Kaolinite-Chitosan based Nano-Composites and Applications


Kaolinite-Chitosan based Nano-Composites and Applications

Narayana Saibaba KV

Chitosan is a naturally available biopolymer, having numerous applications due to its unique physico-chemical properties. Kaolinite is one of the abundantly available clay, combining these two materials imparts excellent properties suitable for various applications. Although various chitosan-based composites are developed greater attention is focused on kaolinite- chitosan composites in recent years. This chapter discusses developments in various kaolinite- chitosan nanocomposites and their applications particularly in medical, pharmaceutical, wastewater treatment and food and packaging industries. First, discussion on chitosan and kaolinite is given, then kaolinite- chitosan nanocomposite fabrication, advances, development and followed by various applications of chitosan-kaolinite nanocomposites. Finally concluding remarks are presented to summarize latest developments in this area. Challenges and future perspectives are also given in conclusions to guide the research directions.

Chitosan, Kaolinite, Biopolymer, Nanocomposites, Clay

Published online 6/2/2022, 16 pages

Citation: Narayana Saibaba KV, Kaolinite-Chitosan based Nano-Composites and Applications, Materials Research Foundations, Vol. 125, pp 87-102, 2022

DOI: https://doi.org/10.21741/9781644901915-4

Part of the book on Advanced Applications of Micro and Nano Clay

[1] S.C. Dey, Md. Al-Amin, T.U. Rashid, Md. Ashaduzzaman, S. Md. Shamsuddin, pH Induced Fabrication of Kaolinite-Chitosan Biocomposite. Int. Lett. Chem. 68 (2016) 1-9. https://doi.org/10.18052/www.scipress.com/ILCPA.68.1
[2] M.S. Chiou, H.Y. Li, Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads, J. Hazard. Mater. 93 (2002) 233-248. https://doi.org/10.1016/S0304-3894(02)00030-4
[3] S. Hasan, T.K. Ghosh, D.S. Viswanath, V.M. Boddu, Dispersion of chitosan on perlite for enhancement of copper (II) adsorption capacity, J. Hazard. Mater. 152 (2008) 826-837. https://doi.org/10.1016/j.jhazmat.2007.07.078
[4] S.R. Popuri, Y. Vijaya, V.M. Boddu, K. Abburi, Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads, Bioresour. Technol. 100 (2009) 194-199. https://doi.org/10.1016/j.biortech.2008.05.041
[5] S. Biswas, T.U. Rashid, A.K. Mallik, Md.M. Islam, M.N. Khan, P. Haque, M. Khan, Md.M. Rahman, Facile Preparation of Biocomposite from Prawn Shell Derived Chitosan and Kaolinite-Rich Locally Available Clay, Int. J. Polym. Sci. 2017 (2017) 8 https://doi.org/10.1155/2017/6472131
[6] H.H. Murray, Kaolin applications, Applied Clay Mineralogy. Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite Sepiolite, and Common Clays, in: H.H. Murray (Ed.), Developments in Clay Science, vol. 2, Elsevier, Amsterdam, 2006, pp. 85-109. https://doi.org/10.1016/S1572-4352(06)02005-8
[7] M. Dabbaghianamiri, S. Das, G.W. Beall, Improvement approach for gas barrier behavior of polymer/clay nanocomposites films, MRS Adv. 2 (2017) 3547-3552. https://doi.org/10.1557/adv.2017.458
[8] C. Pagano, F. Marmottini, M. Nocchetti, D. Ramella, L. Perioli, Effects of different milling techniques on the layered double hydroxides final properties, Appl. Clay Sci. 151 (2018) 124-133. https://doi.org/10.1016/j.clay.2017.10.030
