Current Trends in Quantum Dots Solar Cells

$30.00

Current Trends in Quantum Dots Solar Cells

Bavani Thirugnanam, Sivakami. A, Madhavan Jagannathan

Quantum dots (QDs) are zero- dimensional semiconductor structure exhibits tremendous applications in transistors, LEDs, photovoltaic cells, DNA imaging and photodetectors. The theoretical efficiency of QDs in photovoltaic cells is 40% but practically is lesser than the dye-sensitized solar cells. There are many recent developments focused on the use of different components like QD sensitizer, counter electrode, photoanode, electrolyte in quantum dot Sensitized Solar Cells (QDSSCs). The various synthesis methods are also contributing to enhance the efficiency of QDSSCs, open-circuit voltage, short-circuit current density and fill factor. The easily tunable band gap of QDSSCs is showing major improvement in the photovoltaic fields. The first practical efficiency of QDSSCs is recorded as 0.12% but now it is improved as 18% and many researchers are analyzing different factors to improve the efficiency of QDSSCs comparable with other solar cells.

Keywords
Quantum Dots, Sensitizer, Solar Cells, Photovoltaic, Efficiency, Fill Factor

Published online 3/25/2024, 27 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Bavani Thirugnanam, Sivakami. A, Madhavan Jagannathan, Current Trends in Quantum Dots Solar Cells, Materials Research Foundations, Vol. 163, pp 118-144, 2024

DOI: http://dx.doi.org/10.21741/9781644903032-5

The article was published as article 5 of the book Third Generation Photovoltaic Technology

References
[1] Chen, J., Jia, D., Johansson, E.M., Hagfeldt, A. and Zhang, X., 2021. Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ. Sci., 14(1), pp.224-261. https://doi.org/10.1039/D0EE02900A
[2] Yuan, J., Hazarika, A., Zhao, Q., Ling, X., Moot, T., Ma, W. and Luther, J.M., 2020. Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule, 4(6), pp.1160-1185. https://doi.org/10.1016/j.joule.2020.04.006
[3] Albaladejo, Siguan, M., Baird, E.C., Becker‐Koch, D., Li, Y., Rogach, A.L. and Vaynzof, Y., 2021. Stability of quantum dot solar cells: A matter of (life) time. Adv. Ener. Mater., 11(12), p.2003457. https://doi.org/10.1002/aenm.202003457
[4] Selopal, G.S., Zhao, H., Wang, Z.M. and Rosei, F., 2020. Core/shell quantum dots solar cells. Adv. Func. Mater., 30(13), p.1908762. https://doi.org/10.1002/adfm.201908762
[5] Lim, S., Han, S., Kim, D., Min, J., Choi, J. and Park, T., 2023. Key factors affecting the stability of CsPbI3 perovskite quantum dot solar cells: a comprehensive review. Adv. Mater., 35(4), p.2203430. https://doi.org/10.1002/adma.202203430
[6] Dias, J.A., Santagneli, S.H., Ribeiro, S.J. and Messaddeq, Y., 2021. Perovskite Quantum Dot Solar Cells: An Overview of the Current Advances and Future Perspectives. Solar RRL, 5(8), p.2100205. https://doi.org/10.1002/solr.202100205
[7] Sahu, A., Garg, A. and Dixit, A., 2020. A review on quantum dot sensitized solar cells: Past, present and future towards carrier multiplication with a possibility for higher efficiency. Solar Energy, 203, pp.210-239. https://doi.org/10.1016/j.solener.2020.04.044
[8] Rasal, A.S., Yadav, S., Kashale, A.A., Altaee, A. and Chang, J.Y., 2022. Stability of quantum dot-sensitized solar cells: A review and prospects. Nano Energy, 94, p.106854. https://doi.org/10.1016/j.nanoen.2021.106854
