2D Transition Metal Dichalcogenides for Lithium-ion Batteries

$30.00

2D Transition Metal Dichalcogenides for Lithium-ion Batteries

S.V. Prabhakar Vattikuti

Transition metal dichalcogenides (TMDs) materials offer exciting prospective applications in energy storage particularly as electrode resources for lithium-ion batteries (LIBs), which lately received enormous consideration owing to their unique 2D layered features appropriate for effective charge storage and conversion. However, several important and practical challenges are still need to be resolved for LIBs to become suitable for commercial use. This chapter presents a timely review, detailing the perspectives on the latest advancements and future directions in using TMDs for LIBs research. The chapter is divided into three parts: (i) TMDs materials as electrode; (ii) TMDs based hybrids; and (iii) viewpoint and perspectives.

Keywords
Lithium-ion Batteries, Layered Materials, Transition Metal Dichalcogenides, Molybdenum Disulfide, Tungsten Disulfide

Published online 7/25/2020, 28 pages

Citation: S.V. Prabhakar Vattikuti, 2D Transition Metal Dichalcogenides for Lithium-ion Batteries, Materials Research Foundations, Vol. 80, pp 63-90, 2020

DOI: https://doi.org/10.21741/9781644900918-3

Part of the book on Lithium-ion Batteries

References
[1] Y. Gao, X. Wu, K. Huang, L. Xing, Y. Zhang, L. Liu, Two-dimensional transition metal diseleniums for energy storage application: A review of recent developments, Cryst. Eng. Comm. 19 (2017) 404-418. https://doi.org/10.1039/C6CE02223E
[2] J. Huang, Z. Wei, J. Liao, W. Ni, C. Wang, J. Ma, Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2, J. Energy Chem. 33 (2019) 100–124. https://doi.org/10.1016/j.jechem.2018.09.001
[3] T. Stephenson, Z. Li, B. Olsen, D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites, Energy Environ. Sci. 7 (2014) 209–231. https://doi.org/10.1039/C3EE42591F
[4] M. Pumera, Z. Sofer, A. Ambrosi, Layered transition metal dichalcogenides for electrochemical energy generation and storage, J. Mater. Chem. A 2 (2014) 8981–8987. https://doi.org/10.1039/C4TA00652F
[5] X. Fang, X. Guo, Y. Mao, C. Hua, L. Shen, Y. Hu, Z. Wang, F. Wu, L. Chen, Chem. Asian J. 7 (2012) 1013–1017. https://doi.org/10.1002/asia.201100796
[6] A.V. Murugan, M. Quintin, M.H. Delville, G. Campet, C.S. Gopinath, K. Vijayamohanan, Exfoliation-induced nanoribbon formation of poly(3,4-ethylene dioxythiophene) PEDOT between MoS2 layers as cathode material for lithium batteries, J. Power Sources 156 (2006) 615–619. https://doi.org/10.1016/j.jpowsour.2005.06.022
[7] W. Wu, X.Y. Wang, X. Wang, S.Y. Yang, X.M. Liu, Q.Q. Chen, Effects of MoS2 doping on the electrochemical performance of FeF3 cathode materials for lithium-ion batteries, Mater. Lett. 63 (2009) 1788–1790. https://doi.org/10.1016/j.matlet.2009.05.041
[8] S. Wu, R. Xu, M. Lu, R. Ge, J. Iocozzia, C. Han, B. Jiang, Z. Lin, Graphene containing nanomaterials for lithium-ion batteries, Adv. Energy Mater. 5 (2015) 1500400. https://doi.org/10.1002/aenm.201500400
[9] M.U. Krishnan, M. Kaur, K. Singh, M. Kumar, A. Kumar, A synoptic review of MoS2: Synthesis to applications, Superlatt. Microstruct. 128 (2019) 274-297. https://doi.org/10.1016/j.spmi.2019.02.005
[10] M.S. Das, M. Kim, J. Lee, W. Choi, Synthesis, Properties, and Applications of 2D Materials: A Comprehensive Review, Critical Rev. Solid State Mater. Sci. 39 (2014) 231-252. https://doi.org/10.1080/10408436.2013.836075
