Superconducting Metamaterials and their Applications


Superconducting Metamaterials and their Applications

M. Rizwan, A. Usman, M. Zainab, A. Ayub, B. Tehreem

Superconductors have been in the field for more than a century now and superconducting metamaterials are a class of materials that have extremely low losses. Superconducting materials exhibit supreme properties such as currents that can last for twenty-six years and quantum phenomenon that makes it very suitable for making metamaterials. Superconductor composites are materials in which a material with a substantial permeability and negative effective permittivity material is combined with a superconductor which reduce losses in metamaterials at resonance frequency. There are many angles to explore and investigate in superconducting metamaterials. Novel applications of superconducting metamaterials are also briefly deliberated

SQUIDS, Metamaterials, Split Ring Resonators (SRRs), Superconductors, Josephson Junction

Published online 10/5/2022, 17 pages

Citation: M. Rizwan, A. Usman, M. Zainab, A. Ayub, B. Tehreem, Superconducting Metamaterials and their Applications, Materials Research Foundations, Vol. 132, pp 194-210, 2022


Part of the book on Superconductors

[1] A. Abdumalikov Jr, O. Astafiev, A.M. Zagoskin, Y.A. Pashkin, Y. Nakamura, J.S. Tsai, Electromagnetically induced transparency on a single artificial atom, Phys.Rev. Lett. 104 (2010) 193656- 193601.
[2] A.H. Aly, S.-W. Ryu, H.-T. Hsu, C.J. Wu, THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice, Mater. Chem. Phys. 113 (2009) 382-384.
[3] S. Anlage, H. Snortland, M. Beasley, A current controlled variable delay superconducting transmission line, IEEE Trans. Magn.25 (1989) 1388-1391.
[4] S.M. Anlage, The physics and applications of superconducting metamaterials, J. Optic. 13 (2010) 023995 -024001.
[5] F. Auracher, T. Van Duzer, RF impedance of superconducting weak links, J. App.Phys. 44 (1973) 848-851.
[6] C. Buzea, T. Yamashita, Review of the superconducting properties of MgB2, Supercond. Sci. Technol. 14 (2001) R110- R115.
[7] F. Capolino, Theory and phenomena of metamaterials, CRC press, 2017
[8] Y. -B. Chen, C. Zhang, Y.-Y. Zhu, S. -N. Zhu, N.-B. Ming, Tunable photonic crystals with superconductor constituents, Mater. Lett. 55 (2002) 12-16.
[9] S. Chui, L. Hu, Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites, Phys. Rev.iew B. 65 (2002) 14400- 144407.
[10] T.J. Cui, D.R. Smith, R. Liu, Metamaterials, Springer., Boston, 2010, pp. 370-375
[11] C. Du, H. Chen, S. Li, Stable and bistable SQUID metamaterials, J. Phys. Cond. Matter. 20 (2008) 345218- 345220.
[12] N. Engheta, R.W. Ziolkowski, Metamaterials: physics and engineering explorations, JWS., 2006, pp. 430-440
[13] W. Gillijns, A.Y. Aladyshkin, A.Silhanek, V. Moshchalkov, Magnetic confinement of the superconducting condensate in superconductor-ferromagnet hybrid composites, Phys. Rev. B. 76 (2007) 060500- 060503.
[14] H. Iwasaki, Y. Nakayama, K. Ozutsumi, Y. Yamamoto, Y.Tokunaga, H. Saisho, T. Matsubara, S. Ikeda, Compact superconducting ring at Ritsumeikan University, J. Synchrotron Radiat. 5 (1998) 1162-1165.
[15] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Molding the flow of light, second ed., Princeton Univ. Press., Princeton, NJ [ua], 2008, pp. 200-304
[16] P. Jung, A.V. Ustinov, S.M. Anlage, Progress in superconducting metamaterials, Supercond. Sci. Technol. 27 (2014) 072995- 073001.
[17] V. Kantsyrev, L. Rudakov, A. Safronova, A. Velikovich, V. Ivanov, C. Coverdale, B. Jones, P. LePell, Ampleford, D.,Deeney, C., Properties of a planar wire arrays Z-pinch source and comparisons with cylindrical arrays, High energy density Phys. 3 (2007) 136-142.