[9] Mahalingam, S., Manap, A., Omar, A., Low, F.W., Afandi, N.F., Chia, C.H. and Abd Rahim, N., 2021. Functionalized graphene quantum dots for dye-sensitized solar cell: Key challenges, recent developments and future prospects. Renew. Sust. Energ. Rev., 144, p.110999. https://doi.org/10.1016/j.rser.2021.110999
[10] Mora-Seró, I., 2020. Current challenges in the development of quantum dot sensitized solar cells. Adv. Energ. Mater., 10(33), p.2001774. https://doi.org/10.1002/aenm.202001774
[11] Kim, T., Lim, S., Yun, S., Jeong, S., Park, T. and Choi, J., 2020. Design strategy of quantum dot thin-film solar cells. Small, 16(45), p.2002460. https://doi.org/10.1002/smll.202002460
[12] Shaikh, J.S., Shaikh, N.S., Mali, S.S., Patil, J.V., Beknalkar, S.A., Patil, A.P., Tarwal, N.L., Kanjanaboos, P., Hong, C.K. and Patil, P.S., 2019. Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers. ChemSusChem, 12(21), pp.4724-4753. https://doi.org/10.1002/cssc.201901505
[13] Blachowicz, T. and Ehrmann, A., 2020. Recent developments of solar cells from PbS colloidal quantum dots. Appl. Sci., 10(5), p.1743. https://doi.org/10.3390/app10051743
[14] Chen, M., Wang, J., Yin, F., Du, Z., Belfiore, L.A. and Tang, J., 2021. Strategically integrating quantum dots into organic and perovskite solar cells. J. Mater. Chem. A, 9(8), pp.4505-4527. https://doi.org/10.1039/D0TA11336K
[15] Ding, S., Hao, M., Lin, T., Bai, Y. and Wang, L., 2022. Ligand engineering of perovskite quantum dots for efficient and stable solar cells. J Energ. Chem., 69, pp.626-648. https://doi.org/10.1016/j.jechem.2022.02.006
[16] Zhao, Q., Hazarika, A., Chen, X., Harvey, S.P., Larson, B.W., Teeter, G.R., Liu, J., Song, T., Xiao, C., Shaw, L. and Zhang, M., 2019. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nature commun., 10(1), p.2842. https://doi.org/10.1038/s41467-019-10856-z
[17] Guo, X., Zhao, B., Xu, K., Yang, S., Liu, Z., Han, Y., Xu, J., Xu, D., Tan, Z. and Liu, S., 2021. p-Type Carbon Dots for Effective Surface Optimization for Near-Record-Efficiency CsPbI2Br Solar Cells. Small, 17(37), p.2102272.
[18] Li, F., Zhou, S., Yuan, J., Qin, C., Yang, Y., Shi, J., Ling, X., Li, Y. and Ma, W., 2019. Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. ACS Energ. Lett., 4(11), pp.2571-2578. https://doi.org/10.1021/acsenergylett.9b01920
[19] Sivakami A, Gayathri.V, 2014, Effect of Nanocrystalline TiO2 Film Thickness on the Photovoltaic Performance of Dye-Sensitized Solar Cells, J. Adv. Phy., 3(2), pp.119-124. https://doi.org/10.1166/jap.2014.1114
[20] Tavakoli, M.M., Dastjerdi, H.T., Yadav, P., Prochowicz, D., Si, H. and Tavakoli, R., 2021. Ambient stable and efficient monolithic tandem perovskite/PbS quantum dots solar cells via surface passivation and light management strategies. Adv. Funct. Mater., 31(21), p.2010623. https://doi.org/10.1002/adfm.202010623
[21] Cheng, F., He, R., Nie, S., Zhang, C., Yin, J., Li, J., Zheng, N. and Wu, B., 2021. Perovskite quantum dots as multifunctional interlayers in perovskite solar cells with dopant-free organic hole transporting layers. J. American Chem. Society, 143(15), pp.5855-5866. https://doi.org/10.1021/jacs.1c00852
[22] Xue, J., Wang, R., Chen, L., Nuryyeva, S., Han, T.H., Huang, T., Tan, S., Zhu, J., Wang, M., Wang, Z.K. and Zhang, C., 2019. A small molecule “charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater., 31(37), p.1900111. https://doi.org/10.1002/adma.201900111