[11] X. Xie, S. Wang, K. Kretschmer, G. Wang, Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries, J. Colloid Interface Sci. 499 (2017) 17–32. https://doi.org/10.1016/j.jcis.2017.03.077
[12] H. Yoo, A.P. Tiwari, J. Lee, D. Kim, J.H. Park, H. Lee, Cylindrical nanostructured MoS2 directly grown on CNT composites for lithium-ion batteries, Nanoscale 7 (2015) 3404–3409. https://doi.org/10.1039/C4NR06348A
[13] Y.E. Miao, Y. Huang, L. Zhang, W. Fan, F. Lai, T. Liu, Electrospun porous carbon nanofiber@MoS2 core/sheath fiber membranes as highly flexible and binder free anodes for lithium-ion batteries, Nanoscale 7 (2015) 11093–11101. https://doi.org/10.1039/C5NR02711J
[14] Z. Wan, J. Shao, J. Yun, H. Zheng, T. Gao, M. Shen, Q. Qu, H. Zheng, Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries, Small 10 (2014) 4975–4981. https://doi.org/10.1002/smll.201401286
[15] Y. Teng, H. Zhao, Z. Zhang, Z. Li, Q. Xia, Y. Zhang, L. Zhao, X. Du, Z. Du, P. Lv, K. Świerczek, MoS2 Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes, ACS Nano 10 (2016) 8526-8535. https://doi.org/10.1021/acsnano.6b03683
[16] Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode, ACS Nano 9 (2015) 3837–3848. https://doi.org/10.1021/nn506850e
[17] Z. Jian, B. Zhao, P. Liu, F. Li, M. Zheng, M. Chen, Y. Shi, H. Zhou, Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries, Chem. Commun. 50 (2014) 1215–1217. https://doi.org/10.1039/C3CC47977C
[18] M. Mao, L. Mei, D. Guo, L. Wu, D. Zhang, Q. Li, T. Wang, High electrochemical performance based on the TiO2 nanobelt@few-layered MoS2 structure for lithium-ion batteries, Nanoscale 6 (2014) 12350–12353. https://doi.org/10.1039/C4NR03991B
[19] X.Y. Yu, H. Hu, Y. Wang, H. Chen, X.W. Lou, Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties, Angew. Chem. Int. Ed. 54 (2015) 7395–7398. https://doi.org/10.1002/anie.201502117
[20] S.H. Choi, Y.C. Kang, Enhanced Li+ storage properties of few-layered MoS2-C composite microspheres embedded with Si nanopowder, Nano Res. 8 (2015) 2492–2502. https://doi.org/10.1007/s12274-015-0757-3
[21] X.Shan, S. Zhang, N. Zhang, Y. CheN, H. Gao, X. Zhang, Synthesis and characterization of three-dimensional MoS2@carbon fibers hierarchical architecture with high capacity and high mass loading for Li-ion batteries, J. Colloid Interface Sci. 510 (2018) 327–333. https://doi.org/10.1016/j.jcis.2017.09.078
[22] H.Xue, S. Yue, J. Wang, Y. Zhao, Q. Li, M.Yin, S.Wang, C. Feng, Q.Wu, H. Li, D. Shi, Q. Jiao, MoS2 microsphere@ N-doped carbon composites as high performance anode materials for lithium-ion batteries, J. Electroanal. Chem. 840 (2019) 230-236. https://doi.org/10.1016/j.jelechem.2019.03.058
[23] Z. Wang, M. Liu, G. Wei, P. Han, X. Zhao, J. Liu, Y. Zhou, J. Zhang, Hierarchical self-supported C@TiO2-MoS2 core-shell nanofiber mats as flexible anode for advanced lithium ion batteries, Appl. Surf. Sci. 423 (2017) 375–382. https://doi.org/10.1016/j.apsusc.2017.06.129
[24] G. Yang, X. Li, Y. Wang, Q. Li, Z. Yan, L. Cui, S. Sun, Y. Qu, H. Wang, Three-dimensional interconnected network few-layered MoS2/N,S codoped graphene as anodes for enhanced reversible lithium and sodium storage, Electrochim. Acta 293 (2019) 47-59. https://doi.org/10.1016/j.electacta.2018.10.026
[25] S. Wang, B. Liu, G. Zhi, X. Gong, Z. Gao, J. Zhang, Relaxing volume stress and promoting active sites in vertically grown 2D layered mesoporous MoS2(1-x)Se2x/rGO composites with enhanced capability and stability for lithium ion batteries, Electrochim. Acta 268 (2018) 424-434. https://doi.org/10.1016/j.electacta.2018.02.102