[9] Amina Baccour Neji, Mourad Jridi, Hela kchaou, Moncef Nasri, Rym Dhouib Sahnoun, Preparation, characterization, mechanical and barrier properties investigation of chitosan-kaolinite nanocomposite, Polym. Test. 84 (2020) 106380 https://doi.org/10.1016/j.polymertesting.2020.106380
[10] A. Laaraibi, F. Moughaoui, F. Damiri, A. Ouakit, I. Charhouf, S. Hamdouch, A. Jaafari, A. Abourriche, N. Knouzi, A. Bennamara, Md. Berrada, Chitosan-Clay Based (CS-NaBNT) Biodegradable Nanocomposite Films for Potential Utility in Food and Environment, in: R.S. Dongre (Eds), Chitin-Chitosan – Myriad Functionalities in Science and Technology, Intechopen, 2018, pp. 1-8, doi:10.277./intechopen.98468. https://doi.org/10.5772/intechopen.76498
[11] Y. Bréchet, J.Y. Cavaillé, E. Chabert, L. Chazeau, R. Dendievel, L. Flandin, C. Gauthier, Polymer based nanocomposites: Effect of filler-filler and filler-matrix interactions. Adv. Eng. Mater. 3 (2001) 571-577. https://doi.org/10.1002/1527-2648(200108)3:8<571::AID-ADEM571>3.0.CO;2-M
[12] D. Paul, L. Robeson, Polymer nanotechnology: Nanocomposites, Polym. 49 (2008) 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017
[13] V. Mittal, Polymer Layered Silicate Nanocomposites: A Review, Mater. 2 (2009) 992-1057. https://doi.org/10.3390/ma2030992
[14] V. Kanchana, T. Gomathi, V. Geetha, P. Sudha, Adsorption analysis of Pb (II) by nanocomposites of chitosan with methyl cellulose and clay, Der Pharm. Lett. 4 (2012) 1071-1079.
[15] H.Y. Zhu, R. Jiang, L. Xiao, Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Appl. Clay Sci 48 (2010) 522-526. https://doi.org/10.1016/j.clay.2010.02.003
[16] I.P. Chen I.P, C.C Kan, C.M. Futalan, M.J.C. Calagui, S.S. Lin, W.C. Tsai, M.W. Wan, Batch and fixed bed studies: Removal of copper (II) using chitosan-coated kaolinite beads from aqueous solution, Sustain. Environ. Res. 25 (2015) 73-81.
[17] A.K. Pradhan, P.K. Rana, P.K. Sahoo, Biodegradability and swelling capacity of kaolin based chitosan-g-PHEMA nanocomposite hydrogel, Int. J. Biol. Macromol. 74 (2015) 620-626. https://doi.org/10.1016/j.ijbiomac.2014.12.024
[18] S. Mahmoudabadi, M.R. Farahpour, S. Jafarirad, Effectiveness of Green Synthesis of Silver/Kaolinite Nanocomposite Using Quercus infectoria Galls Aqueous Extract and Its Chitosan-Capped Derivative on the Healing of Infected Wound, in IEEE Transactions on NanoBioscience, 20 (2021) 530-542 https://doi.org/10.1109/TNB.2021.3105356
[19] H.S. Vardikar, B.A. Bhanvase, A.P. Rathod, S.H. Sonawane, Sonochemical synthesis, characterization and sorption study of Kaolin-Chitosan-TiO2 ternary nanocomposite: Advantage over conventional method, Mater. Chem. Phys. 217 (2018) 457-467 https://doi.org/10.1016/j.matchemphys.2018.07.014
[20] R. Jiang, H. Zhu, Y. Fu, Equilibrium and Kinetic studies on adsorption of methyl orange from aqueous solution on chitosan/kaolin/γ-Fe2O3 nanocomposite, International Conference on Remote Sensing, Environ. Transp. Eng. (2011)7565-7568 https://doi.org/10.1109/RSETE.2011.5966122
[21] S. Biswas, T.U. Rashid, T. Debnath, P. Haque, M.M. Rahman, Application of Chitosan-Clay Biocomposite Beads for Removal of Heavy Metal and Dye from Industrial Effluent, J. Compos. Sci. 4 (2020) 16. https://doi.org/10.3390/jcs4010016
