Halloysite-Starch based Nano-Composites and Applications

$30.00

Halloysite-Starch based Nano-Composites and Applications

Farrukh Rafiq Ahmed, Muhammad Sikandar, Muhammad Harris Shoaib, Rabia Ismail Yousuf, Kamran Ahmed

Halloysite is a novel mineral belonging to the kaolinite family of clays. It consists of largely cylindrical particles in the size range of few hundred to few micrometers in length. The negatively charged Si-O-Si functional groups at the surface and positively charged Al2(OH)4 at the luminal side offer unique chemistry to this clay mineral. Biopolymers such as starch are considered biodegradable and non-toxic in nature. But their higher water permeability, poor mechanical strength, and rigid characteristics limit their applications in many fields. Halloysite and starch hybrid materials or composites have been demonstrated to improve on these properties and at the same time remain natural. They have a wide variety of applications such as tissue engineering, drug delivery and food packaging materials. Besides this, they have also been used as catalyst and flame retardant materials.

Keywords
Halloysite Nanotubes, Starch, Nanocomposite, Nano-Clay, Nano-Biocomposite, Applications

Published online 6/2/2022, 20 pages

Citation: Farrukh Rafiq Ahmed, Muhammad Sikandar, Muhammad Harris Shoaib, Rabia Ismail Yousuf, Kamran Ahmed, Halloysite-Starch based Nano-Composites and Applications, Materials Research Foundations, Vol. 125, pp 152-171, 2022