[26] Q. Zhu, C. Zhao, Y. Bian, C. Mao, H. Peng, G. Li, K. Chen, MoS2/nitrogen-doped carbon hybrid nanorods with expanded interlayer spacing as an advanced anode material for lithium ion batteries, Synth. Met. 235 (2018) 103–109. https://doi.org/10.1016/j.synthmet.2017.11.009
[27] W. Yang, J. Wang, C. Si, Z. Peng, J. Frenzel, G. Eggeler, Z. Zhang, [001] preferentially-oriented 2D tungsten disulfide nanosheets as anode materials for superior lithium storage, J. Mater. Chem. A 3 (2015) 17811–17819. https://doi.org/10.1039/C5TA04176G
[28] Y. Liu, W. Wang, H. Huang, L. Gu, Y. Wang, X. Peng, The highly enhanced performance of lamellar WS2 nanosheet electrodes upon intercalation of single-walled carbon nanotubes for supercapacitors and lithium ions batteries, Chem. Commun. 50 (2014) 4485-4488. https://doi.org/10.1039/c4cc01622j
[29] J. Zou, C. Liu , Z. Yang , C. Qi , X. Wang , Q. Qiao, X. Wu , T. Ren , Multilayer‐cake WS2/C nanocomposite as a high‐performance anode material for lithium‐ion batteries: “Regular” and “Alternate”, ChemElectroChem 4 (2017) 2232–2236. https://doi.org/10.1002/celc.201700414
[30] Y. Liu, N. Zhang, H. Kang, M. Shang, L. Jiao, J. Chen, WS2 nanowires as a high performance anode for sodium-ion batteries, Chem. Eur. J. 21 (2015) 11878–11884. https://doi.org/10.1002/chem.201501759
[31] T. Wang, C. Sun, M. Yang, L. Zhang, Y. Shao, Y. Wu, X. Hao, Enhanced reversible lithium ion storage in stable 1T@2H WS2 nanosheet arrays anchored on carbon fiber, Electrochim. Acta 259 (2018) 1-8. https://doi.org/10.1016/j.electacta.2017.10.154
[32] Q. Liu, X. Li, Z. Xiao, Y. Zhou, H. Chen, A. Khalil, T. Xiang, J. Xu, W. Chu, X. Wu, J. Yang, C. Wang, Y. Xiong, C. Jin, P.M. Ajayan, L. Song, Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties, Adv. Mater. 27 (2015) 4837-4844. https://doi.org/10.1002/adma.201502134
[33] T.Li, R. Guo, Y. Luo, F. Li, Z. Liu, L. Meng, Z. Yang, H. Luo, Y. Wan, Innovative N-doped graphene-coated WS2 nanosheets on graphene hollow spheres anode with double-sided protective structure for Li- Ion storage, Electrochim. Acta 290 (2018) 128-141. https://doi.org/10.1016/j.electacta.2018.09.065
[34] S. Zhou, J. Chen, L. Gan, Q. Zhang, Z. Zheng, H. Li, T. Zhai, Scalable production of self-supported WS2/CNFs by electrospinning as the anode for high-performance lithium-ion batteries, Sci. Bull. 61 (2016) 227–235. https://doi.org/10.1007/s11434-015-0992-8
[35] H. Li, K. Yu, H. Fu , B. Guo , X. Lei , Z. Zhu , Multi-slice nanostructured WS2@rGO with enhanced Li-ion battery performance and a comprehensive mechanistic investigation, Phys. Chem. Chem. Phys. 17 (2015) 29824–29833. https://doi.org/10.1039/C5CP04081G
[36] Y. Liu, W. Wang, Y. Wang, X. Peng, Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries, Nano Energy 7 (2014) 25–32. https://doi.org/10.1016/j.nanoen.2014.04.018
[37] J. Morales, J. Santos, J.L. Tirado, Electrochemical studies of lithium and sodium intercalation in MoSe2, Solid State Ionics 83 (1996) 57–64. https://doi.org/10.1016/0167-2738(95)00234-0
[38] J. Huang, Z. Wei, J. Liao, W. Ni, C. Wang, J. Ma, Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2, J. Energy Chem. 33 (2019) 100–124. https://doi.org/10.1016/j.jechem.2018.09.001
[39] B. Mendoza-Sánchez, J. Coelho, A. Pokle, V. Nicolosi, A study of the charge storage properties of a MoSe2 nanoplatelets/SWCNTs electrode in a Li-ion based electrolyte, Electrochim. Acta 192 (2016) 1–7. https://doi.org/10.1016/j.electacta.2016.01.114
[40] L. Wu, P. Tan , Y. Liu , X. Xiong , J. Pan , Effects of Carbon Content on the Lithium‐Storage Properties of MoSe2‐C Nanocomposites, ChemistrySelect 2 (2017) 8101–8107. https://doi.org/10.1002/slct.201700818