[18] C. Kurter, S.M. Anlage, Superconductivity takes the stage in the field of metamaterials, SPIE Newsroom. 10 (2010) 002540-002543.
[19] N. Lambert, Y.-N. Chen, R. Johansson, F. Nori, Quantum chaos and critical behavior on a chip, Phys.Rev.B. 80 (2009) 165300-165308.
[20] N. Lazarides, G. Neofotistos, G.Tsironis, Chimeras in SQUID metamaterials, Phys. Rev. B. 91 (2015) 054298- 054303.
[21] S. -C. Lee, C.-Y. Lee, S.M. Anlage, Microwave nonlinearities of an isolated long YBa2Cu3O7− δ bicrystal grain boundary, Phys. Rev. B. 72 (2005) 024520- 024527.
[22] F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. Wiltshire, D. Caplin, L. Cohen, J. Pendry, A dc magnetic metamaterial, Nature ater. 7 (2008) 295-297.
[23] O.T. Naman, M.R. New Tolley, R. Lwin, A. Tuniz, A.H. Al Janabi, I. Karatchevtseva, S.C. Fleming, B.T. Kuhlmey, A. Argyros, Indefinite Media Based on Wire Array Metamaterials for the THz and Mid IR, Adv. Optic. Mater. 1 (2013) 971-977.
[24] T. Nurgaliev, Modeling of the microwave characteristics of layered superconductor/ferromagnetic structures, Physica C: Supercond. 468 (2008) 912-919.
[25] C.R. Ooi, T.A. Yeung, C. Kam, T. Lim, Photonic band gap in a superconductor-dielectric superlattice, Phys. Rev. B. 61 ( 2000) 5900-5920.
[26] T.P. Orlando,K.A. Delin, C.J. Lobb, Foundations of applied superconductivity, Phys. Today. 44(1991) 100-109.
[27] J.B. Pendry, A.J. Holden, D.J. Robbins, W. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech. 47 (1999 ) 2075-2084.
[28] A. Pimenov, A. Loidl, P. Przyslupski, B. Dabrowski, Negative refraction in ferromagnet-superconductor superlattices, Phys. Rev. Lett. 95 (2005) 247000- 247009.
[29] A.M. Portis, Electrodynamics of high-temperature superconductors, World Scientific., Vol. 48, 1993, pp. 200-256
[30] M. Ricci, N. Orloff, S.M. Anlage, Superconducting metamaterials, App.Phys.Lette. 87 (2005) 034100- 034102.
[31] M.C. Ricci, S.M. Anlage, Single superconducting split-ring resonator electrodynamics, App. Phys. Lett. 88 (2006) 264100- 264102.
[32] M.C. Ricci, H. Xu, R. Prozorov, A.P. Zhuravel, A.V. Ustinov, S.M. Anlage, Tunability of superconducting metamaterials, IEEE Trans. Appl. Supercond. 17 (2007) 918-921.
[33] G. Romero, J.J. García-Ripoll, E. Solano, Microwave photon detector in circuit QED, Phys. Rev. Lett. 102 (2009) 173600-173602.
[34] R.A. Shelby, D. Smith, S. Nemat-Nasser, S. Schultz, Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial, App. Phys. Lett. 78 (2001) 489-491.
[35] R.W. Simon, R.B. Hammond, S.J. Berkowitz, B.A. Willemsen, Superconducting microwave filter systems for cellular telephone base stations, Procee. IEEE. 92 (2004) 1585-1596.
[36] I.I. Smolyaninov, V.N. Smolyaninova, Metamaterial superconductors, Nanophotonics. 7 (2018) 795-818.
[37] C.M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, E.N. Economou, The science of negative index materials, J.Phys. Cond.Matter. 20 (2008) 304215- 304217.
[38] H. Tao, L.R. Chieffo, M.A. Brenckle, S.M. Siebert, M. Liu, A.C. Strikwerda, K. Fan, D.L. Kaplan, X. Zhang, R.D. Averitt, Metamaterials on paper as a sensing platform, Adv. Mater. 23 (2011) 3197-3201.
[39] M. Tinkham, Introduction to superconductivity, Courier Corporation, 2004
[40] G. Tsironis, N. Lazarides, I. Margaris, Wide-band tuneability, nonlinear transmission, and dynamic multistability in SQUID metamaterials, App. Phys. A. 117 (2014) 579-588.
[41] M. Wiltshire, J. Pendry, I. Young, D. Larkman, D. Gilderdale, J. Hajnal, Microstructured magnetic materials for RF flux guides in magnetic resonance imaging, Science. 291 (2001) 849-851.
[42] B. Wood, J. Pendry, Metamaterials at zero frequency, J. Phys.Cond. Matter. 19 (2007) 076200- 076208.
[43] P. Yang, C.M. Lieber, Nanorod-superconductor composites: a pathway to materials with high critical current densities, Science. 273 (1996) 1836-1840.