DOI: https://doi.org/10.21741/9781644901915-7

Part of the book on Advanced Applications of Micro and Nano Clay

References
[1] J.-H. Choy, S.-J. Choi, J.-M. Oh, T. Park, Clay minerals and layered double hydroxides for novel biological applications, Appl. Clay Sci. 36(1) (2007) 122-132. https://doi.org/10.1016/j.clay.2006.07.007
[2] S. Pavlidou, C. Papaspyrides, A review on polymer-layered silicate nanocomposites, Prog. Polym. Sci. 33(12) (2008) 1119-1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008
[3] M. Du, B. Guo, D. Jia, Newly emerging applications of halloysite nanotubes: a review, Polymer International 59(5) (2010) 574-582. https://doi.org/10.1002/pi.2754
[4] M. Massaro, R. Noto, S.J.M. Riela, Past, present and future perspectives on halloysite clay minerals, 25(20) (2020) 4863. https://doi.org/10.3390/molecules25204863
[5] D.M. MAcEwAN, The nomenclature of the halloysite minerals, Mineral Mag J Mineral Soc 28(196) (1947) 36-44. https://doi.org/10.1180/minmag.1947.028.196.08
[6] M. Liu, Z. Jia, D. Jia, C. Zhou, Recent advance in research on halloysite nanotubes-polymer nanocomposite, Prog. Polym. Sci. 39(8) (2014) 1498-1525. https://doi.org/10.1016/j.progpolymsci.2014.04.004
[7] D. Rawtani, Y. Agrawal, Multifarious applications of halloysite nanotubes: a review, Rev. Adv. Mater. Sci 30(3) (2012) 282-295.
[8] M.J. Saif, H.M. Asif, Escalating applications of halloysite nanotubes, J. Chil. Chem. Soc. 60(2) (2015) 2949-2953. https://doi.org/10.4067/S0717-97072015000200019
[9] E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, B. Delvaux, Halloysite clay minerals-a review, Clay Miner. 40(4) (2005) 383-426. https://doi.org/10.1180/0009855054040180
[10] C. Cheng, W. Song, Q. Zhao, H. Zhang, Halloysite nanotubes in polymer science: Purification, characterization, modification and applications, Nanotechnol. Rev. 9(1) (2020) 323-344. https://doi.org/10.1515/ntrev-2020-0024
[11] B.H. Bac, N.T. Dung, Finding nanotubular halloysite at Lang Dong kaolin deposit, Phu Tho province, Vietnam J. Earth Sci. 37(4) (2015) 299-306. https://doi.org/10.15625/0866-7187/37/4/8058
[12] L. Guimaraes, A.N. Enyashin, G. Seifert, H.A. Duarte, Structural, electronic, and mechanical properties of single-walled halloysite nanotube models, J. Phys. Chem. C. 114(26) (2010) 11358-11363. https://doi.org/10.1021/jp100902e
[13] H.A. Duarte, M.P. Lourenço, T. Heine, L. Guimarães, Clay mineral nanotubes: stability, structure and properties, Stoichiometry and Materials Science-When Numbers Matter2012, pp. 1-24. https://doi.org/10.5772/34459
[14] P. Pasbakhsh, G.J. Churchman, J.L. Keeling, Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers, Appl. Clay Sci. 74 (2013) 47-57. https://doi.org/10.1016/j.clay.2012.06.014
[15] X. Li, J. Chen, H. Liu, Z. Deng, J. Li, T. Ren, L. Huang, W. Chen, Y. Yang, S. Zhong, β-Cyclodextrin coated and folic acid conjugated magnetic halloysite nanotubes for targeting and isolating of cancer cells, Colloids Surf B Biointerfaces 181 (2019) 379-388. https://doi.org/10.1016/j.colsurfb.2019.05.068
[16] G. Gorrasi, V. Senatore, G. Vigliotta, S. Belviso, R. Pucciariello, PET-halloysite nanotubes composites for packaging application: preparation, characterization and analysis of physical properties, Eur. polym. j. 61 (2014) 145-156. https://doi.org/10.1016/j.eurpolymj.2014.10.004
[17] Y. Wu, Y. Zhang, J. Ju, H. Yan, X. Huang, Y. Tan, Advances in halloysite nanotubes-polysaccharide nanocomposite preparation and applications, Polymers 11(6) (2019) 987. https://doi.org/10.3390/polym11060987
[18] V. Vergaro, E. Abdullayev, Y.M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, S. Leporatti, Cytocompatibility and uptake of halloysite clay nanotubes, Biomacromolecules 11(3) (2010) 820-826. https://doi.org/10.1021/bm9014446
[19] H. Schmitt, K. Prashantha, J. Soulestin, M. Lacrampe, P. Krawczak, Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites, Carbohydr. Polym. 89(3) (2012) 920-927. https://doi.org/10.1016/j.carbpol.2012.04.037
