Novel Ceramic Materials, Chapter 11


Synthesis and Characterization of NiFe2O4 Nano Particles Prepared by the Chemical Reaction Method

Y.B.Kannan, R.Saravanan, N.Srinivasan

The present study was carried out to determine the numerical values of the bond strength using the maximum entropy method (MEM) between atoms at various sites, namely tetrahedral – tetrahedral, tetrahedral – octahedral and octahedral – octahedral sites, of interactions in NiFe2O4 nanoparticles prepared by solid state reaction. The experimental lattice parameter agrees well with theoretical lattice parameters. The particle size lies in the nanometer regime. SEM reveals the presence of porosity in the sample. The EDAX and the XRF analysis confirm the elemental composition and purity of the samples. Interestingly, due to the presence of the Yaffet-Kittel angle, instead of the octahedral – octahedral site interactions, the tetrahedral – tetrahedral site interactions remain the strongest interaction in this study. The hysteresis curve together with small coercivity value reveals the presence of small magnetic particles exhibiting a super paramagnetic behavior. The dielectric constant determined through broad band dielectric spectrometer (BDS) shows a normal behavior whereas the dielectric loss tangent shows abnormal behavior. The band gap energy of 2.1eV is evaluated from the optical study.

Solid State Reaction Method; Spinel Ferrites; X-Ray Diffraction; Rietveld Analysis; Electron Charge Density using MEM Studies

Published online 6/1/2016, 16 pages

DOI: 10.21741/9781945291036-11

Part of Novel Ceramic Materials

[1] Pengzhao Gao, Xia Hua, Volkan Degirmenci, David Rooney, Majeda Khraisheh, Robert Pollard, Robert M. Bowman, Evgeny V. Rebrov, Structural and magnetic properties of Ni1_xZnxFe2O4 (x= 0, 0.5 and 1) nanopowders prepared by sol–gel method, J.Magn. Magn. Mater. 348 (2013) 44–50.
[2] F. Shahbaz Tehrani, V. Daadmehr, A.T. Rezakhani, R. Hosseini Akbarnejad S. Gholipour, Structural, Magnetic, and Optical Properties of Zinc- and Copper-Substituted Nickel Ferrite Nanocrystals, J Supercond Nov Magn DOI 10.1007/s10948-012-1655-5.
[3] D.V. Kurmude R.S. Barkule A.V. Raut D.R. Shengule K.M. Jadhav, X-Ray Diffraction and Cation Distribution Studies in Zinc-Substituted Nickel Ferrite Nanoparticles, J Supercond Nov Magn DOI 0.1007/s10948-013-2305-2.
[4] A. D. Sheikh, V. L. Mathe, Anomalous electrical properties of nanocrystalline Ni–Zn ferrite, J Mater Sci 43 (2008) 2018–2025.
[5] Sagar E. Shirsath, B.G. Toksha, K.M. Jadhav, Structural and magnetic properties of In3+ substituted NiFe2O4, Mater. Chem.Phys. 117 (2009) 163–168.
[6] S. M. Patange, S. E. Shirsath2, S.S. Jadhav, K. M. Jadhav, Cation distribution study of nanocrystalline NiFe2_xCrxO4 ferrite by XRD, magnetization and Mossbauer spectroscopy, Phys. Status Solidi A 209, (2012) 347–352.
[7] H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic, J. Appl. Crystallogr. 2 (1969) 65.
[8] V. Petricek, M. Dusek and L. Palatinus, (2006) Jana, The crystallographic computing system (Institute of Physics), Praha, Czech Republic.
[9] Gull SF, Daniel GJ (1978) Image reconstruction from incomplete and noisy data. Nature 272 (1978) 686-690.
[10] D.M. Collins DM (1982) Electron density images from imperfect data by iterative entropy maximization, Nature 49 298.
[11] A. D. Ruben, I. Fujio: Super-fast Program PRIMA for the Maximum-Entropy Method, Advanced materials Laboratory, National Institute for Materials Science, Ibaraki, Japan (2004), p. 305 0044.
[12] F. Izumi, R.A. Dilanian: Recent Research Developments in Physics, Part II, 3, Transworld, Research Network, Trivandrum, 2002, pp. 699–726.
[13] K. Momma, F. Izumi,VESTA: a three-dimensional visualization system for electronic and structural analysis J. Appl. Crystallogr. (2008) 41 653-658.
[14] V. K. Lakhani, T. K. Pathak, N. H. Vasoya, K. B. Modi, Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci. 13 (2011) 539-547.
[15] T Slatineanu et al. Synthesis and characterization of nanocrystalline Zn ferrites substituted with Ni, Mater. Res. Bull. 46 (2011) 1455.
[16] J.Tauc, R.Grigorovic, A.Vancu, physica status solidi (b), 15, 627-637. DOI:10.1002/pssb.19660150224.
[17] J.Pancove, optical process in semiconductors. Englewood Cliffs, NJ, USA: Prentice-Hall.
[18] S N Dolia, Rakesh Sharma, M P Sharma, N S Saxena, Synthesis, X-ray diffraction and optical band gap study of nanoparticles of NiFe2O4 Ind J Pure and Appl Phys 44, October 2006, 774-776.
[19] A. Goldman, Modern Ferrites Technology (New York Springer) 2006 Chap.2, p 32.
[20] G.Nabiyouni, M.Jafari Fesharaki, M.Mozafari, J.Amighian, Characterization and Magnetic Properties of Nickel Ferrite Nanoparticles prepared by ball milling technique, CHIN. PHYS.LETT., 27, (2010) 12640.
[21] J.Azadmanjiri, S.A.Seyyed Ebrahimi, H.K.Salehani, Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion method, Ceramics International 33 (2007) 1623-1625.
[22] G.Rangamohan, D.Ravinder, A.V.Ramanareddy, B.S.Boyanov, Dielectric properties of polycryastalline mixed nickel-zinc ferrites, Mater.Letts, 40,(1999) 39-45.
[23] U.N.Trivedi, M C Chhantbur K.B.Modi and H.H.Joshi, Frequency dependent dielectric behavior of cadmium and chromium co-sbstituted nickel ferrite, Ind. J Pure Appl.Phys. 43 september (2005) 688-690.
[24] J.C.Maxwell, Electricity and Magnetism, vol.1, Oxford, Oxford, 1929, section 328, p,752.
[25] K.W.Wagner, Anphys.(Leipzig) 40 (1913) 817.
[26] C.G.Koops, Phys.Rev. 83 (1951) 121.
[27] D.El.Kony, S.A.Saafan, Dielectric Properties and Magnetic Susceptibility of Mn-Zn Ferrites /SiO2 composites, J.Amer.Sci. 8 (10) 2012 51-57.
[28] A.V.Ramanareddy, G.Rangamohan, D.Ravinder, B.S.Boyanov, High- frequency dielectric behaviour of polycrystalline Zinc substituted cobalt ferrites, J Mater. Sci. 34 (1999) 3169-3176.
[29] K.Iwauchi, Japan. J.Appl. Phys. 10, (1971) 1520.