New Polymeric Composite Materials, Chapter 6

$15.95

Artificial Intelligence (AI) Based Tools for Predicting the Removal Efficiency of Heavy Metals by Adsorption

Nusrat Parveen, Sadaf Zaidi and Mohammad Danish

The two most popular artificial intelligence (AI) techniques namely, artificial neural networks (ANN) and support vector machines (SVM) have been applied for predicting the removal efficiency of heavy metals like Copper (II), Arsenic (III), Lead (II), etc. in an adsorption process using low cost biosorbents. A comparison has been made between ANN, SVM and multiple linear regression (MLR) models based on the statistical parameters such as: correlation coefficient (R), average absolute relative error (AARE) etc. SVM is found to be the better predictive model than the commonly used MLR model and ANN model. Hence, its results are more accurate and generalized.

Keywords
Artificial Intelligence (AI), Artificial Neural Networks (ANN), Support Vector Machines (SVM), Adsorption, Biosorption.

Published online 11/1/2016, 45 pages

DOI: http://dx.doi.org/10.21741/9781945291098-6

Part of New Polymeric Composite Materials

References
[1] N. Das, R. Vimala, P. Karthika Biosorption of heavy metals- A review, Indian J. Biotechnol. 7 (2008) 159-169.
[2] J. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: A review, Biotechnol. Adv. 24 (2006) 427–451.
http://dx.doi.org/10.1016/j.biotechadv.2006.03.001
[3] S. H. Abbas, I. M. Ismail, T. M. Mostafa, A. H., Sulaymon, Biosorption of Heavy Metals: A Review, J. Chem. Sci. Technol. 3 (2014) 74–102.
[4] A. Kapoor, T. Viraraghavan, Fungal biosorption- an alternative treatment option for heavy metal bearing wastewater: a review, Bioresour. Technol. 53 (1995) 185–206.
[5] D. J. Sweetly, K. Sangeetha, B. Suganthi, Biosorption of Heavy Metal Lead from Aqueous Solution by Non-living Biomass of Sargassum myriocystum, International Journal of Application on Innovation in Engineering & Management (IJAIEM) 3 (4) (2014) 39-45.
[6] V. K. Gupta, A. Nayak, S. Agarwal, Bioadsorbents for remediation of heavy metals: Current status and their future prospects, Environ. Eng. Res. 20 (2015) 1-18.
http://dx.doi.org/10.4491/eer.2015.018
[7] M. A. Ashraf, K. Mahmood, A. Wajid, Study of low cost biosorbent for biosorption of heavy metals, Int. Conf. Food Eng. Biotechnol. 9 (2011) 60–68.
[8] M. Zabochnicka-Świątek, M. Krzywonos, Potentials of Biosorption and Bioaccumulation Processes for Heavy Metal Removal, Pol. J. Environ. Stud. 23 (2) (2014) 551-561.
[9] V. Eyupoglu, B. Eren, E. Dogan, Prediction of ionic Cr (VI) extraction efficiency in flat sheet supported liquid membrane using artificial neural networks (ANNs), Int. J. Environ. Res. 4(3), (2010) 463-470.
[10] Y. Vasseghian, M. F. Ahmadi, Dolati, A. Heydari, Modeling and Experimental Prediction of Wastewater Treatment Efficiency in Oil Refineries Using Activated Sludge Process, Journal of Chemical and Petroleum Engineering, 48 (1) (2014) 69-79.
[11] T. Brey, A. Jarre-Teichmann, O. Borlich, Artificial neural networks versus multiple linear regressions: predicting P/B ratios from empirical data, Mar Ecol Prog Ser. 140 (1996) 251-25.
http://dx.doi.org/10.3354/meps140251
[12] K.O. Akande, T.O. Owolabi, S. Twaha, S.O. Olatunji, Performance Comparison of SVM and ANN in Predicting Compressive Strength of Concrete, IOSR Journal of Computer Engineering IOSR-JCE). 16 (5) (2014) 88-94.
http://dx.doi.org/10.9790/0661-16518894
[13] A. A. Hasseim, R. P. Sudirman, I. Khalid, N. Tabatabaey-Mashadi, Comparison of ANN and SVM to Identify Children Handwriting Difficulties, Engineering 5 (2013) 1-5.
http://dx.doi.org/10.4236/eng.2013.55B001
[14] A. Eskandari, R. Nouri, S.H. Meraji, A. Kiaghadi, Developing a Proper Model for Online Estimation of the 5-day Biochemical oxygen demand based on Artificial neural networks and support vector machine, Journal of Environmental Studies 38 (61) (2012) 22-24.