[23] Han, R., Zhao, Q., Su, J., Zhou, X., Ye, X., Liang, X., Li, J., Cai, H., Ni, J. and Zhang, J., 2021. Role of methyl acetate in highly reproducible efficient CsPbI3 perovskite quantum dot solar cells. J.Phys. Chem. C, 125(16), pp.8469-8478. https://doi.org/10.1021/acs.jpcc.0c09057
[24] Pezhooli, N., Rahimi, J., Hasti, F. and Maleki, A., 2022. Synthesis and evaluation of composite TiO2@ ZnO quantum dots on hybrid nanostructure perovskite solar cell. Scientific Reports, 12(1), p.9885. https://doi.org/10.1038/s41598-022-13903-w
[25] Xu, Z., Jiang, Y., Li, Z., Chen, C., Kong, X., Chen, Y., Zhou, G., Liu, J.M., Kempa, K. and Gao, J., 2021. Rapid microwave-assisted synthesis of SnO2 quantum dots for efficient planar perovskite solar cells. ACS Appl. Energy Mater., 4(2), pp.1887-1893. https://doi.org/10.1021/acsaem.0c02992
[26] Liu, H., Chen, Z., Wang, H., Ye, F., Ma, J., Zheng, X., Gui, P., Xiong, L., Wen, J. and Fang, G., 2019. A facile room temperature solution synthesis of SnO2 quantum dots for perovskite solar cells. J Mater. Chem. A, 7(17), pp.10636-10643. https://doi.org/10.1039/C8TA12561A
[27] A Sivakami, R Sarankumar, P Sudhagar, 2022, Graphene–Metal Oxides Nanocomposite Heterojunction as an Efficient Photocatalyst for Energy and Environmental Applications, Heterojunction photocatalytic materials, 29, Ist edition Jenny stanford publishers, https://doi.org/10.1201/9781003294054
[28] Izmir, M., Durmusoglu, E.G., Sharma, M., Shabani, F., Isik, F., Delikanli, S., Sharma, V.K. and Demir, H.V., 2023. Near-infrared emission from CdSe-based nanoplatelets induced by ytterbium doping. J. Phys. Chem. C, 127(8), pp.4210-4217. https://doi.org/10.1021/acs.jpcc.2c09075
[29] Chaudhary, B., Kshetri, Y.K., Kim, H.S., Lee, S.W. and Kim, T.H., 2021. Current status on synthesis, properties and applications of CsPbX3 (X= Cl, Br, I) perovskite quantum dots/nanocrystals. Nanotechnology, 32(50), p.502007. https://doi.org/10.1088/1361-6528/ac2537
[30] Zheng, S., Chen, J., Johansson, E.M. and Zhang, X., 2020. PbS colloidal quantum dot inks for infrared solar cells. Isci., 23(11). https://doi.org/10.1016/j.isci.2020.101753
[31] Gan, J., He, J., Hoye, R.L., Mavlonov, A., Raziq, F., MacManus-Driscoll, J.L., Wu, X., Li, S., Zu, X., Zhan, Y. and Zhang, X., 2019. α-CsPbI3 colloidal quantum dots: synthesis, photodynamics, and photovoltaic applications. ACS Energy Lett., 4(6), pp.1308-1320. https://doi.org/10.1021/acsenergylett.9b00634
[32] Bi, C., Sun, X., Huang, X., Wang, S., Yuan, J., Wang, J.X., Pullerits, T. and Tian, J., 2020. Stable CsPb1-x Zn x I3 Colloidal Quantum Dots with Ultralow Density of Trap States for High-Performance Solar Cells. Chem. Mater., 32(14), pp.6105-6113. https://doi.org/10.1021/acs.chemmater.0c01750
[33] Yang, F., Xu, Y., Gu, M., Zhou, S., Wang, Y., Lu, K., Liu, Z., Ling, X., Zhu, Z., Chen, J. and Wu, Z., 2018. Synthesis of cesium-dopedZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells. J. Mater Chem. A, 6(36), pp.17688-17697. https://doi.org/10.1039/C8TA05946B
[34] Ahmad, W., He, J., Liu, Z., Xu, K., Chen, Z., Yang, X., Li, D., Xia, Y., Zhang, J. and Chen, C., 2019. Lead selenide (PbSe) colloidal quantum dot solar cells with> 10% efficiency. Adv. Mater., 31(33), p.1900593. https://doi.org/10.1002/adma.201900593
