Bioinspired Synthesis of Nanomaterials for Photoelectrochemical Applications


Bioinspired Synthesis of Nanomaterials for Photoelectrochemical Applications

M.L. Aruna Kumari

Hydrogen production by water splitting using renewable resources like water and solar energy by photoelectrochemical (PEC) processes using biological resources is an endless fountain of inspiration for fabrication and design of nanomaterials/electrodes. In this chapter, we tried to explain how researchers utilized bioinspired materials in creation of new bioinspired synthetic strategies, their artificial mimics and bioinspired process in design of artificial photosynthesis and artificial leaf using PEC technology. This chapter also covers some confront and perspectives in this emerging area of research.

Bioinspired Materials, Photoelectrochemical Cell, Water Splitting, Biomimics, Artificial Photosynthesis, Hydrogenases

Published online 3/25/2022, 28 pages

Citation: M.L. Aruna Kumari, Bioinspired Synthesis of Nanomaterials for Photoelectrochemical Applications, Materials Research Foundations, Vol. 121, pp 211-238, 2022


Part of the book on Bioinspired Nanomaterials for Energy and Environmental Applications

[1] E. Barbier, Geothermal energy technology and current status: an overview. Renew Sustain Energy Rev. 6 (2002) 3-65.
[2] G. Wang, Y. Ling, H. Wang, L. Xihong, Y. Li, Chemically modified nanostructures for photoelectrochemical water splitting, J. Photochem. Photobiol. C: Photochem. Rev. 19 (2014) 35–51.
[3] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 238 (1972) 37-38.
[4] Yi-H. Chiu, T. H. Lai, M-Yu Kuo, P-Y Hsieh, Y- Hsu, Photoelectrochemical cells for solar hydrogen production: Challenges and opportunities,APL Mater. 7, (2019) 080901(1-11).
[5] M. Ding, G. Chen, W. Xu, C. Jia, H. LuoBio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion, In Press, Corrected Proof
[6] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344.
[7] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects.Int. Jour. of Hyd. Ene., 27 (2002) 991-1022.
[8] R. Krol, Photoelectrochemical Hydrogen Production, Electronic Materials: Science & Technology, Springer, 2012,
[9] P. D. Tran, V. Artero, M. FontecaveWater electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems, Energy Environ. Sci., 3 (2010) 727–747.
[10] J.-W. Jang, C. Du, Y. Ye, Y. Lin, X. Yao, J. Thorne, E. Liu, G. McMahon, J. Zhu, A. Javey, J. Guo, D. Wang, Enabling unassisted solar water splitting by iron oxide and silicon, Nat. Commun. 6 (2015) 7447 (1-5).
[11] C. Liu, J. Tang, H. M. Chen, B. Liu, and P. Yang, A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting Nano Lett. 13 (2013) 2989–2992.
[12] H. B. Yang, J. Miao, S.-F. Hung, F. Huo, H. M. Chen, B. Liu, Stable Quantum Dot Photoelectrolysis Cell for Unassisted Visible Light Solar Water Splitting ACS Nano 8, (2014) 10403–10413.
[13] J. Brillet, J.-H. Yum, M. Cornuz, T. Hisatomi, R. Solarska, J. Augustynski, M. Graetzel, K. Sivula,Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photonics 6, 824–828 (2012).
[14] X. Shi, K. Zhang, K. Shin, M. Ma, J. Kwon, I. T. Choi, J. K. Kim, H. K. Kim, D. H. Wang, J. H. Park,Unassisted photoelectrochemical water splitting beyond 5.7% solar-to-hydrogen conversion efficiency by a wireless monolithic photoanode/dye-sensitised solar cell tandem device, Nano Energy 13(2015)182–191.