[15] E. A. Zanaty, Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification, Egyptian Informatics Journal 13, (2012) 177-183.
http://dx.doi.org/10.1016/j.eij.2012.08.002
[16] U. Thissen, R. V. Brakel, A. P. D. Weijer, W.J. Melssen, L.M.C. Buydens, Using support vector machines for time series prediction, Chemometr. Intell. Lab. 69, (2003) 35– 49.
http://dx.doi.org/10.1016/S0169-7439(03)00111-4
[17] Y. Pan, J. Jiang, R. Wang, H. Cao, Y. Cui, Predicting the auto-ignition temperatures of organic compounds from molecular structure using support vector machine, J. Hazard. Mater. 164 (2009) 1242–1249.
http://dx.doi.org/10.1016/j.jhazmat.2008.09.031
[18] Y. Radhika, M. Shashi, Atmospheric Temperature Prediction using Support Vector Machines, International Journal of Computer Theory and Engineering 1(1) (2009) 1793-8201.
http://dx.doi.org/10.7763/ijcte.2009.v1.9
[19] H. Peng, X. Ling, Predicting thermal–hydraulic performances in compact heat exchangers by support vector regression, Int. J. Heat Mass Transf. 84 (2015) 203–213.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.01.017
[20] S. Zaidi, Development of support vector regression (SVR)-based model for prediction of circulation rate in a vertical tube thermosiphon reboiler, Chem. Eng. Sci. 69 (2012) 514–521.
http://dx.doi.org/10.1016/j.ces.2011.11.005
[21] S. Zaidi, Novel application of support vector machines to model the two phase boiling heat transfer coefficient in a vertical tube thermosiphon reboiler, Chem. Eng. Res. Des. 98 (2015) 44–58.
http://dx.doi.org/10.1016/j.cherd.2015.04.002
[22] P. A. Webb, Introduction to Chemical Adsorption Analytical Techniques and their Applications to Catalysis, Micromeritics Instrument Corp., Norcross, Georgia, (2003)1-12.
[23] A. Buekens, N. N. Zyaykina, Adsorbents and Adsorption Processes for Pollution Control, Pollution control technologies 2 (2009) 99-123.
[24] A. Dabrowski, Adsorption – from theory to practice, Advances in Colloid and Interface Science 93 (2001) 135-224.
http://dx.doi.org/10.1016/S0001-8686(00)00082-8
[25] F. I. Khan, A. K. Ghoshal, Removal of Volatile Organic Compounds from polluted air, Journal of Loss Prevention in the Process Industries 13 (2000) 527–545.
http://dx.doi.org/10.1016/S0950-4230(00)00007-3
[26] J. Kipling, Adsorption from solutions of Non-Electrolytes, Academic Press. Inc., London, New York, (1965).
[27] Ju, Okoli, I. Ezuma, Adsorption Studies of Heavy Metals by Low-Cost Adsorbents, J. Appl. Sci. Environ. Manage. 18 (3) (2014) 443-448.
[28] B. Yasemin, T. Zeki, Removal of heavy metals from aqueous solution by sawdust adsorption, Journal of Environmental Sciences 19 (2007) 160–166.
http://dx.doi.org/10.1016/S1001-0742(07)60026-6
[29] C. A. Comrie, Comparing Neural Networks and Regression Models for Ozone Forecasting, J. Air & Waste Manage. Assoc. 47 (1997) 653-663.
http://dx.doi.org/10.1080/10473289.1997.10463925
[30] M. A. Doori, B. Beyrouti, Credit Scoring Model Based on Back Propagation Neural Networks Using Various Activation and Error Function. International Journal of Computer Science and Network Security (IJCSNS), 14(3) (2014) 16-24.
[31] C. -h., Kung, W. -S. Yang, C. -M. Kung, A Study on Image Quality Assessment using Neural Networks and Structure Similarty, Journal of computers, 6 (10) (2011) 2221-2228.
[32] V. Sharma, S. Rai, A. Dev, A Comprehensive Study of Artificial Neural Networks, International Journal of Advanced Research in Computer Science and Software Engineering, 2 (10) (2012) 278-284.
[33] M. Maraqa, F. Al-Zboun, M. Dhyabat, R. A. Zitar, Recognition of Arabic Sign Language (ArSL) Using Recurrent Neural Networks, Journal of Intelligent Learning Systems and Applications, 4 (2012) 41-52.
http://dx.doi.org/10.4236/jilsa.2012.41004
