An Overview of Hard Ferrites: Types and Structures


An Overview of Hard Ferrites: Types and Structures

Rohit Jasrotia, Suman, Ankit Verma, Rahul Kalia, Himanshi, Rajat Kaushal, Jyoti Prakash, Sachin Kumar Godara and Pooja Puri

In 1950s, after the discovery of hexagonal ferrites called as hexaferrites, there has been an increasing level of curiosity in hexaferrites and still, it is increasing exponentially. Commercially and technologically, hexaferrites belong to a category of important magnetic materials due to their utilization in various applications such as permanent magnets, recording media, storage devices, rod antennas, high frequency devices, microwave devices etc. There are six types of hexagonal ferrites as M-type, Z-type, Y-type, X-type, U-type and W-type respectively, out of which, the most worldwide manufactured hexagonal ferrite is Barium M-type hexagonal ferrite named as BaM [1]. All categories of hexaferrites shows ferrimagnetic behaviour as their magnetic nature is inherently related to their crystal structure. The current chapter focuses on the classification and structure of hexagonal ferrites. In this book chapter, firstly, we report the six categories of hexaferrites as M, Y, W, X, Z, W and then, we provide a detailed comprehensive review of two approaches called as spinel and S/R/T based model for reporting the structure of hexagonal ferrites respectively. After that, we reported a comprehensive structure of each hexaferrite. Lastly, the concluding remarks have been presented in the current chapter.

Hexaferrites, Classification, Structure, Spinel Model, S/R/T Model

Published online 2/1/2023, 34 pages

Citation: Rohit Jasrotia, Suman, Ankit Verma, Rahul Kalia, Himanshi, Rajat Kaushal, Jyoti Prakash, Sachin Kumar Godara and Pooja Puri, An Overview of Hard Ferrites: Types and Structures, Materials Research Foundations, Vol. 142, pp 1-34, 2023


Part of the book on An Introduction to Hard Ferrites

[1] R. Jasrotia, V.P. Singh, R.K. Sharma, M. Singh, Analysis of optical and magnetic study of silver substituted SrW hexagonal ferrites, in: AIP Conference Proceedings, AIP Publishing LLC, 2019: p. 090004.
[2] V.P. Singh, R. Jasrotia, R. Kumar, P. Raizada, S. Thakur, K.M. Batoo, M. Singh, A current review on the synthesis and magnetic properties of M-type hexaferrites material, World Journal of Condensed Matter Physics. 8 (2018) 36.
[3] R. Jasrotia, P. Puri, V.P. Singh, R. Kumar, Sol–gel synthesized Mg–Ag–Mn nanoferrites for power applications, Journal of Sol-Gel Science and Technology. 97 (2021) 205–212.
[4] S. Kour, R.K. Sharma, R. Jasrotia, V.P. Singh, A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications, in: AIP Conference Proceedings, AIP Publishing LLC, 2019: p. 090007.
[5] S.V. Bhandare, R. Kumar, A.V. Anupama, M. Mishra, R.V. Kumar, V.M. Jali, B. Sahoo, Effect of Mg-substitution in Co–Ni-Ferrites: Cation distribution and magnetic properties, Materials Chemistry and Physics. 251 (2020) 123081.
[6] R. Jasrotia, V.P. Singh, R. Kumar, R. Verma, A. Chauhan, Effect of Y3+, Sm3+ and Dy3+ ions on the microstructure, morphology, optical and magnetic properties NiCoZn magnetic nanoparticles, Results in Physics. 15 (2019) 102544.
[7] K. Dulta, G.K. Ağçeli, P. Chauhan, R. Jasrotia, P.K. Chauhan, A novel approach of synthesis zinc oxide nanoparticles by bergenia ciliata rhizome extract: antibacterial and anticancer potential, Journal of Inorganic and Organometallic Polymers and Materials. 31 (2021) 180–190.
[8] R. Jasrotia, G. Kumar, K.M. Batoo, S.F. Adil, M. Khan, R. Sharma, A. Kumar, V.P. Singh, Synthesis and characterization of Mg-Ag-Mn nano-ferrites for electromagnet applications, Physica B: Condensed Matter. 569 (2019) 1–7.
[9] R. Jasrotia, J. Prakash, G. Kumar, R. Verma, S. Kumari, S. Kumar, V.P. Singh, A.K. Nadda, S. Kalia, Robust and sustainable Mg1-xCexNiyFe2-yO4 magnetic nanophotocatalysts with improved photocatalytic performance towards photodegradation of crystal violet and rhodamine B pollutants, Chemosphere. (2022) 133706.