[35] Chen, H., Luo, Q., Liu, T., Tai, M., Lin, J., Murugadoss, V., Lin, H., Wang, J., Guo, Z. and Wang, N., 2020. Boosting multiple interfaces by co-doped graphene quantum dots for high efficiency and durability perovskite solar cells. ACS Appl. Mater. Interfaces, 12(12), pp.13941-13949. https://doi.org/10.1021/acsami.9b23255
[36] Pang, S., Zhang, C., Zhang, H., Dong, H., Chen, D., Zhu, W., Xi, H., Chang, J., Lin, Z., Zhang, J. and Hao, Y., 2020. Boosting performance of perovskite solar cells with Graphene quantum dots decorated SnO2 electron transport layers. Appl. Surf. Sci.e, 507, p.145099. https://doi.org/10.1016/j.apsusc.2019.145099
[37] Wang, Z., Rong, X., Wang, L., Wang, W., Lin, H. and Li, X., 2020. Dual role of amino-functionalized graphene quantum dots in NiOx films for efficient inverted flexible perovskite solar cells. ACS Appl. Mater. Interfaces, 12(7), pp.8342-8350. https://doi.org/10.1021/acsami.9b22471
[38] Bian, H., Wang, Q., Yang, S., Yan, C., Wang, H., Liang, L., Jin, Z., Wang, G. and Liu, S.F., 2019. Nitrogen-doped graphene quantum dots for 80% photoluminescence quantum yield for inorganic γ-CsPbI3 perovskite solar cells with efficiency beyond 16%. J. Mater. Chem. A, 7(10), pp.5740-5747. https://doi.org/10.1039/C8TA12519H
[39] Zhou, Y., Yang, S., Yin, X., Han, J., Tai, M., Zhao, X., Chen, H., Gu, Y., Wang, N. and Lin, H., 2019. Enhancing electron transport via graphene quantum dot/SnO2 composites for efficient and durable flexible perovskite photovoltaics. J. Mater. Chem. A, 7(4), pp.1878-1888. https://doi.org/10.1039/C8TA10168J
[40] Chen, X., Zhuang, Y., Shen, Q., Cao, X., Yang, W. and Yang, P., 2021. In situ synthesis of Ti3C2Tx MXene/CoS nanocomposite as high performance counter electrode materials for quantum dot-sensitized solar cells. Solar Energy, 226, pp.236-244. https://doi.org/10.1016/j.solener.2021.08.053
[41] Emin, S., Singh, S.P., Han, L., Satoh, N. and Islam, A., 2011. Colloidal quantum dot solar cells. Solar Energy, 85(6), pp.1264-1282. https://doi.org/10.1016/j.solener.2011.02.005
[42] Khan, F., Oh, M. and Kim, J.H., 2019. N-functionalized graphene quantum dots: Charge transporting layer for high-rate and durable Li4Ti5O12-based Li-ion battery. Chem. Eng. J, 369, pp.1024-1033. https://doi.org/10.1016/j.cej.2019.03.161
[43] Silambarasan, K., Harish, S., Hara, K., Archana, J. and Navaneethan, M., 2021. Ultrathin layered MoS2 and N-doped graphene quantum dots (N-GQDs) anchored reduced graphene oxide (rGO) nanocomposite-based counter electrode for dye-sensitized solar cells. Carbon, 181, pp.107-117. https://doi.org/10.1016/j.carbon.2021.01.162
[44] Sajjadi, S., Khataee, A., Soltani, R.D.C. and Hasanzadeh, A., 2019. N, S co-doped graphene quantum dot-decorated Fe3O4 nanostructures: Preparation, characterization and catalytic activity. J. Phys Chem. of Solids, 127, pp.140-150. https://doi.org/10.1016/j.jpcs.2018.12.014
[45] Mirtchev, P., Henderson, E.J., Soheilnia, N., Yip, C.M. and Ozin, G.A., 2012. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem., 22(4), pp.1265-1269. https://doi.org/10.1039/C1JM14112K
[46] Hao, X.J., Cho, E.C., Flynn, C., Shen, Y.S., Park, S.C., Conibeer, G. and Green, M.A., 2009. Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells. Solar Energ Mater. Solar Cells, 93(2), pp.273-279. https://doi.org/10.1016/j.solmat.2008.10.017
[47] Ali, H.H. and Al-Bahrani, M.R., 2020. Synthesis of TiO2/graphene quantum dots as photoanode to enhance power conversion efficiency for dye-sensitized solar cells. Int. J. Adv. Sci. Technol., 29(3), pp.11071-11081.
