Application of Surface Modification Routes to Coconut Fiber for its Thermoplastic-Based Biocomposite Materials


Application of Surface Modification Routes to Coconut Fiber for its Thermoplastic-Based Biocomposite Materials

Ümit Tayfun, Mehmet Doğan

Coconut fibers are high potential reinforcing additive in green polymer composites due to its composition, structure and the ease of availability. Modifications of coconut fiber by chemical and physical methods play key role to achieve desired performance. This review provides a comprehensive description of the influence of varied treatment routes applied to coconut fiber to confer thermal, mechanical and structural behaviors of its eco-composites with reinforcing mechanisms achieved by the help of tunning surface functionality of fibers as well as the chemical interactions with the polymeric matrix. This review covers the related academic research studies dealing with the development of thermoplastic composites containing surface modified coconut fiber. Remarkable future objectives and challenges based on the use of this natural fiber as an effective reinforcing agent in mainly transportation and construction fields are also discussed.

Eco-Composites, Coconut Fiber, Surface Treatments, Thermoplastic Composites, Interfacial Interactions

Published online 4/10/2022, 18 pages

Citation: Ümit Tayfun, Mehmet Doğan, Application of Surface Modification Routes to Coconut Fiber for its Thermoplastic-Based Biocomposite Materials, Materials Research Foundations, Vol. 122, pp 110-127, 2022


Part of the book on Sustainable Natural Fiber Composites

[1] M.A. Fuqua, S. Hou, C.A. Ulven, Natural fiber reinforced composites, Polym. Rev. 52 (2012): 259.
[2] A.K. Mohanty, M. Misra, L.T. Drzal, Natural Fibers, Biopolymers and Biocomposites, Taylor&Francis, Florida, 2005.
[3] O. Faruk, A.K. Bledzki, H.-P. Fink, M. Sain, Progress report on natural fiber reinforced composites, Macromol. Mater. Eng. 299 (2014) 9-26.
[4] S. Ebnesajjad, Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications, William Andrew Publishing, New York, 2012.
[5] M. Galbe, G. Zacchi, Pretreatment: The key to efficient utilization of lignocellulosic materials, Biomass Bioenergy., 46 (2012) 70-78.
[6] R. Latif, S. Wakeel, N.Z. Khan, A.N. Siddiquee, S.L. Verma, Z.A. Khan, Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: A review, J. Reinf. Plast. Compos. 38 (2019) 15-30.
[7] O. Faruk, A.K. Bledzki, H.-P. Fink, M. Sain, Biocomposites reinforced with natural fibers: 2000–2010, Prog. Polym. Sci. 37(2012) 1552-1596.
[8] L.Q.N. Tran, C. Fuentes, C. Dupont-Gillain, A. Van Vuure, I. Verpoest, Understanding the interfacial compatibility and adhesion of natural coir fibre thermoplastic composites, Compos. Sci. Technol. 80 (2013) 23-30.
[9] A.A. Owodunni, R. Hashim, O.F.A. Taiwo, M.H. Hussin, M.H.M. Kassim, Y. Bustami, O. Sulaiman, M.H.M. Amini, S. Hiziroglu, Flame-retardant properties of particleboard made from coconut fibre using modified potato starch as a binder, J. Phys. Sci. 31 (2020) 129-143.
[10] J.D. Muzzy, Thermoplastic-properties, in: A. Kelly., C. Zweben (Eds.), Comprehensive Composite Materials, Elsevier Science, Amsterdam, 2000.
[11] A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibres, Prog. Polym. Sci. 24 (1999) 221-274.
[12] M. Baiardo, G. Frisoni, M. Scandola, A. Licciardelo, Surface chemical modification of natural cellulose fibers, J. Appl. Polym. Sci. 83 (2002) 38.
[13] M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, Compos. Part B Eng. 43 (2012) 2883-2892.
[14] X. Li, L.G. Tabil, S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review, J. Polym. Environ. 15 (2007) 25.
[15] R. Vinayagamoorthy, Influence of fibre pretreatments on characteristics of green fabric materials, Polym. Polym. Compos. (2020) e-published: July 27 DOI: 10.1177/0967391120943461
[16] A.K. Mohanty, M. Misra, L.T. Drzal, Surface modifications of natural fibers and performance of the resulting biocomposites: An overview, Compos. Interface. 8 (2001) 313.