[15] J. H. Kim, Y. Jo, J. H. Kim, J. W. Jang, H. J. Kang, Y. H. Lee, D. S. Kim, Y. Jun, J. S. Lee, Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO4 Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. ACS Nano 9 (2015)11820–11829.
[16] J. L. Young, M. A. Steiner, H. Doscher, R. M. France, J. A. Turner, T. G. Deutsch, Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat. Energy 2 (2017) 17028(1-8).
[17] E. Verlage, S. Hu, R. Liu, R. J. R. Jones, K. Sun, C. Xiang, N. S. Lewis, H. A. Atwater, A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandemIII–V light absorbers protected by amorphous TiO2 films, Energy Environ. Sci. 8 (2015) 3166–3172.
[18] M. M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, T. Hannappel, Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure,Nat. Commun. 6 (2015) 8286 (1-7).
[19] P. Arunachalam, A. M. Al Mayouf, Chapter 28 Photoelectrochemical Water Splitting, ISBN: 978-0-12-814134-2.
[20] C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang J. Tang, Photoelectrochemical devices for solar water splitting – materials and challenges,Chem. Soc. Rev. 46 (2017)4645–4660.
[21] T. G. Vo, J. M. Chiu, C. Y. Chiang and Y. Tai, Solvent-engineering assisted synthesis and characterization of BiVO4 photoanode for boosting the efficiency of photoelectrochemical water splitting, Sol. Energy Mater. Sol. Cells, 166 (2017) 212–221.
[22] W. Zhang, K. Banerjee-Ghosh, F. Tassinari, R. NaamanEnhanced Electrochemical Water Splitting with Chiral Molecule-Coated Fe3O4 Nanoparticles, ACS Energy Lett., 3(2018) 2308−2313.
[23] D. Oh, J. Qi, Y.-C. Lu, Y. Zhang, Y. Shao-Horn, A. M. Belcher, Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries, Nat. Commun., 4 (2013) 2756 (1-8).
[24] N. Nuraje , X. Dang, J. Qi, M. A. Allen,Y. Lei, A. M. Belcher, Biotemplated Synthesis of PerovskiteNanomaterials for Solar Energy Conversion, Adv. Mater. 24 (2012) 2885–2889.
[25] C. Jolley, M. Klem, R. Harrington, J. Parise, T. Douglas, Structure and photochemistry of virus capsid-TiO2nanocomposite, Nanoscale, 3(2011) 1004-1007.
[26] C-Y. Chiang, J. Epstein, A. Brown, J. N. Munday, J. N. Culver, S. Ehrman, Biological Templates for Antireflective Current Collectors for Photoelectrochemical Cell Applications, Nano Lett. 12 (2012) 6005−6011.
[27] P. D. Nguyen, T. M. Duong , P. D. TranCurrent progress and challenges in engineering viable artificial leaf for solar water splittingJ. Sci. Adv. Mater.Devices 2 (2017) 399-417.
[28] E. Andreiadis, M. Chavarot-Kerlidou, M. Fontecave, V. Artero, Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells. Photochem.andPhotobio., 87 (2011) 946–964.
[29] Y. Che, B.Lu, Q. Qi, H. Chang, J.Zhai, K. Wang, Z. Liu, Bio-inspired Z-scheme g-C3N4/Ag2CrO4 for efficient visible light photocatalytic hydrogen generation, Sci. Rep. 8 (2018) 16504 (1-12).
[30] W. F. Ruettinger, C. Campana, G. C. Dismukes, Synthesis and characterization of Mn4O4L6 complexes with cubane-like core structure: A new class of models of the active site of the photosynthetic water oxidase, J. Am. Chem. Soc. , 119 (1997) 6670-6671.
[31] R. Brimblecombe, G. F. Swiegers, G. C. Dismukes, L. Spiccia, Sustained Water Oxidation Photocatalysis by a Bioinspired Manganese Cluster, Angew. Chem. Int. Ed., 120 (2008) 7335 -7338.