[48] Ganguly, A. and Nath, S.S., 2020. Mn-doped CdS quantum dots as sensitizers in solar cells. Mater. Sci. Eng. B, 255, p.114532. https://doi.org/10.1016/j.mseb.2020.114532
[49] Ali, H.H. and Al-Bahrani, M.R., 2020. Synthesis of TiO2/graphene quantum dots as photoanode to enhance power conversion efficiency for dye-sensitized solar cells. Int. J. Adv. Sci. Technol., 29(3), pp.11071-11081.
[50] Li, F., Zhou, S., Yuan, J., Qin, C., Yang, Y., Shi, J., Ling, X., Li, Y. and Ma, W., 2019. Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. ACS Energy Lett., 4(11), pp.2571-2578. https://doi.org/10.1021/acsenergylett.9b01920
[51] Hui, W., Yang, Y., Xu, Q., Gu, H., Feng, S., Su, Z., Zhang, M., Wang, J., Li, X., Fang, J. and Xia, F., 2020. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells. Adv. Mater., 32(4), p.1906374. https://doi.org/10.1002/adma.201906374
[52] Wang, X., Zhang, Y., Li, J., Liu, G., Gao, M., Ren, S., Liu, B., Zhang, L., Han, G., Yu, J. and Zhao, H., 2022. Platinum cluster/carbon quantum dots derived graphene heterostructured carbon nanofibers for efficient and durable solar‐driven electrochemical hydrogen evolution. Small Methods, 6(4), p.2101470. https://doi.org/10.1002/smtd.202101470
[53] Maxim, A.A., Sadyk, S.N., Aidarkhanov, D., Surya, C., Ng, A., Hwang, Y.H., Atabaev, T.S. and Jumabekov, A.N., 2020. PMMA thin film with embedded carbon quantum dots for post-fabrication improvement of light harvesting in perovskite solar cells. Nanomaterials, 10(2), p.291. https://doi.org/10.3390/nano10020291
[54] Liu, J., Dong, Q., Wang, M., Ma, H., Pei, M., Bian, J. and Shi, Y., 2021. Efficient planar perovskite solar cells with carbon quantum dot-modified spiro-MeOTAD as a composite hole transport layer. ACS Appl. Mater. Interfaces, 13(47), pp.56265-56272. https://doi.org/10.1021/acsami.1c18344
[55] Niu, Y., Tian, C., Gao, J., Fan, F., Zhang, Y., Mi, Y., Ouyang, X., Li, L., Li, J., Chen, S. and Liu, Y., 2021. Nb2C MXenes modified SnO2 as high quality electron transfer layer for efficient and stability perovskite solar cells. Nano Energy, 89, p.106455.