[17] C.G. Mothe, I.C. Miranda, Characterization of sugarcane and coconut fibers by thermal analysis and FTIR, J. Therm. Anal. Calorim. 97 (2009) 661-665.
[18] T.F. Salem, S. Tirkes, A.O. Akar, U. Tayfun, Enhancement of mechanical, thermal and water uptake performance of TPU/jute fiber green composites via chemical treatments on fiber surface, e-Polymers 20 (2020)133-143.
[19] A.I.S. Brígida, V.M.A. Calado, L.R.B. Gonçalves, M.A.Z. Coelho, Effect of chemical treatments on properties of green coconut fiber, Carbohyd. Polym. 79 (2010) 832-838.
[20] R.K. Samal, B.B. Panda, S.K. Rout, M. Mohanty, Effect of chemical modification on FTIR spectra. I. Physical and chemical behavior of coir, J. Appl. Polym. Sci. 58 (1995) 745-752.
[21] M.K.D. Rambo, A.R. Alves, W.T. Garcia, M.M.C. Ferreira, Multivariate analysis of coconut residues by near infrared spectroscopy, Talanta 138 (2015) 263-272.
[22] A.G. Adeniyi, D.V. Onifade, J.O. Ighalo, A.S. Adeoye, A review of coir fiber reinforced polymer composites, Compos. Part B Eng.176 (2019) 107305.
[23] M.A. Khan, S. Rahaman, A. Al-Jubayer, J.M.M. Islam, Modification of jute fibers by radiation-induced graft copolymerization and their applications, V.K. Thakur (Ed.), Cellulose-Based Graft Copolymers: Structure and Chemistry, CRC Press, Florida, 2015.
[24] O. Owolabi, T. Czvikovszky, Composite materials of radiation‐treated coconut fiber and thermoplastics, J. Appl. Polym. Sci. 35 (1988):573-582.
[25] Y. El Moussi, B. Otazaghine, A.S. Caro-Bretelle, R. Sonnier, A. Taguet, N. Le Moigne, Controlling interfacial interactions in LDPE/flax fibre biocomposites by a combined chemical and radiation-induced grafting approach, Cellulose 27 (2020) 6333-6351.
[26] M.D. Banea, J.S. Neto, D.K. Cavalcanti, Recent trends in surface modification of natural fibres for their Use in green composites. T. Sabu, B. Preetha (Eds.), Green Composites, Springer, Singapore, 2021.
[27] H. Essabir, M. Bensalah, D. Rodrigue, R. Bouhfid, A. Qaiss, Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles, Mech. Mater. 93 (2016) 134-144.
[28] D. Madyira, A. Kaymakci, Mechanical characterization of coir epoxy composites and effect of processing methods on mechanical properties, COMA international conference on competitive manufacturing, (2016) 187-192.
[29] M. Hasan, M.E. Hoque, S.S. Mir, N. Saba, S. Sapuan, Manufacturing of coir fibre-reinforced polymer composites by hot compression technique, M. Jawaid, M.S. Salit, M.E. Hoque, N.B. Yusoff (Eds.) Manufacturing of Natural Fibre Reinforced Polymer Composites, Springer, Switzerland, 2015.
[30] R. Siakeng, M. Jawaid, H. Ariffin, M.S. Salit, Effects of surface treatments on tensile, thermal and fibre-matrix bond strength of coir and pineapple leaf fibres with poly lactic acid, J. Bionics. Eng. 15 (2018) 1035-1046.
[31] S.K. Saw, G. Sarkhel, A. Choudhury, Surface modification of coir fibre involving oxidation of lignins followed by reaction with furfuryl alcohol: Characterization and stability, Appl. Surf. Sci. 257 (2011) 3763–3769.
[32] A. Khan, M.A. Ahmad, S. Joshi, S.A. Al Said, Abrasive wear behavior of chemically treated coir fibre filled epoxy polymer composites, Am. J. Mech. Eng. Autom. 1 (2014) 1-5.
[33] T. Gurunathan, S. Mohanty, S.K. Nayak, A review of the recent developments in biocomposites based on natural fibers and their application perspectives, Compos. Part A Appl. Sci. 77 (2015) 1-25.