[10] S. Kour, R. Jasrotia, P. Puri, A. Verma, B. Sharma, V.P. Singh, R. Kumar, S. Kalia, Improving photocatalytic efficiency of MnFe 2 O 4 ferrites via doping with Zn 2+/La 3+ ions: photocatalytic dye degradation for water remediation, Environmental Science and Pollution Research. (2021) 1–16.
[11] R. Jasrotia, Spinel Ferrite Based Nanomaterials for Water Remediation Application, Materials Research Foundations. 112 (n.d.).
[12] J.J. Went, Ferroxdure. a class of new permanent magnet materials, Phil. Tech. Rev. 13 (1952) 361.
[13] P. Dhiman, Hexagonal Ferrites, Synthesis, Properties and Their Applications, Materials Research Foundations. 112 (n.d.).
[14] R. Jasrotia, P. Puri, A. Verma, V.P. Singh, Magnetic and electrical traits of sol-gel synthesized Ni-Cu-Zn nanosized spinel ferrites for multi-layer chip inductors application, Journal of Solid State Chemistry. 289 (2020) 121462.
[15] M.T. Weiss, P.W. Anderson, Ferromagnetic resonance in ferroxdure, Physical Review. 98 (1955) 925.
[16] K.J. Sixtus, K.J. Kronenberg, R.K. Tenzer, Investigations on barium ferrite magnets, Journal of Applied Physics. 27 (1956) 1051–1057.
[17] V.G. Harris, Z. Chen, Y. Chen, S. Yoon, T. Sakai, A. Gieler, A. Yang, Y. He, K.S. Ziemer, N.X. Sun, Ba-hexaferrite films for next generation microwave devices, Journal of Applied Physics. 99 (2006) 08M911.
[18] R. Jasrotia, V.P. Singh, R. Kumar, M. Singh, Raman spectra of sol-gel auto-combustion synthesized Mg-Ag-Mn and Ba-Nd-Cd-In ferrite based nanomaterials, Ceramics International. 46 (2020) 618–621.
[19] M. Chandel, V.P. Singh, R. Jasrotia, K. Singha, R. Kumar, A review on structural, electrical and magnetic properties of Y-type hexaferrites synthesized by different techniques for antenna applications and microwave absorbing characteristic materials, AIMS Materials Science. 7 (2020) 244–268.
[20] S.K. Godara, V. Kaur, P.S. Malhi, M. Singh, S. Verma, R. Jasrotia, J. Ahmed, M.S. Tamboli, A.K. Sood, Investigation of microstructural and magnetic properties of Ca2+ doped strontium hexaferrite nanoparticles, Journal of King Saud University-Science. (2022) 101963.
[21] R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science. 57 (2012) 1191–1334.
[22] R. Jasrotia, R. Khargotra, A. Verma, I. Sharma, R. Verma, Applications of Multiferroics, in: Ferrites and Multiferroics, Springer, 2021: pp. 195–213.
[23] V. Adelskold, Arkiv Kemi Miner, (1938).
[24] J.J. Went, G.W. Rathenau, E.W. Gorter, van Oosterhout, GW, Philips Tech. Rev. 13. 194 (1952).
[25] J. Smit, H.P.J. Wijn, Ferrites, Philips technical library, Eindhoven, The Netherlands. 278 (1959).
[26] R. Jasrotia, V.P. Singh, R. Kumar, K. Singha, M. Chandel, M. Singh, Analysis of Cd2+ and In3+ ions doping on microstructure, optical, magnetic and mo\” ssbauer spectral properties of sol-gel synthesized BaM hexagonal ferrite based nanomaterials, Results in Physics. 12 (2019) 1933–1941.
[27] R. Verma, A. Chauhan, K.M. Batoo, R. Jasrotia, A. Sharma, R. Kumar, M. Hadi, E.H. Raslan, J.P. Labis, A. Imran, Modulation of Dielectric, Ferroelectric, and Piezoelectric Properties of Lead-Free BCZT Ceramics by Doping, ECS Journal of Solid State Science and Technology. (2021).
[28] R. Jasrotia, V.P. Singh, B. Sharma, A. Verma, P. Puri, R. Sharma, M. Singh, Sol-gel synthesized Ba-Nd-Cd-In nanohexaferrites for high frequency and microwave devices applications, Journal of Alloys and Compounds. 830 (2020) 154687.
[29] P.D. File, S. Kabekkodu, International Centre for Diffraction Data: Newtown Square, PA, USA. (2004).