[56] Huang, P., Xu, S., Zhang, M., Zhong, W., Xiao, Z. and Luo, Y., 2020. Carbon quantum dots improving photovoltaic performance of CdS quantum dot-sensitized solar cells. Opt. Mater., 110, p.110535. https://doi.org/10.1016/j.optmat.2020.110535
[57] Li, H., Shi, W., Huang, W., Yao, E.P., Han, J., Chen, Z., Liu, S., Shen, Y., Wang, M. and Yang, Y., 2017. Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%. Nano Lett., 17(4), pp.2328-2335. https://doi.org/10.1021/acs.nanolett.6b05177
[58] Zhou, Q., Tang, S., Yuan, G., Zhu, W., Huang, Y., Li, S. and Lin, M., 2022. Tailored graphene quantum dots to passivate defects and accelerate charge extraction for all-inorganic CsPbIBr2 perovskite solar cells. J. Alloys Compd., 895, p.162529. https://doi.org/10.1016/j.jallcom.2021.162529
[59] Maxim, A.A., Sadyk, S.N., Aidarkhanov, D., Surya, C., Ng, A., Hwang, Y.H., Atabaev, T.S. and Jumabekov, A.N., 2020. PMMA thin film with embedded carbon quantum dots for post-fabrication improvement of light harvesting in perovskite solar cells. Nanomaterials, 10(2), p.291. https://doi.org/10.3390/nano10020291
[60] Kurukavak, Ç.K., Yılmaz, T., Toprak, A., Büyükbekar, A., Kuş, M. and Ersöz, M., 2022. Improved performance with boron-doped carbon quantum dots in perovskite solar cells. J. Alloys Compd., 927, p.166851. https://doi.org/10.1016/j.jallcom.2022.166851
[61] Chen, G., Gong, Z., Bin, X. and Agbolaghi, S., 2023. Cutting-edge stability in perovskite solar cells through quantum dot-covered P3HT nanofibers. Polymer-Plastics Technol Mater., 62(2), pp.162-176. https://doi.org/10.1080/25740881.2022.2100791
[62] Das, S., Sa, K., Alam, I. and Mahanandia, P., 2019. Enhancement of photocurrent in Cu2 ZnSnS4 quantum dot-anchored multi-walled carbon nanotube for solar cell application. J. Mater. Sci., 54, pp.8542-8555. https://doi.org/10.1007/s10853-019-03467-y
[63] Chen, Y., Qiu, Q., Wang, D., Lin, Y., Zou, X. and Xie, T., 2019. CuSe/CuxS as a composite counter electrode based on PN heterojunction for quantum dot sensitized solar cells. J. Power Sources, 413, pp.68-76. https://doi.org/10.1016/j.jpowsour.2018.12.027
[64] Ling, X., Zhou, S., Yuan, J., Shi, J., Qian, Y., Larson, B.W., Zhao, Q., Qin, C., Li, F., Shi, G.and Stewart, C., 2019. 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater., 9(28), p.1900721.
[65] Gao, P., Ding, K., Wang, Y., Ruan, K., Diao, S., Zhang, Q., Sun, B. and Jie, J., 2014.
[66] Crystalline Si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C, 118(10), pp.5164-5171. https://doi.org/10.1021/jp412591k
[67] Junsen Zhang, Cheng Wang, Hao Fu, Li Gong, Haiping He, Zhishan Fang, Conghua Zhou, Jianlin Chen, Zisheng Chao, Jincheng Fan, 2021, Low-temperature preparation achieving 10.95%-efficiency of hole-free and carbon-based all-inorganic CsPbI3 perovskite solar cells, Journal of Alloys and Compounds, Volume 862,pp.58454. https://doi.org/10.1016/j.jallcom.2020.158454
[68] Jingjing Xue, Jin-Wook Lee, Zhenghong Dai, Rui Wang, Selbi Nuryyeva, Michael E. Liao, Sheng-Yung Chang, Lei Meng, Dong Meng, Pengyu Sun, Oliver Lin, Mark S. Goorsky, Yang Yang,2018, Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells, Joule, 2 (9),pp. 1866-1878. https://doi.org/10.1016/j.joule.2018.07