[20] A.M. Nafchi, R. Nassiri, S. Sheibani, F. Ariffin, A. Karim, Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide, Carbohydr. polym. 96(1) (2013) 233-239. https://doi.org/10.1016/j.carbpol.2013.03.055
[21] Z. Torabi, A. MohammadiNafchi, The effects of SiO2 nanoparticles on mechanical and physicochemical properties of potato starch films, J. Chem. Health Risks 3(1) (2013) 33-42.
[22] N. Devi, J. Dutta, Development and in vitro characterization of chitosan/starch/halloysite nanotubes ternary nanocomposite films, Int. j. biol. macromol. 127 (2019) 222-231. https://doi.org/10.1016/j.ijbiomac.2019.01.047
[23] M. Darder, P. Aranda, E. Ruiz‐Hitzky, Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials, Adv. Mater. 19(10) (2007) 1309-1319. https://doi.org/10.1002/adma.200602328
[24] G.A. Ozin, A. Arsenault, Nanochemistry: a chemical approach to nanomaterials, United Kingdom, 2015.
[25] L. Averous, N. Boquillon, Biocomposites based on plasticized starch: thermal and mechanical behaviours, Carbohydr polym 56(2) (2004) 111-122. https://doi.org/10.1016/j.carbpol.2003.11.015
[26] J. George, H. Ishida, A review on the very high nanofiller-content nanocomposites: Their preparation methods and properties with high aspect ratio fillers, Prog. Polym. Sci. 86 (2018) 1-39. https://doi.org/10.1016/j.progpolymsci.2018.07.006
[27] J. Ren, K.M. Dang, E. Pollet, L. Avérous, Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: effect of plasticizer nature and nanoclay content, Polymers 10(8) (2018) 808. https://doi.org/10.3390/polym10080808
[28] J. Ren, K.M. Dang, E. Pollet, L.J.P. Avérous, Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: effect of plasticizer nature and nanoclay content, 10(8) (2018) 808. https://doi.org/10.3390/polym10080808
[29] Y. Wu, Y. Zhang, J. Ju, H. Yan, X. Huang, Y.J.P. Tan, Advances in halloysite nanotubes-polysaccharide nanocomposite preparation and applications, 11(6) (2019) 987. https://doi.org/10.3390/polym11060987
[30] M. Liu, R. He, J. Yang, Z. Long, B. Huang, Y. Liu, C.J.C.m. Zhou, Polysaccharide-halloysite nanotube composites for biomedical applications: a review, 51(3) (2016) 457-467. https://doi.org/10.1180/claymin.2016.051.3.02
[31] S.-H. Lee, H.J.A.d.d.r. Shin, Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering, 59(4-5) (2007) 339-359. https://doi.org/10.1016/j.addr.2007.03.016
[32] B. Zhong, S. Wang, H. Dong, Y. Luo, Z. Jia, X. Zhou, M. Chen, D. Xie, D.J.J.o.a. Jia, f. chemistry, Halloysite tubes as nanocontainers for herbicide and its controlled release in biodegradable poly (vinyl alcohol)/starch film, 65(48) (2017) 10445-10451. https://doi.org/10.1021/acs.jafc.7b04220
[33] L. Liu, W. Shen, W. Zhang, F. Li, Z. Zhu, Porous starch and its applications, Functional Starch and Applications in Food, Springer2018, pp. 91-117. https://doi.org/10.1007/978-981-13-1077-5_4
[34] N. Oliyaei, M. Moosavi-Nasab, A. Tamaddon, M.J.I.j.o.b.m. Fazaeli, Preparation and characterization of porous starch reinforced with halloysite nanotube by solvent exchange method, 123 (2019) 682-690. https://doi.org/10.1016/j.ijbiomac.2018.11.095
[35] F. Liu, L. Bai, H. Zhang, H. Song, L. Hu, Y. Wu, X.J.A.a.m. Ba, interfaces, Smart H2O2-responsive drug delivery system made by halloysite nanotubes and carbohydrate polymers, 9(37) (2017) 31626-31633. https://doi.org/10.1021/acsami.7b10867
[36] B. Dhandayuthapani, Y. Yoshida, T. Maekawa, D.S.J.I.j.o.p.s. Kumar, Polymeric scaffolds in tissue engineering application: a review, 2011 (2011). https://doi.org/10.1155/2011/290602
[37] H. Schmitt, N. Creton, K. Prashantha, J. Soulestin, M.F. Lacrampe, P.J.J.o.A.P.S. Krawczak, Preparation and characterization of plasticized starch/halloysite porous nanocomposites possibly suitable for biomedical applications, 132(4) (2015). https://doi.org/10.1002/app.41341
[38] E. Jamróz, P. Kulawik, P.J.P. Kopel, The effect of nanofillers on the functional properties of biopolymer-based films: A review, 11(4) (2019) 675. https://doi.org/10.3390/polym11040675