[41] J. Wang, C. Peng, L. Zhang, Y. Fu, H. Li, X. Zhao, J. Zhu, X. Wang, Construction of N-doped carbon@MoSe2 core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries, Electrochim. Acta 256 (2017) 19–27. https://doi.org/10.1016/j.electacta.2017.09.129
[42] Q. Su, X. Cao, X. Kong, Y. Wang, C. Peng, J. Chen, B. Yin, J. ShI, S. Liang, A. Pan, Carbon-encapsulated MoSe2/C nanorods derived from organic-inorganic hybrid enabling superior lithium/sodium storage, performances. Electrochimica Acta 292 (2018) 339-346. https://doi.org/10.1016/j.electacta.2018.09.154
[43] Y. Liu, M. Zhu, D. Chen, Sheet-like MoSe2/C composites with enhanced Li-ion storage properties, J. Mater. Chem. A 3 (2015) 11857-11862. https://doi.org/10.1039/C5TA02100F
[44] M. Zhu, Z. Luo, A. Pan, H. Yang, T. Zhu, S. Liang, G. Cao, N-doped one dimensional carbonaceous backbones supported MoSe2 nanosheets as superior electrodes for energy storage and conversion, Chem. Eng. J. 334 (2018) 2190-2200. https://doi.org/10.1016/j.cej.2017.11.158
[45] C. Cui, G. Zhou, W. Wei, L. Chen, C. Li, J. Yue, Boosting sodium-ion storage performance of MoSe2@C electrospinning nanofibers by embedding graphene nanosheets, J. Alloys Compound. 727 (2017) 1280-1287. https://doi.org/10.1016/j.jallcom.2017.08.258
[46] W. Tang, D. Xie, T. Shen, X. Wang , D. Wang , X. Zhang , X. Xia , J. Wu , J. Tu, Construction of Nitrogen-Doped Carbon-Coated MoSe2 Microspheres with Enhanced Performance for Lithium Storage, Chem. Eur. J. 23 (2017) 12924–12929. https://doi.org/10.1002/chem.201702840
[47] J. Wang, C. Peng, L. Zhang , Y. Fu , H. Li , X. Zhao , J. Zhu , X. Wang, Construction of N-doped carbon@MoSe2 core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries, Electrochim. Acta 256 (2017) 19–27. https://doi.org/10.1016/j.electacta.2017.09.129
[48] J. Yang, J. Zhu, J. Xu, C. Zhang, T. Liu, MoSe2 Nanosheet Array with Layered MoS2 Heterostructures for Superior Hydrogen Evolution and Lithium Storage Performance, ACS Appl. Mater. Interfaces 9 (2017) 44550–44559. https://doi.org/10.1021/acsami.7b15854
[49] S. Wang , B. Liu , G. Zhi , X. Gong , Z. Gao , J. Zhang , Relaxing volume stress and promoting active sites in vertically grown 2D layered mesoporous MoS2(1-x)Se2x/rGO composites with enhanced capability and stability for lithium ion batteries, Electrochim. Acta 268 (2018) 424–434. https://doi.org/10.1016/j.electacta.2018.02.102
[50] R. Jin, X. Liu, L. Yang, G. Li, S. Gao, Sandwich-like Cu2-xSe@C@MoSe2 nanosheets as an improved-performance anode for lithium-ion battery, Electrochim. Acta 259 (2018) 841–849. https://doi.org/10.1016/j.electacta.2017.11.044
[51] X.Q. Wang, Y.F. Chen, B.J. Zheng, F. Qi, J.R. He, Q. Li, P.J. Li, W. L. Zhang, Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J. Alloys Compd. 691 (2017) 698–704. https://doi.org/10.1016/j.jallcom.2016.08.305
[52] W. Yang, J. Wang, C. Si, Z. Peng, Z. Zhang, Tungsten diselenide nanoplates as advanced lithium/sodium ion electrode materials with different storage mechanisms, Nano Res. 10 (2017) 2584-2598. https://doi.org/10.1007/s12274-017-1460-3
[53] X. Wang, J. He, B. Zheng, W. Zhang, Y. Chen, Few-layered WSe2 in-situ grown on graphene nanosheets as efficient anode for lithium-ion batteries, Electrochim. Acta 283 (2018) 1660-1667. https://doi.org/10.1016/j.electacta.2018.07.129
[54] M.S. Whittingham, Chemistry of intercalation compounds: Metal guests in chalcogenide hosts, Progress Solid State Chem.12 (1) (1978)41–99. https://doi.org/10.1016/0079-6786(78)90003-1