[69] Xuliang Zhang, Hehe Huang, Xufeng Ling, Jianguo Sun, Xingyu Jiang, Yao Wang, Di Xue, Lizhen Huang, Lifeng Chi, Jianyu Yuan, Wanli Ma, 2021, Homojunction Perovskite Quantum Dot Solar Cells with over 1 µm-Thick Photoactive Layer, Adv. Materials. 34 (2), 2105977. https://doi.org/10.1002/adma.202105977
[70] Riaz, S. and Park, S.J., 2022. Thioacetamide-derived nitrogen and sulfur co-doped carbonquantum dots for “green” quantum dot solar cells. J. Indus. Eng. Chem., 105, pp.111-120. https://doi.org/10.1016/j.jiec.2021.09.009
[71] Carolan, D., Rocks, C., Padmanaban, D.B., Maguire, P., Svrcek, V. and Mariotti, D., 2017, Environmentally friendly nitrogen-doped carbon quantum dots for next generation solar cells. Sust. Energy Fuels, 1(7), pp.1611-1619. https://doi.org/10.1039/C7SE00158D
[72] Jie, J., Zhang, W., Bello, I., Lee, C.S. and Lee, S.T., 2010,One-dimensional II-VI
nanostructures: synthesis, properties and optoelectronic applications. Nano Today, 5(4),
pp.313-336. https://doi.org/10.1016/j.nantod.2010.06.009
[73] Tian, Z., Chen, Q. and Zhong, Q., 2020. Honeycomb spherical 1T-MoS2 as efficient counter electrodes for quantum dot sensitized solar cells. Chem. Eng. J., 396, p.125374.https://doi.org/10.1016/j.cej.2020.125374
[74] Du, J., Singh, R., Fedin, I., Fuhr, A.S. and Klimov, V.I., 2020. Spectroscopic insights into high defect tolerance of Zn: CuInSe2 quantum-dot-sensitized solar cells, Nat. Energy, 5(5), pp.409-417. https://doi.org/10.1038/s41560-020-0617-6

[75] Li, F., Zhou, S., Yuan, J., Qin, C., Yang, Y., Shi, J., Ling, X., Li, Y. and Ma, W., 2019, Perovskite quantum dot solar cells with 15.6% efficiency and improved stability enabled by an α-CsPbI3/FAPbI3 bilayer structure. ACS Energy Lett., 4(11), pp.2571-2578. https://doi.org/10.1021/acsenergylett.9b01920
[76] Khan, J., Zhang, X., Yuan, J., Wang, Y., Shi, G., Patterson, R., Shi, J., Ling, X., Hu, L., Wu, T. and Dai, S., 2020. Tuning the surface-passivating ligand anchoring position enables phase robustness in CsPbI3 perovskite quantum dot solar cells. ACS Energy Lett., 5(10), pp.3322-3329. https://doi.org/10.1021/acsenergylett.0c01849
[77] Liu, G., Mazzaro, R., Wang, Y., Zhao, H. and Vomiero, A., 2019. High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots, Nano Energ., 60, pp.119-126. https://doi.org/10.1016/j.nanoen.2019.03.038
[78] Hao, M., Bai, Y., Zeiske, S., Ren, L., Liu, J., Yuan, Y., Zarrabi, N., Cheng, N., Ghasemi, M.,Chen, P. and Lyu, M., 2020. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation, Nat. Energ., 5(1), pp.79-88. https://doi.org/10.1038/s41560-019-0535-7
[79] Guiju Liu, Haiguang Zhao, Feiyu Diao, Zhibin Linga and Yiqian Wang, 2018, Stable tandem luminescent solar concentrators based on CdSe/CdS quantum dots and carbon dots, J. of Mat. Chem., 6 (37), pp.10059-10066. https://doi.org/10.1039/C8TC02532K
[80] Hao, M., Bai, Y., Zeiske, S., Ren, L., Liu, J., Yuan, Y., Zarrabi, N., Cheng, N., Ghasemi, M., Chen, P., Lyu, M., He, D., Yun, J., Du, Y., Wang, Y., Ding, S., Armin, A., Meredith, P., Liu, G., Cheng, H. & Wang, L. (2020). Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nature Energy, 5 (1), 79-88. http://dx.doi.org/10.1038/s41560-019-0535-7