[22] M. Elsabahyd, M.A Hamad, Sashiwa Hitoshi, Design and Preclinical Evaluation of Chitosan/Kaolin Nanocomposites with Enhanced Hemostatic Efficiency, Mar. Drugs. 19 (2021) 50-50. https://doi.org/10.3390/md19020050
[23] A.H. Jawad, A.S. Abdulhameed, A.N. Najwa, A. Malek, Z.A. Alothman, Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite, Int. J. Biol. Macromol. 164 (2020) 4218-4230, https://doi.org/10.1016/j.ijbiomac.2020.08.201
[24] C.M. Futalan, J.H. Yang, P. Phatai, Fixed-bed adsorption of copper from aqueous media using chitosan-coated bentonite, chitosan-coated sand, and chitosan-coated kaolinite, Environ. Sci. Pollut. Res. 27 (2020) 24659-24670. https://doi.org/10.1007/s11356-019-06083-0
[25] N. Khatoon, M.Q. Chu, C.H. Zhou, Nanoclay-based drug delivery systems and their therapeutic potentials, J. Mater. Chem. B, 8 (2020) 7335-7351 https://doi.org/10.1039/D0TB01031F
[26] J.B. Glick, R.R. Kaur, D.Siegel, Achieving hemostasis in dermatology-Part II: Topical hemostatic agents, Indian Dermatol. Online J., 4 (2013) 172. https://doi.org/10.4103/2229-5178.115509
[27] M.E. Chávez-Delgado, C.V. Kishi-Sutto, X.N. Albores de la-Riva, M. Rosales-Cortes, P. Gamboa-Sánchez, Topic usage of kaolin-impregnated gauze as a hemostatic in tonsillectomy, J. Surg. Res. 192 (2014) 678-685. https://doi.org/10.1016/j.jss.2014.05.040
[28] X. Sun, Z. Tang, M. Pan, Z. Wang, H. Yang, H. Liu, Chitosan/kaolin composite porous microspheres with high hemostatic efficacy, Carbohydr. Polym. 177 (2017) 135-143 https://doi.org/10.1016/j.carbpol.2017.08.131
[29] R. Kumar, A.M. Isloor, T. Matsuura, Synthesis and characterization of novel water soluble derivative of chitosan as an additive for polysulfone ultrafiltration membrane, J. Membr. Sci., 440 (2013), 140-147 https://doi.org/10.1016/j.memsci.2013.03.013
[30] I. Hamed, F. Ozogul, J.M. Regenstein, Industrial applications of crustacean byproducts (chitin, chitosan, and chitooligosaccharides): a review, Trends Food Sci. Technol., 48 (2016), 40-50 https://doi.org/10.1016/j.tifs.2015.11.007
[31] D. Zhao, S. Yu, B. Sun, S. Gao, S. Guo, K. Zhao, Biomedical Applications of Chitosan and Its Derivative Nanoparticles, Polymers (Basel).10 (2018) 462, https://doi.org/10.3390/polym10040462
[32] W. Ma, J. Dai, X. Dai, Y. Yan, Preparation and Characterization of Chitosan/Kaolin/Fe3O4 Magnetic Microspheres and Their Application for the Removal of Ciprofloxacin. Adsorp. Sci. Technol. 32 (2014) 775-790. https://doi.org/10.1260/0263-6174.32.10.775
[33] K.V.N. Saibaba, R.V. Kandisa, Adsorption isotherm studies on methylene blue dye removal using naturally available biosorbent, Rasayan J. Chem. 12 (2019) 2176-2182. https://doi.org/10.31788/RJC.2019.1245478
[34] K.V.N. Saibaba, P. King, R. Gopinadh, D.K.N. Lakshmi, Response surface optimization for the decolorization of crystal violet dye from aqueous solutions by waste crab shells, Int. J. Appl. Environ. Sci. 7 (2012) 149-154.
[35] K. Veerabhadram, K.V.N. Saibaba, K. Sattibabu, Efficient removal of hexavalent chromium from industrial automobile solid waste using bioremediation technique, Indian J. Environ. Prot. 40 (2020) 203-206
[36] M.N.V.R. Kumar, A review of chitin and chitosan applications. React. Functional Polym. 46 (2000) 1-27. https://doi.org/10.1016/S1381-5148(00)00038-9