[32] G. C. Dismukes, R. Brimblecombe, G. A. N. Felton, R.S. Pryadun, J. E. Sheats, L. Spiccia, G. F. Swiegers, Development of Bioinspired Mn4O4-Cubane Water Oxidation Catalysts: Lessons from Photosynthesis. Acc. Res. Chem. Res., 42 (2009) 1935-1943.
[33] D. Dogutan, R. McGuire, D. G. Nocera, Electocatalytic Water Oxidation by Cobalt(III)Hangman β-OctafluoroCorroles. J. Am. Chem. Soc., 133 (2011) 9178–9180.
[34] Y. Hou, B.L. Abrams, P.C.K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A.M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nørskov, Ib Chorkendorff, Bioinspired molecular co-catalysts bonded to asilicon photocathode for solar hydrogen evolution. Nat. Mat.,10 (2011) 434-438.
[35] L-Y Chou, R. Liu, W. He, N. Geh, Y. Lin, E.Y.F. Hou, D.Wang, H. J.M. Hou, Direct oxygen and hydrogen production by photo water splitting using a robust bioinspired manganese-oxo oligomer complex/tungsten oxide catalytic system,Int J Hydrogen Energy, 37 (2012)8889-8896.
[36] A. Yamaguchi, R. Inuzuka, T. Takashima, T. Hayashi, K. Hashimoto, R, Nakamura, Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH.Nat Commun., 5 (2014) 4256 (1-6).
[37] S. Ye, C. Ding, R. Chen, F. Fan, P. Fu, H. Yin, X. Wang, Z. Wang, P. Du, C. Li, Mimicking the Key Functions of Photosystem II in Artificial Photosynthesis for Photoelectrocatalytic Water Splitting , J. Am. Chem. Soc. 140 (2018) 3250−3256.
[38] L. Spiccia, R. Brimblecombe, A. Koo, G. Dismukes and G. Swiegers, Solar driven water oxidation by a bioinspired manganese molecular catalyst. J. Am. Chem. Soc., 132 (2010) 2892–2894.
[39] L. Li, L.L. Duan, Y.H. Xu, M. Gorlov, A. Hagfeldt, L.C. Sun, A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2. Chem.Commun., 46 (2010) 7307- 7309.
[40] T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2nanocatalysts, Science 317 (2007) 100-102.
[41] J. Ran, J. Zhang, J. Yu, M. Jaroniec,S. Z. Qiao, Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting,Chem. Soc. Rev., 43 (2014) 7787-7812.
[42] C. Tard,C. J. Pickett, Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases, Chem. Rev., 109 (2009) 2245-2274.
[43] K. A. Brown, S. Dayal, X. Ai, G. Rumbles, P. W. King, Controlled Assembly of Hydrogenase-CdTeNanocrystal Hybrids for Solar Hydrogen Production, J. Am. Chem. Soc., 2010, 132, 9672-9680.
[44] K. A. Brown, M. B. Wilker, M. Boehm, G. Dukovic, P. W. King, Characterization of Photochemical Processes for H2 Production by CdSNanorod–[FeFe] Hydrogenase Complexes, J. Am. Chem. Soc., 134 (2012) 5627-5636.
[45] M. Ihara, H. Nishihara, K.S. Yoon, O. Lenz, B. Friedrich, H. Nakamoto, K. Kojima , D. Honma, T, Kamachi, I. Okura, Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem. Photobiol,. 82 (2006) 676–682.
[46] J. Heberle, H. Krassen, A. Schwarze, B. Friedrich, K. Ataka, O. Lenz, Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano., 3 (2009) 4055–4061.
[47] J. H. Golbeck, C.Lubner, P. Khorzer, P. Silva, K. A. Vincent, Wiring an [FeFe]- hydrogenase with photosystem I for light-induced hydrogenproduction. Biochemistry.,49 (2010) 10264-10266.
[48] C. A. Caputo, M. A. Gross, V. W. Lau, C.Cavazza, B. V. Lotsch, E. Reisner Photocatalytic Hydrogen Production using Polymeric Carbon Nitridewith a Hydrogenase and a Bioinspired Synthetic Ni Catalyst,Angew. Chem. Int. Ed. 53 (2014)11538-11542.
