Hollow Nanostructures for Application in Solar Cells


Hollow Nanostructures for Application in Solar Cells

Peetam Mandal, Abha bhargava and Mitali Saha

Hollow nanostructures are nanoscale materials with interior cavities, high volumetric load capacity ratio and high porosity. This new generation structure has gained huge momentum in the field of energy storage and photovoltaics due to such promising physical and chemical features. This chapter highlights contributions of various works where hollow nanostructures of metals and carbonaceous materials had been used in solar cell over the last few years. The harnessing of efficiency with structural modifications in the hollow structures over the years was shown in various works. The effect of structure engineering on the performance of solar cell has been explained in detail where voids in metallic hollow nanostructure enhance light scattering and high charge recombination. Simultaneously, carbonaceous hollow nanostructured materials are considered to be the latest photoelectrode materials and designated to be alternatives for metallic hollow nanostructures counterpart due to their high feedstock availability and fabrication charges.

Solar Cells, Hollow Nanostructures, Carbonaceous Hollow Nanostructures, Metallic Electrodes, Photovoltaics

Published online 11/15/2020, 19 pages

Citation: Peetam Mandal, Abha bhargava and Mitali Saha, Hollow Nanostructures for Application in Solar Cells, Materials Research Foundations, Vol. 88, pp 129-147, 2021