[81] Zhao, H., Rosei, F., 2017, Colloidal Quantum Dots for Solar Technologies, Chem, 3(2), pp. 229-258. https://doi.org/10.1016/j.chempr.2017.07.007
[82] Manjceevan, A., Bandara, J., 2018, Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum, Electrochimica Acta, 271, pp.567-575. https://doi.org/10.1016/j.electacta.2018.03.193
[83] H. Latif, S. Ashraf, M. Shahid Rafique, A. Imtiaz, A. Sattar, S. Zaheer, S. Ammara Shabbir, A. Usman, 2020, A novel, PbS quantum dot-Sensitized solar cell structure with TiO2-fMWCNTS nano-composite filled meso-porous anatase TiO2 photoanode, Sol. Energy, 204, pp. 617-623. https://doi.org/10.1016/j.solener.2020.03.114
[84] Y. Wang, J.H. Zeng, G. Zhao, S-alkylbenzothiophenium-based solid-state electrolyte for efficient quantum-dot sensitized solar cells, Sol. Energy, 194 (2019), pp. 286-293, https://doi.org/10.1016/j.solener.2019.10.047
[85] S. Jiao, J. Du, Z. Du, D. Long, W. Jiang, Z. Pan, Y. Li, X. Zhong, 2017, Nitrogen-doped mesoporous carbons as counter electrodes in quantum dot sensitized solar cells with a conversion efficiency exceeding 12, J. Phys. Chem. Lett., 8 (3), pp. 559-564, https://doi.org/10.1021/acs.jpclett.6b02864
[86] M. Ostadebrahim, H. Dehghani, 2020, Improving the photovoltaic performance of CdSe0.2S0.8 alloyed quantum dot sensitized solar cells using CdMnSe outer quantum dot, Sol. Energy, 199, pp. 901-910, 10.1016/j.solener.2019.10.036. https://doi.org/10.1016/j.solener.2019.10.036
[87]A. Arivarasan, S. Bharathi, S. Ezhil Arasi, S. Arunpandiyan, M.S. Revathy, R. Jayavel, 2020, Investigations of rare earth doped CdTe QDs as sensitizers for quantum dots sensitized solar cells, J. Lumin., 219 , Article 116881, https://doi.org/10.1016/j.jlumin.2019.116881
[88] P. Boon-on, D.J. Singh, J.-B. Shi, M.-W. Lee, 2020, Bandgap tunable ternary CdxSb2-yS3−δ nanocrystals for solar cell applications, ACS Omega, 5 (1), pp. 113-121, https://doi.org/10.1021/acsomega.9b01762
[89] S.B. Patel, J.V. Gohel, 2019, Quasi solid-state quantum dot-sensitized solar cells with polysulfide gel polymer electrolyte for superior stability, J. Solid State Electrochem., 23 (9), pp. 2657-2666, https://doi.org/10.1007/s10008-019-04365-8
[90] S. Sujinnapram, S. Moungsrijun, 2015, Additive SnO2-ZnO composite photoanode for improvement of power conversion efficiency in dye-sensitized solar cell, Procedia Manuf., 2, pp. 108-112, https://doi.org/10.1016/j.promfg.2015.07.019
[91] Z. Pan, I. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, J. Bisquert, 2014, High-efficiency ‘green’ quantum dot solar cells, J. Am. Chem. Soc., 136 (25), pp. 9203-9210, https://doi.org/10.1021/ja504310w
[92] M. Graetzel, 2007, Photovoltaic and photoelectrochemical conversion of solar energy, Philos. Trans. A. Math. Phys. Eng. Sci., 365, pp. 993-1005, https://doi.org/10.1098/rsta.2006.1963
[93] J.-Y. Chang, L.-F. Su, C.-H. Li, C.-C. Chang, J.-M. Lin, 2012, Efficient ‘green’ quantum dot-sensitized solar cells based on Cu2S-CuInS2-ZnSe architecture, Chem. Commun., 48 (40), pp. 4848-4850, 10.1039/C2CC31229H https://doi.org/10.1039/c2cc31229h