[34] B. Rajkumar, T. Gopikiran, S. Satyanarayana, Neural Networks Design in Cloud Computing, International Journal of Computer Trends and Technology- 4 (2) (2013) 63-67.
[35] D. K. Sonar, S. S. Gupta, Prediction and Estimation of Gyroscopic Couple by Analytical and Neural Networks, International Journal of Engineering Science Invention, 4 (6) (2015) 62-71.
[36] F. S. Panchal, M. Panchal, Review on Methods of Selecting Number of Hidden Nodes in Artificial Neural Networks, International Journal of Computer Science and Mobile Computing (IJCSMC), 3 (11) (2014) 455-464.
[37] M. Alhaz uddin, M. Jameel, H. A. Razak, Application of artificial neural networks in fixed offshore structure, Indian J. Mar. Sci. 44 (3) (2015) 1-10.
[38] A. D. Dongare, R.R. Kharde, A. D. Kachare, Introduction to Artificial Neural Networks, International Journal of Engineering and Innovative Technology (IJEIT). 2 (1), (2012)189-194.
[39] M. Madić, M. Radovanović, Methodology of developing optimal BP-ANN model for the prediction of cutting force in turning using early stopping method, Facta universitatis series: Mechanical Engineering. 9 (1) (2011) 21 – 32.
[40] S. Mallar, R. M., T. Thyagarajan, Modelling of continuous stirred tank reactor using artificial intelligence techniques, Int. J. Simul. Model. 8 (3) (2009) 145-155.
http://dx.doi.org/10.2507/IJSIMM08(3)2.128
[41] V. K. Devabhaktuni, M. C. E. Yagoub, Y. Fang, J. Xu, Q.-J. Zhang, Neural Networks for Microwave Modeling: Model Development Issues and Nonlinear Modeling Techniques, John Wiley & Sons, Inc. (2001) 4-21.
[42] F. Musharavati, A.S.M. Hamouda, Application of artificial neural networks for modelling correlations in age hardenable aluminium alloys, Journal of achievements in materials and manufacturing engineering, 41 (2010) 140-146.
[43] R. Herbrich, Learning Kernel Classifier: Theory and Algorithm, Massachusetts Institute of Technology, MIT Press Cambridge, MA, USA (2002).
[44] S. G. Anantwar, R. Shelke, Simplified Approach of ANN: Strengths and Weakness, International Journal of Engineering and Innovative Technology (IJEIT), 1 (2012) 73–77.
[45] S. Gunn, Support Vector Machines for Classification and Regression, ISIS Technical Report, university of Southampton, (1997) 1–42.
[46] A. J. Smola, B. Scholkopf, A tutorial on support vector regression, Statistics and Computing 14 (2004) 199–222.
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
[47] W. Wang, Z. Xu, A heuristic training for support vector regression, Neurocomputing 61 (2004) 259 – 275.
http://dx.doi.org/10.1016/j.neucom.2003.11.012
[48] A. M. Deris, A. M. Zain, R. Sallehuddin, Overview of support vector machine in modeling machining performances, Procedia Engineering 24 (2011) 308–312.
http://dx.doi.org/10.1016/j.proeng.2011.11.2647
[49] W.H. Chen, J.Y. Shih, Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets, Int. J. Electronic Finance. 1 (1) (2006) 49-67.
http://dx.doi.org/10.1504/IJEF.2006.008837
[50] A. Marti, Support vector machines, IEEE Intell. Syst. 13 (1998) 18–28.
http://dx.doi.org/10.1109/5254.708428
[51] G. Nalbantov, J.F. Patrick, Groenen, J. C. Bioch, Support Vector Regression Basics, Medium Econometrische Toepassingen, 13 (2005) 16–19.
[52] K. S. Shin, T. S. Lee, H. Y. Kim, An application of support vector machines in bankruptcy prediction model, Expect Systems with Application. 28 (2005) 127-135.
http://dx.doi.org/10.1016/j.eswa.2004.08.009
[53] V. Sugumaran, G.R. Sabareesh, K. I. Ramachandran, Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine, Expert Systems with Applications 34 (2008) 3090–3098.
http://dx.doi.org/10.1016/j.eswa.2007.06.029
[54] A.B. Gandhi, J.B. Joshi, Estimation of heat transfer coefficient in bubble column reactors using support vector regression, Chem. Eng. J. 160 (2010) 302-310.
http://dx.doi.org/10.1016/j.cej.2010.03.026