DOI: https://doi.org/10.21741/9781644901090-5

Part of the book on Materials for Solar Cell Technologies I

[1] N. Panwar, S. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renew. Sustain.Energ.15 (2011) 1513-1524. http://doi.org/10.1016/j.rser.2010.11.037
[2] E.M. Rocco, Evaluation of the terrestrial albedo applied to some scientific missions, Space Sci. Rev. 151 (2010) 135-147. http://doi.org/10.1007/s11214-009-9622-6
[3] K. Laurischkat, D. Jandt, Business model prototyping for electric mobility and solar
power solutions, Procedia CIRP 48 (2016) 307-312.http://doi.org/10.1016/j.procir.2016.03.026
[4] T. Soga, Nanostructured materials for solar energy conversion, first ed., Elsevier, Amsterdam, 2006
[5] R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, N. Karam, 40% efficient metamorphic GaInP∕ GaInAs∕Ge multijunction solar cells, Appl. Phys. Lett. 90 (2007) 183516.http://doi.org/10.1063/1.2734507
[6] K.T. VanSant, J. Simon, J.F. Geisz, E.L. Warren, K.L. Schulte, A.J. Ptak, M.S. Young, M. Rienäcker, H. Schulte-Huxel, R. Peibst, Toward low-cost 4-terminal GaAs//Si tandem solar cells, ACS Appl. Energy Mater. 2 (2019) 2375-2380. http://doi.org/10.1021/acsaem.9b00018
[7] M. Wiemer, V. Sabnis, H. Yuen, 43.5% efficient lattice matched solar cells, High and low concentrator systems for solar electric applications VI, Proc.SPIE 8108(2011) 810804.http://doi.org/10.1117/12.897769
[8] P. Sutradhar, M. Saha, Silver nanoparticles: synthesis and its nanocomposites for heterojunction polymer solar cells, J. Phys. Chem. C 120 (2016) 8941-8949. http://doi.org/10.1021/acs.jpcc.6b00075
[9] P. Sutradhar, M. Saha, Green synthesis of zinc oxide nanoparticles using tomato (Lycopersiconesculentum) extract and its photovoltaic application, J. Exp. Nanosci. 11 (2016) 314-327. http://doi.org/10.1080/17458080.2015.1059504
[10] D. Wongratanaphisan, K. Kaewyai, S. Choopun, A. Gardchareon, P. Ruankham, S. Phadungdhitidhada, CuO-Cu2O nanocomposite layer for light-harvesting enhancement in ZnO dye-sensitized solar cells, Appl. Surf. Sci. 474 (2019) 85-90. http://doi.org/10.1016/j.apsusc.2018.05.037
[11] A. Hegazy, N. Kinadjian, B. Sadeghimakki, S. Sivoththaman, N.K. Allam, E. Prouzet, TiO2 nanoparticles optimized for photoanodes tested in large area dye-sensitized solar cells (DSSC), Sol. Energy Mater. Sol. Cells 153 (2016) 108-116. http://doi.org/10.1016/j.solmat.2016.04.004
[12] S. Rafique, S.M. Abdullah, W.E. Mahmoud, A.A. Al-Ghamdi, K. Sulaiman, Stability enhancement in organic solar cells by incorporating V2O5 nanoparticles in the hole transport layer, RSC Adv. 6 (2016) 50043-50052. http://doi.org/10.1039/C6RA07210K
[13] K. Aitola, K. Domanski, J.P. CorreaBaena, K. Sveinbjörnsson, M. Saliba, A. Abate, M. Grätzel, E. Kauppinen, E.M. Johansson, W. Tress, High temperaturestable perovskite solar cell based on lowcost carbon nanotube hole contact, Adv. Mater. 29 (2017) 1606398. http://doi.org/10.1002/adma.201606398
[14] P. O’Keeffe, D. Catone, A. Paladini, F. Toschi, S. Turchini, L. Avaldi, F. Martelli, A. Agresti, S. Pescetelli, A. Del Rio Castillo, Graphene-induced improvements of perovskite solar cell stability: effects on hot-carriers, Nano Lett. 19 (2019) 684-691. http://doi.org/10.1021/acs.nanolett.8b03685
[15] K. Kumarasinghe, G. Kumara, R. Rajapakse, D. Liyanage, K. Tennakone, Activated coconut shell charcoal based counter electrode for dye-sensitized solar cells, Org. Electron. 71 (2019) 93-97. http://doi.org/10.1016/j.orgel.2019.05.009
[16] S. Diao, X. Zhang, Z. Shao, K. Ding, J. Jie, X. Zhang, 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode, Nano Energy 31 (2017) 359-366. http://doi.org/10.1016/j.nanoen.2016.11.051