[34] P. Widsten, A. Kandelbauer, Adhesion improvement of lignocellulosic products by enzymatic pre-treatment, Biotechnol. Adv. 26 (2008) 379-386.
[35] S.K. Ramamoorthy, M. Skrifvars, A. Persson, A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers, Polym. Rev. 55 (2015) 107-162.
[36] D. Verma, P.C. Gope, A. Shandilya, A. Gupta, M.K. Maheshwari, Coir fibre reinforcement and application in polymer composites, J. Mater. Environ. Sci, 4 (2013) 263-276.
[37] M.M. Haque, M.S. Islam, M.N. Islam, Preparation and characterization of polypropylene composites reinforced with chemically treated coir, J. Polym. Res. 19 (2012) 9847.
[38] M.N. Islam, M.M. Haque, M.M. Huque, Mechanical and morphological properties of chemically treated coir-filled polypropylene composites, Ind. Eng. Chem. Res. 48 (2009) 10491-10497.
[39] S.S. Mir, N. Nafsin, M. Hasan, N. Hasan, A. Hassan, Improvement of physicomechanical properties of coir-polypropylene biocomposites by fiber chemical treatment, Mater. Des. 52 (2013) 251-257.
[40] E. Zainudin, L.H. Yan, W. Haniffah, M. Jawaid, O.Y. Alothman, Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym. Compos. 35 (2014) 1418-1425.
[41] F. Arrakhiz, M. Malha, R. Bouhfid, K. Benmoussa, A. Qaiss, Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene, Compos. Part B Eng. 47 (2013) 35-41.
[42] H.U. Zaman, M.A. Khan, R.A. Khan, Comparative experimental measurements of jute fiber/polypropylene and coir fiber/polypropylene composites as ionizing radiation, Polym. Compos. 33 (2012) 1077-1084.
[43] S. Siddika, F. Mansura, M. Hasan, Physico-mechanical properties of jute-coir fiber reinforced hybrid polypropylene composites, Eng. Technol. 73 (2013) 1145-1149.
[44] P. Sudhakara, D. Jagadeesh, Y. Wang, C.V. Prasad, A.K. Devi, G. Balakrishnan, B. Kim, J. Song, Fabrication of Borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers, Carbohydr. Polym. 98 (2013) 1002-1010.
[45] Haydaruzzaman, A. Khan, M. Hossain, M.A. Khan, R.A. Khan, Mechanical properties of the coir fiber-reinforced polypropylene composites: Effect of the incorporation of jute fiber, J. Compos. Mater. 44 (2010) 401-416.
[46] A. Arya, J.E. Tomlal, G. Gejo, J. Kuruvilla, Commingled composites of polypropylene/coir-sisal yarn: effect of chemical treatments on thermal and tensile properties, e-Polymers 15 (2015) 169-177.
[47] A. de Araújo Morandim-Giannetti, C.G. Pasquoto, T.M. Sombra, B.C. Bonse, S.H.P. Bettini, Polypropylene/chemically treated coir composites: optimizing coir delignification conditions using central composite design, Cellulose 25 (2018) 1159-1170.
[48] L. Yan, N. Chouw, L. Huang, B. Kasal, Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites, Constr. Build. Mater. 112 (2016) 168-182.
[49] H. Gu, Tensile behaviours of the coir fibre and related composites after NaOH treatment, Mater. Des. 30 (2009) 3931-3934.
[50] S.H. Bettini, A.C. Biteli, B.C. Bonse, A.D.A. Morandim‐Giannetti, Polypropylene composites reinforced with untreated and chemically treated coir: Effect of the presence of compatibilizer, Polym. Eng. Sci. 55 (2015) 2050-2057.
[51] A.A. Morandim-Giannetti, J.A.M. Agnelli, B.Z. Lanças, R. Magnabosco, S.A. Casarin, S.H. Bettini, Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties, Carbohydr. Polym. 87 (2012) 2563–2568.
[52] N. Ayrilmis, S. Jarusombuti, V. Fueangvivat, P. Bauchongkol, R.H. White, Coir fiber reinforced polypropylene composite panel for automotive interior applications, Fiber. Polym. 12 (2011) 919-926.
[53] F. Arrakhiz, M. Achaby, A. Kakou, S. Vaudreuil, K. Benmoussa, R. Bouhfid, O. Fassi-Fehri, A. Qaiss, Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: impact of chemical treatments, Mater. Des. 37 (2012) 379-383.