[49] P. D. Tran, A. Morozan, S. Archambault, J. Heidkamp, P. Chenevier, H. Dau, M. Fontecave, A. Martinent, B. Jousselme, V. Artero,A noble metal-free proton-exchange membrane fuel cell based on bio-inspired molecular catalysts,Chem. Sci., 6 (2015) 2050–2053.
[50] S. Chandrasekaran, S. J. P. McInnes, T. J. Macdonald, T. Nann, N. H. Voelcker, Porous silicon nanoparticles as a nanophotocathode for photoelectrochemical water splitting,RSC Adv.,5 (2015) 85978-85982.
[51] B. Kumar,M. Beyler, C. P. Kubiak, S. Ott, Photoelectrochemical Hydrogen Generation by an [FeFe] Hydrogenase Active Site Mimic at a p‐Type Silicon/Molecular Electrocatalyst Junction, Chem. Eur. J., 18(2012) 1295 – 1298.
[52] T. Nann , S. K. Ibrahim, P. M. Woi, S. Xu,J. Ziegler, C. J. Pickett, Water Splitting by Visible Light: A Nanophotocathode for Hydrogen Production, Angew. Chem. Int. Ed. 49 (2010) 1574 -1577.
[53] M. Hambourger, M. Gervaldo, D. Svedruzic, P. W. King, D. Gust, M. Ghirardi, A. L. Moore, T. A. Moore,[FeFe]-Hydrogenase-Catalyzed H2 Production in a Photoelectrochemical Biofuel Cell, J. Am. Chem. Soc., 130 (2008) 2015–2022.
[54] G. Goldet, A. F. Wait, J. A. Cracknell, K. A. Vincent, M. Ludwig, O. Lenz, B. Friedrich, F. A. Armstrong, Hydrogen Production under Aerobic Conditions by Membrane-Bound Hydrogenases from Ralstonia Species. J. Am. Chem. Soc., 2008, 130, 11106-11113.
[55] F. Y. Wen, X. L. Wang, L. Huang, G. J. Ma, J. H. Yang, C. Li, A Hybrid Photocatalytic System Comprising ZnS as Light Harvester and an [Fe2S2] Hydrogenase Mimic as Hydrogen Evolution Catalyst, Chem. Sus. Chem, 5 (2012) 849-853.
[56] C. B. Li, Z. J. Li, S. Yu, G. X. Wang, F. Wang, Q. Y. Meng, B. Chen, K. Feng, C. H. Tung, L. Z. Wu, Interface-directed assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water, Energy Environ. Sci., 6 (2013) 2597-2602.
[57] T. N. Huan, R. T. Jane, A. Benayad, L. Guetaz, P. D. Tran, V, Artero, Bio-inspired noble metal-free nanomaterials approaching platinum performances for H2 evolution and uptake, Energy Environ. Sci., 6 (2016) 940-947.
[58] F. Wang, W. Wang, X. Wang, H. Wang, C. Tung,L.Wu, A Highly Efficient Photocatalytic System for Hydrogen Production by a Robust Hydrogenase Mimic in an Aqueous Solution. Angew. Chem., Int. Ed., 50 (2011) 3193-3197.
[59] F. Peng, Q. Zhou, D. Zhang, C. LuY. Ni, J.Kou, J.Wang, Z. Xu, Bio-inspired design: Inner-motile multifunctional ZnO/CdSheterostructures magnetically actuated artificial cilia film for photocatalytic hydrogen evolution, Appl.Catal. B. Environ., 165 (2015) 419–427.
[60] Y. Chen, J. He, J. Li, M. Mao, Z. Yan, W. Wang, J. Wang, Hydrilla derived ZnIn2S4 photocatalyst with hexagonal-cubic phase junctions: A bio-inspired approach for H2 evolution, Cat. Commun., 87, (2016) 1-7.
[61] H. Zhou, X. Li,T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, Q. Guo, Artificial Inorganic Leafs for Efficient Photochemical Hydrogen Production Inspired by Natural Photosynthesis,Adv. Mater. 2010, 22, 951–956.
[62] J. Lee, K. Yong, Combining the lotus leaf effect with artificial photosynthesis: regeneration of underwater superhydrophobicity of hierarchical ZnO/Si surfaces by solar water splitting, NPG Asia Mater 7 (2015)201.
[63] D. Nocera, The Artificial Leaf. Acc. of Chem. Res.,45 (2012) 767-776.
[64] J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, X. Wang, Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat.Commun., 3 (2012) 1139.