[17] J. Wang, Y. Cui, D. Wang, Design of hollow nanostructures for energy storage, conversion and production, Adv. Mater. 31 (2018) 1801993. http://doi.org/10.1002/adma.201801993
[18] J. Qiu, F. Zhuge, X. Li, X. Gao, X. Gan, L. Li, B. Weng, Z. Shi, Y.-H. Hwang, Coaxial multi-shelled TiO2 nanotube arrays for dye sensitized solar cells, J. Mater. Chem. 22 (2012) 3549-3554. http://doi.org/10.1039/C2JM15354H
[19] H. Wang, B. Li, J. Gao, M. Tang, H. Feng, J. Li, L. Guo, SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells, Cryst. Eng. Comm. 14 (2012) 5177-5181. http://doi.org/10.1039/C2CE06531B
[20] J. Huo, Y. Hu, H. Jiang, W. Huang, Y. Li, W. Shao, C. Li, Mixed solvents assisted flame spray pyrolysis synthesis of TiO2 hierarchically porous hollow spheres for dye-sensitized solar cells, Ind. Eng. Chem. Res. 52 (2013) 11029-11035. http://doi.org/10.1021/ie4006222
[21] S.H. Ahn, D.J. Kim, W.S. Chi, J.H. Kim, Hierarchical doubleshell nanostructures of TiO2 nanosheets on SnO2 hollow spheres for highefficiency, solidstate, dyesensitized solar cells, Adv. Funct. Mater. 24 (2014) 5037-5044. http://doi.org/10.1002/adfm.201400774
[22] S.H. Hwang, D.H. Shin, J. Yun, C. Kim, M. Choi, J. Jang, SiO2/TiO2 Hollow nanoparticles decorated with Ag nanoparticles: enhanced visible light absorption and improved light scattering in dyesensitized solar cells, Chem. Eur. J. 20 (2014) 4439-4446. http://doi.org/10.1002/chem.201304522
[23] S.H. Hwang, J. Yun, J. Jang, Multishell porous TiO2hollow nanoparticles for enhanced light harvesting in dye-sensitized solar cells, Adv. Funct. Mater. 24 (2014) 7619-7626. http://doi.org/10.1002/adfm.201401915
[24] C.T. Lee, J.D. Peng, C.T. Li, Y.L. Tsai, R. Vittal, K.C. Ho, Ni3Se4 hollow architectures as catalytic materials for the counter electrodes of dye-sensitized solar cells, Nano Energy 10 (2014) 201-211. http://doi.org/10.1016/j.nanoen.2014.09.017
[25] F. Li, G. Wang, Y. Jiao, J. Li, S. Xie, Efficiency enhancement of ZnO-based dye-sensitized solar cell by hollow TiO2 nanofibers, J. Alloys Compd. 611 (2014) 19-23. http://doi.org/10.1016/j.jallcom.2014.05.100
[26] Y. Shi, L. Zhao, S. Wang, J. Li, B. Dong, Z. Xu, L. Wan, Double-layer composite film based on hollow TiO2 boxes and P25 as photoanode for enhanced efficiency in dye-sensitized solar cells, Mater. Res. Bull. 59 (2014) 370-376. http://doi.org/10.1016/j.materresbull.2014.07.012
[27] W.Q. Wu, H.S. Rao, H.L. Feng, H.Y. Chen, D.B. Kuang, C.Y. Su, A family of vertically aligned nanowires with smooth, hierarchical and hyperbranched architectures for efficient energy conversion, Nano Energy 9 (2014) 15-24.http://doi.org/10.1016/j.nanoen.2014.06.019
[28] G. Wang, X. Zhu, J. Yu, Bilayer hollow/spindle-like anatase TiO2 photoanode for high efficiency dye-sensitized solar cells, J. Power Sourc. 278 (2015) 344-351. http://doi.org/10.1016/j.jpowsour.2014.12.091
[29] Q. Wali, A. Fakharuddin, A. Yasin, M.H. Ab Rahim, J. Ismail, R. Jose, One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells, J.Alloys Compd. 646 (2015) 32-39. http://doi.org/10.1016/j.jallcom.2015.05.120
[30] Q. Jiang, G. Hu, Co0.85 Se hollow nanoparticles as Pt-free counter electrode materials for dye-sensitized solar cells, Mater. Lett. 153 (2015) 114-117. http://doi.org/10.1016/j.matlet.2015.04.008
[31] L. Cheng, X. Xu, Y. Fang, Y. Li, J. Wang, G. Wan, X. Ge, L. Yuan, K. Zhang, L. Liao, Triblock copolymer-assisted construction of 20 nm-sized ytterbium-doped TiO2 hollow nanostructures for enhanced solar energy utilization efficiency, Sci. China Chem. 58 (2015) 850-857. http://doi.org/10.1007/s11426-014-5237-1
[32] C. Chen, M. Ye, N. Zhang, X. Wen, D. Zheng, C. Lin, Preparation of hollow Co9S8 nanoneedle arrays as effective counter electrodes for quantum dot-sensitized solar cells, J. Mater. Chem. A 3 (2015) 6311-6314. http://doi.org/10.1039/C4TA06987K