[54] M. Brahmakumar, C. Pavithran, R. Pillai, Coconut fibre reinforced polyethylene composites: Effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites, Compos. Sci. Technol. 65 (2005) 563-569.
[55] A.A. Perez-Fonseca, M. Arellano, D. Rodrigue, R. Gonzalez-Núnez, J.R. Robledo-Ortíz, Effect of coupling agent content and water absorption on the mechanical properties of coir-agave fibers reinforced polyethylene hybrid composites, Polym. Compos. 37 (2016) 3015-3024.
[56] R. Chollakup, W. Smitthipong, W. Kongtud, R. Tantatherdtam, Polyethylene green composites reinforced with cellulose fibers (coir and palm fibers): Effect of fiber surface treatment and fiber content, J. Adhes. Sci. Technol. 27 (2013) 1290-1300.
[57] H. Essabir, R. Boujmal, M.O. Bensalah, D. Rodrigue, R. Bouhfid, A. Qaiss, Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene, Mech. Mater. 98 (2016) 36-43.
[58] K.G. Arifuzzaman, M. Alam Shams, M.R. Kabir, M. Gafur, M. Terano, M. Alam, Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites, J. Appl. Polym. Sci. 128 (2013) 1020-1029.
[59] K.C.C. Carvalho, D.R. Mulinari, H.J.C. Voorwald, M.O.H. Cioffi, Chemical modification effect on the mechanical properties of hips/coconut fiber composites, BioResources 5 (2010) 1143-1155.
[60] J.K. Roy, N. Akter, H.U. Zaman, K.M. Ashraf, S. Sultana, Shahruzzaman, N. Khan, M.A. Rahman, T. Islam, M.A. Khan, R.A. Khan, Preparation and properties of coir fiber-reinforced ethylene glycol dimethacrylate-based composite, J. Thermoplast. Compos. Mater. 27 (2014) 35-51.
[61] M.F. Rosa, B.S. Chiou, E.S. Medeiros, D.F. Wood, T.G. Williams, L.H. Mattoso, W.J. Orts, S.H. Imam, Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites, Bioresource Technol. 100 (2009) 5196-5202.
[62] J.L. Leblanc, C.R. Furtado, M.C. Leite, L.L. Visconte, A.M. de Souza, Effect of the fiber content and plasticizer type on the rheological and mechanical properties of poly (vinyl chloride)/green coconut fiber composites, J. Appl. Polym. Sci. 106 (2007) 3653-3665.
[63] Y. Dong, A. Ghataura, H. Takagi H, H.J. Haroosh, A.N. Nakagaito, K.T. Lau, Poly lactic acid (PLA) biocomposites reinforced with coir fibers: Evaluation of mechanical performance and multifunctional properties, Compos. Part A Appl. Sci. 63 (2014) 76-84.
[64] Z. Sun, L. Zhang, D. Liang, W. Xiao, J. Lin, Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers, Int. J. Polym. Sci. 2017 (2017) 1-8.
[65] J. Duan, H. Wu, W. Fu, M. Hao, Mechanical properties of hybrid sisal/coir fibers reinforced polylactide biocomposites, Polym. Compos. 39 (2018) E188-E199.
[66] T.H. Nam, S. Ogihara, S. Kobayashi, Interfacial, mechanical and thermal properties of coir fiber reinforced poly (lactic acid) biodegradable composites, Adv. Compos. Mater. 21 (2012) 103-122.
[67] R.B. Yusoff, H. Takagi, A.N. Nakagaito, Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers, Ind. Crops Prod. 94 (2016) 562-573.
[68] L. Zhang, Z. Sun, D. Liang, J. Lin, W. Xiao, Preparation and performance evaluation of PLA/coir fibre biocomposites, BioResources 22 (2017) 7349-7362.
[69] R. Siakeng, M. Jawaid, H. Ariffin, M.S. Salit, Effects of surface treatments on tensile, thermal and fibre-matrix bond strength of coir and pineapple leaf fibres with poly lactic acid, J. Bionic. Eng. 15 (2018) 1035-1046.