[55] V.N. Vapnik, S. Golowich, A.J. Smola, Support vector method for function approximation, regression estimation and signal processing. Adv. Neural Inform. Process. Syst. 9 (1996) 281-287.
[56] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning. 20 (1995) 273–297.
http://dx.doi.org/10.1007/BF00994018
[57] S. Nandi, Y. Badhe, J. Lonari, U. Sridevi, B.S. Raoc, S. S. Tambe, B. D. Kulkarni, Hybrid process modeling and optimization strategies integrating neural networks/support vector regression and genetic algorithms: study of benzene isopropylation on Hbeta catalyst, Chem. Eng. J. 97 (2004) 115–129.
http://dx.doi.org/10.1016/S1385-8947(03)00150-5
[58] R. Samant, S. Rao, A study on Comparative Performance of SVM Classifier Models with Kernel Functions in Prediction of Hypertension, International Journal of Computer Science and Information Technologies. 4 (2013) 818-821.
[59] S. X. Zhi, Z. Jian, W. B. Biao, H. D. Wei, Support vector machine approach to mean particle size of rock fragmentation due to blench blasting prediction, Trans. Nonferrous Met. Soc. China. 22 (2012) 432-441.
http://dx.doi.org/10.1016/S1003-6326(11)61195-3
[60] C. Y. Lee, S. G. Chern, Application of a Support Vector Machine for Liquefaction Assessment, J. Mar. Sci. Technol. 21 (2013) 318-324.
[61] V. Cherkassky, Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression, Neural Networks. 17 (2004) 113–126.
http://dx.doi.org/10.1016/S0893-6080(03)00169-2
[62] M. Dundar, C. Nuhoglu, Y. Nuhoglu, Biosorption of Cu(II) ions onto the litter of natural trembling poplar forest, J. Hazard. Mater. 151 (2008) 86–95.
http://dx.doi.org/10.1016/j.jhazmat.2007.05.055
[63] C. C. Chang, C. J. Lin, LIBSVM: A Library for Support Vector Machines, Department of Computer Science, National Taiwan University, Taipei, Taiwan, (2001).
[64] A.K. Giri, R.K. Patel, S.S. Mahapatra, Artificial neural networks (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus biomass, Chemical Engineering Journal 178 (2011) 15– 25.
http://dx.doi.org/10.1016/j.cej.2011.09.111
[65] Y. S. Ho, W. T. Chiu, C. S. Hsu, C. T. Huang, Sorption of lead ions from aqueous solution using tree fern as a sorbent, Hydrometallurgy. 73 (2004) 55–61.
http://dx.doi.org/10.1016/j.hydromet.2003.07.008
[66] Y. S. Ho, Effect of pH on lead removal from water using tree fern as the sorbent, Bioresour. Technol. 96 (2005)1292–1296.
http://dx.doi.org/10.1016/j.biortech.2004.10.011
[67] M. Massinaei, Estimation of metallurgical parameters of flotation process from froth visual features, Int. J. Min. & Geo-Eng. 49(1) (2015) 75-81.
[68] S. Karsoliya, Approximating Number of Hidden layer neurons in Multiple Hidden Layer BPNN Architecture, International Journal of Engineering Trends and Technology. 31 (6) (2012) 714-717.
[69] H. Merdun, Ö. Çinar, Artificial neural networks and regression techniques in modelling surface water quality, Environ. Prot. Eng. 36(2) (2010) 95-109.
[70] S. Suganthi, K. Murugesan, S. Raghavan, ANN Model of RF MEMS Lateral SPDT Switches for Millimeter Wave Applications, Journal of Microwaves, Optoelectronics and Electromagnetic Applications 11(1) (2012) 130-143.
http://dx.doi.org/10.1590/S2179-10742012000100011
[71] A. Verikas, M. Bacauskiene, Using artificial neural networks for process and system modeling, Chemometr. Intell. Lab. 67 (2003) 187 – 191.
http://dx.doi.org/10.1016/S0169-7439(03)00093-5
[72] M. M. Joseph, O. M. Callistus, A. I. Gabriel, Application of Artificial Neural Networks For Path Loss Prediction In Urban Macrocellular Environment, American Journal of Engineering Research (AJER) 3(2) (2014) 270-275.
[73] S. Aber, A.R. Amani-Ghadim, V. Mirzajani, Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural networks, J. Hazard. Mater. 171 (2009) 484–490.
http://dx.doi.org/10.1016/j.jhazmat.2009.06.025