[33] T. Bai, Y. Xie, J. Hu, C. Zhang, J. Wang, Novel one-dimensional ZnO nanorods synthesized through a two-step post-treatment for efficiency enhancement of dye-sensitized solar cells, J. Alloys Compd. 644 (2015) 350-353. http://doi.org/10.1016/j.jallcom.2015.05.040
[34] D. Song, P. Cui, T. Wang, B. Xie, Y. Jiang, M. Li, Y. Li, S. Du, Y. He, Z. Liu, Bunchy TiO2 hierarchical spheres with fast electron transport and large specific surface area for highly efficient dye-sensitized solar cells, Nano Energy 23 (2016) 122-128. http://doi.org/10.1016/j.nanoen.2016.03.006
[35] R. Chauhan, M. Shinde, A. Kumar, S. Gosavi, D.P. Amalnerkar, Hierarchical zinc oxide pomegranate and hollow sphere structures as efficient photoanodes for dye-sensitized solar cells, Micropor. Mesopor. Mater. 226 (2016) 201-208. http://doi.org/10.1016/j.micromeso.2015.11.054
[36] J. Wang, Q. Tang, B. He, P. Yang, Counter electrodes from polymorphic platinum-nickel hollow alloys for high-efficiency dye-sensitized solar cells, J. Power Sourc. 328 (2016) 185-194. http://doi.org/10.1016/j.jpowsour.2016.08.029
[37] J. Yun, J. Ryu, J. Lee, H. Yu, J. Jang, SiO2 /TiO2based hollow nanostructures as scaffold layers and Al-doping in electron transfer layer for efficient perovskite solar cells, J. Mater. Chem. A 4 (2016) 1306-1311. http://doi.org/10.1039/C5TA08250A
[38] P. Li, Y. Zhang, X. Yang, Y. Gao, S. Ge, Alloyed PtNi counter electrodes for high performance dye-sensitized solar cell applications, J. Alloys Compd. 725 (2017) 1272 1281. http://doi.org/10.1016/j.jallcom.2017.07.266
[39] J. Khan, J. Gu, S. He, X. Li, G. Ahmed, Z. Liu, M.N. Akhtar, W. Mai, M. Wu, Rational design of a tripartite-layered TiO2 photoelectrode: a candidate for enhanced power conversion efficiency in dye sensitized solar cells, Nanoscale 9 (2017) 9913-9920. http://doi.org/10.1039/C7NR03134C
[40] D. Wu, X. Wang, Y. An, X. Song, N. Liu, H. Wang, Z. Gao, F. Xu, K. Jiang, Hierarchical TiO2 structures derived from F-mediated oriented assembly as triple-functional photoanode material for improved performances in CdS/CdSe sensitized solar cells, Electrochim. Acta 248 (2017) 79-89. http://doi.org/10.1016/j.electacta.2017.06.150
[41] Y. Jiang, X. Qian, C. Zhu, H. Liu, L. Hou, Nickel cobalt sulfide double-shelled hollow nanospheres as superior bifunctional electrocatalysts for photovoltaics and alkaline hydrogen evolution, ACS Appl. Mater. Interfaces 10 (2018) 9379-9389. http://doi.org/10.1021/acsami.7b18439
[42] H. Ran, J. Fan, X. Zhang, J. Mao, G. Shao, Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites, Appl. Surf. Sci. 430 (2018) 415-423. http://doi.org/10.1016/j.apsusc.2017.07.107
[43] Z. Lan, X. Chen, S. Zhang, J. Wu, CdSex S1-x/CdS-cosensitized 3D TiO2 hierarchical nanostructures for efficient energy conversion, J. Solid State Electrochem. 22 (2018) 347-353. http://doi.org/10.1007/s10008-017-3748-3
[44] X. Hong, Q. Liu, X. Gao, C. He, X. You, X. Zhao, X. Liu, M. Ye, Rational design of coralloid Co9S8–CuS hierarchical architectures for quantum dot-sensitized solar cells, J. Mater. Chem. C 6 (2018) 11384-11391. http://doi.org/10.1039/C8TC04274H
[45] J. Khan, N.U. Rahman, W.U. Khan, A. Hayat, Z. Yang, G. Ahmed, M.N. Akhtar, S. Tong, Z. Chi, M. Wu, Multi-dimensional anatase TiO2 materials: Synthesis and their application as efficient charge transporter in perovskite solar cells, Sol. Energy 184 (2019) 323-330. http://doi.org/10.1016/j.solener.2019.04.020
[46] S. Ma, T. Ye, T. Wu, Z. Wang, Z. Wang, S. Ramakrishna, C. Vijila, L. Wei, Hollow rice grain-shaped TiO2 nanostructures for high-efficiency and large-area perovskite solar cells, Sol. Energy Mater. Sol. Cells 191 (2019) 389-398. http://doi.org/10.1016/j.solmat.2018.11.028
