
[37] M. Zatorska-Płachta, G. Łazarski, U. Maziarz, A. Foryś, B. Trzebicka, D. Wnuk, K. Chołuj, A. Karewicz, M. Michalik, D. Jamroz, M. Kepczynski, Encapsulation of curcumin in polystyrene-based nanoparticles-drug loading capacity and cytotoxicity,
ACS Omega. 6 (2021).
[38] P.P. Dandekar, R. Jain, S. Patil, R. Dhumal, D. Tiwari, S. Sharma, G. Vanage, V. Patravale, Curcumin-loaded hydrogel nanoparticles: Application in anti-malarial therapy and toxicological evaluation, J. Pharm. Sci. 99 (2010) 4992-5010.
[39] I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, J.M. Kenny, Biodegradable polymer matrix nanocomposites for tissue engineering: A review, Polym. Degrad. Stab. 95 (2010) 2126-2146.
[40] S. Torgbo, P. Sukyai, Bacterial cellulose-based scaffold materials for bone tissue engineering, Appl. Mater. Today. 11 (2018) 34-49.
[41] S. V. Dorozhkin, Calcium orthophosphate-based biocomposites and hybrid biomaterials, in: J. Mater. Sci., 2009: pp. 2343-2387. 008-3124-x
[42] B.O. Okesola, S. Ni, B. Derkus, C.C. Galeano, A. Hasan, Y. Wu, J. Ramis, L. Buttery, J.I. Dawson, M. D’Este, R.O.C. Oreffo, D. Eglin, H. Sun, A. Mata, Growth- Factor Free Multicomponent Nanocomposite Hydrogels That Stimulate Bone Formation, Adv. Funct. Mater. 30 (2020) 1-13.
[43] F.H. Zulkifli, F.S.J. Hussain, S.S. Zeyohannes, M.S.B.A. Rasad, M.M. Yusuff, A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications, Mater. Sci. Eng. C. 79 (2017) 151-160.
[44] P. Ezati, J.W. Rhim, M. Moradi, H. Tajik, R. Molaei, CMC and CNF-based alizarin incorporated reversible pH-responsive color indicator films, Carbohydr. Polym. 246 (2020).
[45] H.J. Kim, S. Roy, J.W. Rhim, Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films, J. Environ. Chem. Eng. 9 (2021).
[46] K. Zhang, T.S. Huang, H. Yan, X. Hu, T. Ren, Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration, Int. J. Biol. Macromol. 145 (2020) 768-776.
[47] H. Kawamoto, Trends in research and development on plastics of plant origin – from the perspective of nanocomposite polylactic acid for automobile use -, Sci. Technol. Trends. 22 (2007) 62-75.
[48] V. Nimbagal, N.R. Banapurmath, A.M. Sajjan, A.Y. Patil, S. V. Ganachari, Studies on Hybrid Bio-Nanocomposites for Structural Applications, J. Mater. Eng. Perform. (2021).
[49] Y. Zhang, A. Tang, H. Yang, J. Ouyang, Applications and interfaces of halloysite nanocomposites, Appl. Clay Sci. 119 (2016) 8-17.
[50] N.P. Risyon, S.H. Othman, R.K. Basha, R.A. Talib, Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging, Food Packag.
Shelf Life. 23 (2020).
[51] S.M.M. Meira, G. Zehetmeyer, J.O. Werner, A. Brandelli, A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides, Food Hydrocoll. 63 (2017) 561-570.