[30] Z. Li, F. Gao, Chemical bond and hardness of M-, W-type hexagonal barium ferrites, Canadian Journal of Chemistry. 89 (2011) 573–576.
[31] K. Singha, R. Jasrotia, V.P. Singh, M. Chandel, R. Kumar, S. Kalia, A study of magnetic properties of Y–Ni–Mn substituted Co 2 Z-type nanohexaferrites via vibrating sample magnetometry, Journal of Sol-Gel Science and Technology. 97 (2021) 373–381.
[32] G. Albanese, M. Carbucicchio, A. Deriu, G. Asti, S. Rinaldi, Influence of the cation distribution on the magnetization of Y-type hexagonal ferrites, Applied Physics. 7 (1975) 227–238.
[33] M. Chandel, V.P. Singh, R. Jasrotia, K. Singha, M. Singh, P. Thakur, S. Kalia, Fabrication of Ni2+ and Dy3+ substituted Y-Type nanohexaferrites: a study of structural and magnetic properties, Physica B: Condensed Matter. 595 (2020) 412378.
[34] L.M. Castelliz, K.M. Kim, P.S. Boucher, Preparation, stability range and high frequency permeability of some ferroxplana compounds, J. Can. Ceram. Soc. 38 (1969) 57.
[35] R. Jasrotia, V.P. Singh, R.K. Sharma, P. Kumar, M. Singh, Analysis of effect of Ag+ ion on microstructure and elemental distribution of strontium W-type hexaferrites, in: AIP Conference Proceedings, AIP Publishing LLC, 2019: p. 140004.
[36] Ü. Özgür, Y. Alivov, H. Morkoç, Microwave ferrites, part 1: fundamental properties, Journal of Materials Science: Materials in Electronics. 20 (2009) 789–834.
[37] A. Cochardt, Modified strontium ferrite, a new permanent magnet material, Journal of Applied Physics. 34 (1963) 1273–1274.
[38] H.P.J. Wijn, A new method of melting ferromagnetic semiconductors. BaFe 18 O 27, a new kind of ferromagnetic crystal with high crystal anisotropy, Nature. 170 (1952) 707–708.
[39] P.B. Braun, Crystal structure of BaFe18O27, Nature. 170 (1952) 708–708.
[40] N. Tran, D.H. Kim, B.W. Lee, Influence of Fabrication Conditions on the Structural and the Magnetic Properties of Co-doped BaFe 12 O 19 Hexaferrites, Journal of the Korean Physical Society. 72 (2018) 731–736.
[41] R. Valenzuela, Novel applications of ferrites, Physics Research International. 2012 (2012).
[42] G. Albanese, Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods, Le Journal de Physique Colloques. 38 (1977) C1-85.
[43] D. Lisjak, P. McGuiness, M. Drofenik, Thermal instability of Co-substituted barium hexaferrites with U-type structure, Journal of Materials Research. 21 (2006) 420–427.
[44] L. Alhmoud, A.R. Al Dairy, H. Faris, I. Aljarah, Prediction of Hysteresis Loop of Barium Hexaferrite Nanoparticles Based on Neuroevolutionary Models, Symmetry. 13 (2021) 1079.
[45] H. Belrhazi, M.Y.E. Hafidi, M.E. Hafidi, Permanent magnets elaboration from BaFe 12 O 19 hexaferrite material: Simulation and prototype, Res Dev Mater Sci. 11 (2019) 1–5.
[46] G. Muleta, The study of optical, electrical and dielectric properties of cadmium and zinc substituted copper ferrite nanoparticles, Ethiopia: Arba Minch University. (2018).
[47] S. Arcaro, Modern Ferrites in Engineering: Synthesis, Processing and Cutting-Edge Applications, Springer Nature, n.d.
[48] A. Goldman, Modern ferrite technology, Springer Science & Business Media, 2006.
[49] G.F. Dionne, Magnetic Ions in Oxides, in: Magnetic Oxides, Springer, 2009: pp. 37–106.
[50] S. Rösler, P. Wartewig, H. Langbein, Synthesis and characterization of hexagonal ferrites BaFe12-2xZnxTixO19 (0≤ x≤ 2) by thermal decomposition of freeze-dried precursors, Crystal Research and Technology: Journal of Experimental and Industrial Crystallography. 38 (2003) 927–934.
[51] M.W. Pieper, A. Morel, F. Kools, NMR analysis of La+ Co doped M-type ferrites, Journal of Magnetism and Magnetic Materials. 242 (2002) 1408–1410.