[47] M. Marandi, S. Bayat, M.N.S. Sabet, Hydrothermal growth of a composite TiO2 hollow spheres/TiO2 nanorods powder and its application in high performance dye-sensitized solar cells, J. Electroanal. Chem. 833 (2019) 143-150. http://doi.org/10.1016/j.jelechem.2018.11.023
[48] X. Qian, H. Liu, J. Yang, H. Wang, J. Huang, C. Xu, Co-Cu–WSx ball-in-ball nanospheres as high-performance Pt-free bifunctional catalysts in efficient dye-sensitized solar cells and alkaline hydrogen evolution, J. Mater. Chem. A 7 (2019) 6337-6347. http://doi.org/10.1039/C8TA12558A
[49] Z. Sherafati-Tabarestani, M. Samadpour, Simply synthesized silica hollow fibers for enhancing the performance of dye/quantum dot sensitized solar cells, Sol. Energy 183 (2019) 716-724. http://doi.org/10.1016/j.solener.2019.03.078
[50] X. Zhang, M. Zhen, J. Bai, S. Jin, L. Liu, Efficient NiSe-Ni3Se2/graphene electrocatalyst in dye-sensitized solar cells: the role of hollow hybrid nanostructure, ACS Appl. Mater. Interfaces 8 (2016) 17187-17193. http://doi.org/10.1021/acsami.6b02350
[51] Y. Bai, Y. Xu, J. Wang, M. Gao, J. Zhu, W.U. Rehman, Electrochemically prepared poly (3, 4-ethylenedioxy-thiophene)/polypyrrole films with hollow micro/nanohorn arrays as high-efficiency counter electrodes for dye-sensitized solar cells, ChemElectroChem 3 (2016) 1376-1383. http://doi.org/10.1002/celc.201600191
[52] M. Marandi, S. Bayat, Facile fabrication of hyper-branched TiO2 hollow spheres for high efficiency dye-sensitized solar cells, Sol. Energy 174 (2018) 888-896. http://doi.org/10.1016/j.solener.2018.09.065
[53] Y. Niu, X. Qian, J. Zhang, W. Wu, H. Liu, C. Xu, L. Hou, Stepwise synthesis of CoS2–C@ CoS2 yolk–shell nanocages with much enhanced electrocatalytic performances both in solar cells and hydrogen evolution reactions, J. Mater. Chem. A 6 (2018) 12056-12065. http://doi.org/10.1039/C8TA03591A
[54] D.H. Lien, Z. Dong, J.R.D. Retamal, H.P. Wang, T.C. Wei, D. Wang, J.H. He, Y. Cui, Resonance enhanced absorption in hollow nanoshell spheres with omnidirectional detection and high responsivity and speed, Adv. Mater. 30 (2018) 1801972. http://doi.org/10.1002/adma.201801972
[55] S. Das, M. Saha, Potato starch-derived almond-shaped carbon nanoparticles for non-enzymatic detection of sucrose, New Carbon Mater. 30 (2015) 244-251. http://doi.org/10.1016/S1872-5805(15)60189-5
[56] P. Mandal, M.J.P. Naik, M. Saha, Room temperature synthesis of graphene nanosheets, Cryst. Res. Technol. 53 (2018) 1700250.http://doi.org/10.1002/crat.201700250
[57] P. Mandal, M. Saha, Low-temperature synthesis of graphene derivatives: mechanism and characterization, Chem. Pap. 73 (2019) 1997-2006. http://doi.org/10.1007/s11696-019-00756-3.
[58] M.J.P. Naik, P. Mandal, J. Debbarma, M. Saha, Graphene quantum dots (GQDs) from organic acids, Appl. Innovative Res.1 (2019) 128-134
[59] P. Mandal, J. Debbarma, M. Saha, One step synthesis of N-containing graphene oxide from 3-Aminophenol,Cryst. Res. Technol. 55 (2020) 1900158. http://doi.org/10.1002/crat.201900158
[60] H. Sun, Q. He, S. Yin, K. Xu, Enhanced photocurrent generation of graphene/Au@ ZnO honeycomb film, Chin. J. Chem. 35 (2017) 1627-1632. http://doi.org/10.1002/cjoc.201700347
[61] M. Zhang, R.W. Mitchell, H. Huang, R.E. Douthwaite, Ordered multilayer films of hollow sphere aluminium-doped zinc oxide for photoelectrochemical solar energy conversion, J. Mater. Chem. A 5 (2017) 22193-22198. http://doi.org/10.1039/C7TA07509J
[62] V. Robbiano, G. Paternò, G. Cotella, T. Fiore, M. Dianetti, M. Scopelliti, F. Brunetti, B. Pignataro, F. Cacialli, Polystyrene nanoparticle-templated hollow titania nanosphere monolayers as ordered scaffolds, J. Mater. Chem. C 6 (2018) 2502-2508. http://doi.org/10.1039/C7TC04070A