[70] M.E. González‐López, A.A. Pérez‐Fonseca, R. Manríquez‐González, M. Arellano, D. Rodrigue, J.R. Robledo‐Ortíz, Effect of surface treatment on the physical and mechanical properties of injection molded poly (lactic acid)‐coir fiber biocomposites, Polym. Compos. 40 (2019) 2132-2141.
[71] N.P.G. Suardana, I.P. Lokantara, J.K. Lim, Influence of water absorption on mechanical properties of coconut coir fiber/polylactic acid biocomposites, Mater. Phys. Mech. 12 (2011) 113-125.
[72] K. Coskun, A. Mutlu, M. Dogan, E. Bozaci, Effect of various enzymatic treatments on the mechanical properties of coir fiber/poly (lactic acid) biocomposites, J. Thermoplast. Compos.Mater. 34 (2021) 1066-1079.
[73] L. Mogas-Soldevila, N. Oxman, Water-based engineering & fabrication: Large-scale additive manufacturing of biomaterials, MRS Online Proceedings Library (2015) 1800.
[74] N. Gama, A. Ferreira, A. Barros-Timmons, 3D printed cork/polyurethane composite foams, Mater. Design 179 (2019) 107905.
[75] Y. Zhong, U. Kureemun, L.Q. Tran, H.P. Lee, Natural plant fiber composites-constituent properties and challenges in numerical modeling and simulations, Int. J. Appl. Mech. 9 (2017) 1750045.
[76] S. Jayavani, H. Deka, T.O. Varghese, S.K. Nayak, S.K., Recent development and future trends in coir fiber‐reinforced green polymer composites: Review and evaluation, Polym. Compos. 11 (2016) 3296-3309.
[77] P. Sahu, M.K. Gupta, Water absorption behavior of cellulosic fibres polymer composites: A review on its effects and remedies, J. Ind. Text. (2020) e-publised: Nov. 26.
[78] N.S.N. Arman, R.S. Chen, S. Ahmad, Review of state-of-the-art studies on the water absorption capacity of agricultural fiber-reinforced polymer composites for sustainable construction, Construct. Build. Mater. 302 (2021) 124174.
[79] A.R. Torun, A.S. Dike, E.C. Yildiz, I. Saglam, N. Choupani, Fracture characterization and modeling of Gyroid filled 3D printed PLA structures, Mater. Test. 63 (2021) 397-401.
[80] M. Jawaid, H.A. Khalil, A. Hassan, E. Abdallah, Bi-layer hybrid biocomposites: Chemical resistant and physical properties, BioResources 7 (2012) 2344-2355.
[81] S.K. Mary, M.S. Thomas, R.R. Koshy, P.K. Pillai, L.A. Pothan, S. Thomas, Adhesion in biocomposites: A critical review, Rev. Adhes. Adhes. 8 (2020) 527-553.
[82] V.K. Balla, K.H. Kate, J. Satyavolu, P. Singh, J.G.D. Tadimeti, Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects, Compos. Part B Eng. 174 (2019) 106956.
[83] A.S. Mangat, S. Singh, M. Gupta, R. Sharma, Experimental investigations on natural fiber embedded additive manufacturing-based biodegradable structures for biomedical applications, Rapid Prototyp. J. 24 (2018) 1221-1234.
[84] K.F. Hasan, P.G. Horváth, M. Bak, T. Alpár, A state-of-the-art review on coir fiber-reinforced biocomposites. RSC Adv. 11 (2021) 10548-10571.
[85] M. Rafiee, R. Abidnejad, A. Ranta, K. Ojha, A. Karakoc, J. Paltakari, Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocomposites for additive manufacturing, Environ. Pollut. 8 (2021) 9.
[86] U. Bongarde, B. Khot, A review on coir fiber reinforced polymer composite, Int. J. Eng. Technol. 6 (2019) 793-795.
[87] M. Wróbel-Kwiatkowska, M. Kropiwnicki, W. Rymowicz, Green biodegradable composites based on natural fibers, V.K. Thakur, M.K. Thakur, M.R. Kessler (Eds.) Handbook of Composites from Renewable Materials, John Wiley & Sons, New Jersey, 2017.
[88] M.E. Lamm, L. Wang, V. Kishore, H. Tekinalp, V. Kunc, J. Wang, D.J. Gardner, S. Ozcan, Material extrusion additive manufacturing of wood and lignocellulosic filled composites, Polymers 12 (2020) 2115.