[52] A. Morel, J.M. Le Breton, J. Kreisel, G. Wiesinger, F. Kools, P. Tenaud, Sublattice occupation in Sr1- xLaxFe12- xCoxO19 hexagonal ferrite analyzed by Mössbauer spectrometry and Raman spectroscopy, Journal of Magnetism and Magnetic Materials. 242 (2002) 1405–1407.
[53] R.B. Jotania, H.S. Virk, Y-type Hexaferrites: structural, dielectric and magnetic properties, in: Solid State Phenomena, Trans Tech Publ, 2012: pp. 209–232.
[54] L. Lechevallier, J.M. Le Breton, J.F. Wang, I.R. Harris, Structural analysis of hydrothermally synthesized Sr1- xSmxFe12O19 hexagonal ferrites, Journal of Magnetism and Magnetic Materials. 269 (2004) 192–196.
[55] M. Pardavi-Horvath, Microwave applications of soft ferrites, Journal of Magnetism and Magnetic Materials. 215 (2000) 171–183.
[56] V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, Recent advances in processing and applications of microwave ferrites, Journal of Magnetism and Magnetic Materials. 321 (2009) 2035–2047.
[57] F.K. Lotgering, P. Vromans, M.A.H. Huyberts, Permanent-magnet material obtained by sintering the hexagonal ferrite W= BaFe18O27, Journal of Applied Physics. 51 (1980) 5913–5918.
[58] A. Paoluzi, F. Licci, O. Moze, G. Turilli, A. Deriu, G. Albanese, E. Calabrese, Magnetic, Mössbauer, and neutron diffraction investigations of W-type hexaferrite BaZn2- x Co x Fe16O27 single crystals, Journal of Applied Physics. 63 (1988) 5074–5080.
[59] E.P. Wohlfarth, A.S. Arrott, Ferromagnetic materials: a handbook on the properties of magnetically ordered substances, Vols. 1 and 2, Physics Today. 35 (1982) 63.
[60] M.A. Ahmed, N. Okasha, R.M. Kershi, Extraordinary role of rare-earth elements on the transport properties of barium W-type hexaferrite, Materials Chemistry and Physics. 113 (2009) 196–201.
[61] S. Ruan, B. Xu, H. Suo, F. Wu, S. Xiang, M. Zhao, Microwave absorptive behavior of ZnCo-substituted W-type Ba hexaferrite nanocrystalline composite material, Journal of Magnetism and Magnetic Materials. 212 (2000) 175–177.
[62] D. Samaras, A. Collomb, S. Hadjivasiliou, C. Achilleos, J. Tsoukalas, J. Pannetier, J. Rodriguez, The rotation of the magnetization in the BaCo2Fe16O27 W-type hexagonal ferrite, Journal of Magnetism and Magnetic Materials. 79 (1989) 193–201.
[63] E.P. Naiden, G.I. Ryabtsev, Magnetization processes of the first kind in the hexaferrite Co 0.62 Zn 1.38 W, Soviet Physics Journal. 33 (1990) 318–321.
[64] C. Sürig, K.A. Hempel, R. Müller, P. Görnert, Investigations on Zn2- xCoxW-type hexaferrite powders at low temperatures by ferromagnetic resonance, Journal of Magnetism and Magnetic Materials. 150 (1995) 270–276.
[65] E.P. Naiden, S.M. Zhilyakov, Investigation of the magnetocaloric effect in hexagonal ferrimagnetic materials with spin-orientational transitions, Russian Physics Journal. 40 (1997) 869–874.
[66] G. Albanese, M. Carbucicchio, G. Asti, Spin-order and magnetic properties of BaZn 2 Fe 16 O 27 (Zn 2-W) hexagonal ferrite, Applied Physics. 11 (1976) 81–88.
[67] A. Lilot, A. Gérard, F. Grandjean, Analysis of the superexchange interactions paths in the W-hexagonal ferrites, IEEE Transactions on Magnetics. 18 (1982) 1463–1465.
[68] A. Collomb, O. Abdelkader, P. Wolfers, J.C. Guitel, D. Samaras, Crystal structure and magnesium location in the W-type hexagonal ferrite:[Ba] Mg2-W, Journal of Magnetism and Magnetic Materials. 58 (1986) 247–253.
[69] L. De-Xin, Z. Nan-Nin, G. Shu-Jiao, L. Guo-Dong, W. Hui-Zong, Magnetic and Mossbauer study of (TiCu) Ni/sub 2/W hexagonal ferrite system, IEEE Transactions on Magnetics. 25 (1989) 3290–3292.