[37] Q. Tang, X.W. Tang, Z.Z. Li, Y.M. Chen, N.Y. Kou, Z.F. Sun, Adsorption and desorption behaviour of Pb(II) on a natural kaolin: equilibrium, kinetic and thermodynamic studies, J. Chem. Technol. Biotechnol., 84 (2009) 1371-1380. https://doi.org/10.1002/jctb.2192
[38] W.H. Cheung, Y.S. Szeto, G. McKay, Enhancing the adsorption capacities of acid dyes by chitosan nano particles, Bioresour. Technol. 100 (2009) 1143-1148. https://doi.org/10.1016/j.biortech.2008.07.071
[39] G. Crini, P.M. Badot, Application of Chitosan, a Natural Aminopolysaccharide, for Dye Removal from Aqueous Solutions by Adsorption Processes Using Batch Studies: A Review of Recent Literature. Polym. Sci. 33 (2008) 399-447. https://doi.org/10.1016/j.progpolymsci.2007.11.001
[40] H. Gecol, P. Miakatsindila, E. Ergican, Biopolymer coated clay particles for the adsorption of tungsten from water, Desalination, 197 (2006) 165-178. https://doi.org/10.1016/j.desal.2006.01.016
[41] S.SD. Elanchezhiyan, P. Karthikeyan, R. Karthik, M.H. Farzana, C.M. Park, Magnetic kaolinite immobilized chitosan beads for the removal of Pb(II) and Cd(II) ions from an aqueous environment, Carbohydr. Polym. 261 (2021) 117892 https://doi.org/10.1016/j.carbpol.2021.117892
[42] S.C. Dey, M. Moztahida, M. Sarker, M. Ashaduzzaman, S.M. Shamsuddin, pH-Triggered Interfacial Interaction of Kaolinite/Chitosan Nanocomposites with Anionic Azo Dye. J. Compos. Sci. 3 (2019) 39-50. https://doi.org/10.3390/jcs3020039
[43] X.H. Wang, Y. Zheng, A.Q. Wang, Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J. Hazard. Mater. 168 (2009) 970-977. https://doi.org/10.1016/j.jhazmat.2009.02.120
[44] V. Arya, L. Philip, Adsorption of pharmaceuticals in water using Fe3O4 coated polymer clay composite, Microporous Mesoporous Mater., 232 (2016), 273-280 https://doi.org/10.1016/j.micromeso.2016.06.033
[45] M.M. Sobeih, M.F. El-Shahat, A. Osman, M.A. Zaid, M.Y. Nassar, Glauconite clay-functionalized chitosan nanocomposites for efficient adsorptive removal of fluoride ions from polluted aqueous solutions, RSC Adv., 10 (2020) 25567-25585 https://doi.org/10.1039/D0RA02340J
[46] R. Rusmin, B. Sarkar, R. Mukhopadhyay, T. Tsuzuki, Y. Liu, R. Naidu, Facile one pot preparation of magnetic chitosan-palygorskite nanocomposite for efficient removal of lead from water, J. Colloid Interface Sci. 608 (2022) 575-587 https://doi.org/10.1016/j.jcis.2021.09.109
[47] M.T. Ravanchi, T. Kaghazchi, A. Kargari, Application of membrane separation processes in petrochemical industry: a review, Desalination, 235 (2009) 199-244 https://doi.org/10.1016/j.desal.2007.10.042
[48] S.B. Rekik, S. Gassara, J. Bouaziz, A. Deratani, S. Baklouti, Development and characterization of porous membranes based on kaolin/chitosan composite, Appl. Clay Sci. 143 (2017) 1-9 https://doi.org/10.1016/j.clay.2017.03.008
[49] M. Mujtaba, R.E. Morsi, G. Kerch, M. Elsabee, M. Kaya, J. Labidi, K.M. Khawar, Current advancements in chitosan-based film production for food technology; A review, Int. J. Biol.Macromol. 121 (2019) 889-904 https://doi.org/10.1016/j.ijbiomac.2018.10.109
[50] B. Qu, Y. Luo, A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications, Carbohydr. Polym. Technol. Appl. 2 (2021) 100102-100109, https://doi.org/10.1016/j.carpta.2021.100102