[39] L. Guo, G. Li, J. Liu, Y. Meng, Y.J.C.p. Tang, Adsorptive decolorization of methylene blue by crosslinked porous starch, 93(2) (2013) 374-379. https://doi.org/10.1016/j.carbpol.2012.12.019
[40] M. Soheilmoghaddam, M.U. Wahit, S. Mahmoudian, N.A.J.M.C. Hanid, Physics, Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid, 141(2-3) (2013) 936-943. https://doi.org/10.1016/j.matchemphys.2013.06.029
[41] N. Devi, J.J.I.j.o.b.m. Dutta, Development and in vitro characterization of chitosan/starch/halloysite nanotubes ternary nanocomposite films, 127 (2019) 222-231. https://doi.org/10.1016/j.ijbiomac.2019.01.047
[42] N.K. Shrivastava, M.A.A. Saidi, N. Othman, M. Zurina, A. Hassan, Fillers and reinforcements for advanced nanocomposites, Bio-based Polymers and Nanocomposites, Springer, New York City, 2019, pp. 29-48. https://doi.org/10.1007/978-3-030-05825-8_2
[43] J. Sadeghizadeh-Yazdi, M. Habibi, A.A. Kamali, M.J.C.r.i.n. Banaei, f.s. journal, Application of edible and biodegradable starch-based films in food packaging: a systematic review and meta-analysis, 7(3) (2019) 624-637. https://doi.org/10.12944/CRNFSJ.7.3.03
[44] F. Sadegh-Hassani, A.M.J.I.j.o.b.m. Nafchi, Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay, 67 (2014) 458-462. https://doi.org/10.1016/j.ijbiomac.2014.04.009
[45] H. Schmitt, K. Prashantha, J. Soulestin, M. Lacrampe, P.J.C.p. Krawczak, Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites, 89(3) (2012) 920-927. https://doi.org/10.1016/j.carbpol.2012.04.037
[46] R. Aguilar-Sánchez, R. Munguía-Pérez, F. Reyes-Jurado, A.R. Navarro-Cruz, T.S. Cid-Pérez, P. Hernández-Carranza, S.d.C. Beristain-Bauza, C.E. Ochoa-Velasco, R.J.M. Avila-Sosa, Structural, physical, and antifungal characterization of starch edible films added with nanocomposites and Mexican oregano (Lippia berlandieri Schauer) essential oil, 24(12) (2019) 2340. https://doi.org/10.3390/molecules24122340
[47] K. Bisetty, Biocomposites: Biomedical and Environmental Applications, 2018.
[48] H. Wu, Y. Lei, R. Zhu, M. Zhao, J. Lu, D. Xiao, C. Jiao, Z. Zhang, G. Shen, S.J.F.H. Li, Preparation and characterization of bioactive edible packaging films based on pomelo peel flours incorporating tea polyphenol, 90 (2019) 41-49. https://doi.org/10.1016/j.foodhyd.2018.12.016
[49] Z.J.M.J.o.M. Ahmad, Effects of Halloysite Nanotubes (HNT) Structures on Antimicrobial Activity on TPSS Film, 16(2) (2020).
[50] G. Gorrasi, R. Pantani, M. Murariu, P. Dubois, PLA/H alloysite nanocomposite films: water vapor barrier properties and specific key characteristics, Macromol. Mater. Eng. 299(1) (2014) 104-115. https://doi.org/10.1002/mame.201200424
[51] F. Sadegh-Hassani, A.M. Nafchi, Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay, Int. J. Biol. Macromol. 67 (2014) 458-462. https://doi.org/10.1016/j.ijbiomac.2014.04.009
[52] E. Jamróz, P. Kulawik, P. Kopel, The effect of nanofillers on the functional properties of biopolymer-based films: A review, Polym. 11(4) (2019) 675. https://doi.org/10.3390/polym11040675
[53] N. Oliyaei, M. Moosavi-Nasab, A. Tamaddon, M. Fazaeli, Preparation and characterization of porous starch reinforced with halloysite nanotube by solvent exchange method, Inter. J. Biol. Macromol. 123 (2019) 682-690. https://doi.org/10.1016/j.ijbiomac.2018.11.095
[54] L. Guo, G. Li, J. Liu, Y. Meng, Y. Tang, Adsorptive decolorization of methylene blue by crosslinked porous starch, Carbohydr. Polym. 93(2) (2013) 374-379. https://doi.org/10.1016/j.carbpol.2012.12.019
[55] X.T. Cao, A.M. Showkat, D.W. Kim, Y.T. Jeong, J.S. Kim, K.T. Lim, Preparation of β-cyclodextrin multi-decorated halloysite nanotubes as a catalyst and nanoadsorbent for dye removal, J. Nanosci. Nanotechnol. 15(11) (2015) 8617-8621. https://doi.org/10.1166/jnn.2015.11482
[56] S. Sadjadi, Halloysite-based hybrids/composites in catalysis, Appl. Clay Sci. 189 (2020) 105537. https://doi.org/10.1016/j.clay.2020.105537