[70] E.J.W. Verwey, P.W. Haaijman, F.C. Romeijn, G.W. Vanoosterhout, Controlled-valency semiconductors, Philips Research Reports. 5 (1950) 173–187.
[71] P.B. Braun, The crystal structures of a new group of ferromagnetic compounds, Philips Res. Rep. 12 (1957) 491–548.
[72] F. Leccabue, R. Panizzieri, G. Bocelli, G. Calestani, C. Rizzoli, N.S. Almodovar, Crystal structure and magnetic characterization of Sr2Zn2Fe28O46 (SrZn- X) hexaferrite single crystal, Journal of Magnetism and Magnetic Materials. 68 (1987) 365–373.
[73] Z. Haijun, Y. Xi, Z. Liangying, The preparation and microwave properties of Ba2ZnxCo2- xFe28O46 hexaferrites, Journal of Magnetism and Magnetic Materials. 241 (2002) 441–446.
[74] S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, Y. Tokura, Low-magnetic-field control of electric polarization vector in a helimagnet, Science. 319 (2008) 1643–1646.
[75] T. Kimura, G. Lawes, A.P. Ramirez, Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures, Physical Review Letters. 94 (2005) 137201.
[76] Y. Bai, J. Zhou, Z. Gui, L. Li, Phase formation process, microstructure and magnetic properties of Y-type hexagonal ferrite prepared by citrate sol–gel auto-combustion method, Materials Chemistry and Physics. 98 (2006) 66–70.
[77] M. Obol, X. Zuo, C. Vittoria, Oriented Y-type hexaferrites for ferrite device, Journal of Applied Physics. 91 (2002) 7616–7618.
[78] T. Nakamura, K. Hatakeyama, Complex permeability of polycrystalline hexagonal ferrites, IEEE Transactions on Magnetics. 36 (2000) 3415–3417.
[79] H.J. Kwon, J.Y. Shin, J.H. Oh, The microwave absorbing and resonance phenomena of Y-type hexagonal ferrite microwave absorbers, Journal of Applied Physics. 75 (1994) 6109–6111.
[80] M. Obol, C. Vittoria, Microwave permeability of Y-type hexaferrites in zero field, Journal of Applied Physics. 94 (2003) 4013–4017.
[81] H.A. Elkady, M.M. Abou-Sekkina, K. Nagorny, New information on Mössbauer and phase transition properties of Z-type hexaferrites, Hyperfine Interactions. 128 (2000) 423–432.
[82] H. Zhang, J. Zhou, Z. Yue, P. Wu, Z. Gui, L. Li, Synthesis of Co2Z hexagonal ferrite with planar structure by gel self-propagating method, Materials Letters. 43 (2000) 62–65.
[83] X. Wang, L. Li, S. Su, Z. Gui, Z. Yue, J. Zhou, Low-temperature sintering and high frequency properties of Cu-modified Co2Z hexaferrite, Journal of the European Ceramic Society. 23 (2003) 715–720.
[84] A.J. Kerecman, A. Tauber, T.R. AuCoin, R.O. Savage, Magnetic properties of Ba 4 Zn 2 Fe 36 O 60 single crystals, Journal of Applied Physics. 39 (1968) 726–727.
[85] A.J. Kerecman, T.R. AuCoin, W.P. Dattilo, Ferromagnetic Resonance in Ba4Zn2Fe36O60 (ZnU) and Mn-Substituted ZnU Single Crystals, Journal of Applied Physics. 40 (1969) 1416–1417.
[86] G. Albanese, A. Deriu, F. Licci, S. Rinaldi, Preparation and magnetic characterization of the Ba 2 Zn 2-2x Cu 2x Fe 12 O 22 hexagonal ferrites, IEEE Transactions on Magnetics. 14 (1978) 710–712.
[87] R. Jasrotia, S. Kour, P. Puri, A.D. Jara, B. Singh, C. Bhardwaj, V.P. Singh, R. Kumar, Structural and magnetic investigation of Al3+ and Cr3+ substituted Ni–Co–Cu nanoferrites for potential applications, Solid State Sciences. 110 (2020) 106445.
[88] R. Jasrotia, N. Kumari, R. Kumar, M. Naushad, P. Dhiman, G. Sharma, Photocatalytic degradation of environmental pollutant using nickel and cerium ions substituted Co 0.6 Zn 0.4 Fe 2 O 4 nanoferrites, Earth Systems and Environment. (2021) 1–19.