[57] S. Sadjadi, M. Malmir, M.M. Heravi, F.G. Kahangi, Biocompatible starch-halloysite hybrid: An efficient support for immobilizing Pd species and developing a heterogeneous catalyst for ligand and copper free coupling reactions, Inter. J. Biol. Macromol. 118 (2018) 1903-1911. https://doi.org/10.1016/j.ijbiomac.2018.07.053
[58] X. Qiang, S. Zhou, Z. Zhang, Q. Quan, D. Huang, Synergistic Effect of Halloysite Nanotubes and Glycerol on the Physical Properties of Fish Gelatin Films, Polymers 10(11) (2018) 1258. https://doi.org/10.3390/polym10111258
[59] B. Zhong, S. Wang, H. Dong, Y. Luo, Z. Jia, X. Zhou, M. Chen, D. Xie, D. Jia, Halloysite tubes as nanocontainers for herbicide and its controlled release in biodegradable poly (vinyl alcohol)/starch film, J. Agric. Food Chem. 65(48) (2017) 10445-10451. https://doi.org/10.1021/acs.jafc.7b04220
[60] F. Liu, L. Bai, H. Zhang, H. Song, L. Hu, Y. Wu, X. Ba, Smart H2O2-responsive drug delivery system made by halloysite nanotubes and carbohydrate polymers, ACS Appl. Mater. Interfaces 9(37) (2017) 31626-31633. https://doi.org/10.1021/acsami.7b10867
[61] R. Aguilar-Sánchez, R. Munguía-Pérez, F. Reyes-Jurado, A.R. Navarro-Cruz, T.S. Cid-Pérez, P. Hernández-Carranza, S.d.C. Beristain-Bauza, C.E. Ochoa-Velasco, R. Avila-Sosa, Structural, physical, and antifungal characterization of starch edible films added with nanocomposites and Mexican oregano (Lippia berlandieri Schauer) essential oil, Molecules 24(12) (2019) 2340. https://doi.org/10.3390/molecules24122340
[62] H. Wei, H. Wang, H. Chu, J. Li, Preparation and characterization of slow-release and water-retention fertilizer based on starch and halloysite, Inter. J. Biol. Macromol.
133 (2019) 1210-1218.
[63] M. Špírková, J. Hodan, R. Konefał, L. Machová, P. Němeček, A. Paruzel, The Influence of Nanofiller Shape and Nature on the Functional Properties of Waterborne Poly (urethane-urea) Nanocomposite Films, Polymers 12(9) (2020) 2001. https://doi.org/10.3390/polym12092001
[64] K.M. Dang, R. Yoksan, E. Pollet, L. Avérous, Morphology and properties of thermoplastic starch blended with biodegradable polyester and filled with halloysite nanoclay, Carbohydr. polym. 242 (2020) 116392. https://doi.org/10.1016/j.carbpol.2020.116392
[65] Z. Ahmad, Effects of Halloysite Nanotubes (HNT) Structures on Antimicrobial Activity on TPSS Film, Malays. J. Microsc 16(2) (2020) 119-127.
[66] Z.W. Abdullah, Y. Dong, Preparation and characterisation of poly (vinyl) alcohol (PVA)/starch (ST)/halloysite nanotube (HNT) nanocomposite films as renewable materials, J Mater Sci 53(5) (2018) 3455-3469. https://doi.org/10.1007/s10853-017-1812-0
[67] K. Prashantha, M. Lacrampe, P. Krawczak, Halloysite Nanotubes-Polymer Nanocomposites:A New Class of Multifaceted Materials, Int. J. Adv. Mat. Manuf. Charac. 3(1) (2013) 1-4.
[68] S.M.M. Meira, G. Zehetmeyer, J.M. Scheibel, J.O. Werner, A. Brandelli, Starch-halloysite nanocomposites containing nisin: Characterization and inhibition of Listeria monocytogenes in soft cheese, LWT – Food Sci Technol 68 (2016) 226-234. https://doi.org/10.1016/j.lwt.2015.12.006
[69] Z. Ahmad, H.Y. Hermain, N.H. Abdul Razak, Mechanical and physical properties of sago starch/halloysite nanocomposite film, Adv Mat Res 1115 (2015) 394-397. https://doi.org/10.4028/www.scientific.net/AMR.1115.394
[70] A.M. Peres, R. Oréfice, Effect of incorporation of Halloysite nanotubes on the structure and properties of low-density polyethylene/thermoplastic starch blend, J. Polym. Res. 27 (2020) 1-10. https://doi.org/10.1007/s10965-020-02185-3
[71] E. Raee, B. Kaffashi, Biodegradable polypropylene/thermoplastic starch nanocomposites incorporating halloysite nanotubes, J. Appl. Polym. Sci. 135(4) (2018) 45740. https://doi.org/10.1002/app.45740
[72] Z.W. Abdullah, Y. Dong, Biodegradable and Water Resistant Poly(vinyl) Alcohol (PVA)/Starch (ST)/Glycerol (GL)/Halloysite Nanotube (HNT) Nanocomposite Films for Sustainable Food Packaging, Front. Mater. 6(58) (2019) 1-17. https://doi.org/10.3389/fmats.2019.00058