[55] Y. Zhang, C. Zhao, Z. Zeng, J. M. Ang, B. Che, Z. Wang, X. Lu, Graphene nanoscroll/nanosheet aerogels with confined SnS2 nanosheets: simultaneous wrapping and bridging for high-performance lithium-ion battery anodes, Electrochim. Acta 278 (2018) 156-164. https://doi.org/10.1016/j.electacta.2018.05.031
[56] M. Cao, L. Gao, X. Lv, Y. Shen, TiO2-B@VS2 heterogeneous nanowire arrays as superior anodes for lithium-ion batteries, J. Power Sources 350 (2017) 87-93. https://doi.org/10.1016/j.jpowsour.2017.03.070
[57] Y.Liu, L. Zhang, Y. Zhao, T. Shen, X. Yan , C. Yu, H. Wang, H. Zeng, Novel plasma-engineered MoS2 nanosheets for superior lithium-ion Batteries, J Alloys Compound. 787 (2019) 996-1003. https://doi.org/10.1016/j.jallcom.2019.02.156
[58] Z. Zhang, S. Wu, J. Cheng, W. Zhang, MoS2 nanobelts with (002) plane edges-enriched flat surfaces for high-rate sodium and lithium storage, Energ. Storage Mater. 15 (2018) 65–74. https://doi.org/10.1016/j.ensm.2018.03.013
[59] B. Ouyang, Y. Wang, Z. Zhang, R.S. Rawat, MoS2 anchored free-standing three dimensional vertical graphene foam based binder-free electrodes for enhanced lithium-ion storage, Electrochim. Acta 194 (2016) 151-160. https://doi.org/10.1016/j.electacta.2016.02.120
[60] Z. Che, Y. Li, K. Chen, M. Wei, Hierarchical MoS2@RGO nanosheets for high performance sodium storage, J. Power Sources 331 (2016) 50-57. https://doi.org/10.1016/j.jpowsour.2016.08.139
[61] Q.-c. Pan, Y.-g. Huang, H.-q. Wang, G.-h. Yang, L.-c. Wang, J. Chen, Y.-h. Zan, Q.- y. Li, MoS2/C nanosheets encapsulated Sn@SnOx nanoparticles as highperformance lithium-iom battery anode material, Electrochim. Acta 197 (2016) 50-57. https://doi.org/10.1016/j.electacta.2016.03.051
[62] B. Wang, Y. Xia, G. Wang, Y. Zhou, H. Wang, Core shell MoS2/C nanospheres embedded in foam-like carbon sheets composite with an interconnected macroporous structure as stable and high-capacity anodes for sodium ion batteries, Chem. Eng. J. 309 (2017) 417-425. https://doi.org/10.1016/j.cej.2016.10.073
[63] Z.-T. Shi, W. Kang, J. Xu, Y.-W. Sun, M. Jiang, T.-W. Ng, H.-T. Xue, D.Y.W. Yu, W. Zhang, C.-S. Lee, Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries, Nano Energy 22 (2016) 27-37. https://doi.org/10.1016/j.nanoen.2016.02.009
[64] Y. Chen, B. Song, X. Tang, L. Lu, J. Xue, Ultrasmall Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries, Small 10 (2014) 1536–1543. https://doi.org/10.1002/smll.201302879
[65] M. Mao, L. Mei, D. Guo, L. Wu, D. Zhang, Q. Li, T. Wang, High electrochemical performance based on the TiO2 nanobelt@few-layered MoS2 structure for lithium-ion batteries, Nanoscale 6 (2014) 12350–12353. https://doi.org/10.1039/C4NR03991B
[66] J. Wang, J. Liu, H. Yang, D. Chao, J. Yan, S.V. Savilov, J. Lin, Z. X. Shen, MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: Constructing an ideal heterostructure for enhanced Na-ion storage, Nano Energy 20 (2016) 1–10. https://doi.org/10.1016/j.nanoen.2015.12.010
[67] Y. Tang, Z. Zhao, Y. Wang, Y. Dong, Y. Liu, X. Wang, J. Qiu, Carbon-stabilized interlayer-expanded few-layer MoSe2 nanosheets for sodium ion batteries with enhanced rate capability and cycling performance, ACS Appl. Mater. Interfaces 8 (2016) 32324-32332. https://doi.org/10.1021/acsami.6b11230
[68] Y.N. Ko, S.H. Choi, S.B. Park, Y.C. Kang, Hierarchical MoSe2 yolk-shell microspheres with superior Na-ion storage properties, Nanoscale 6 (2014) 10511-10515. https://doi.org/10.1039/C4NR02538E
[69] H. Wang, X. Lan, D. Jiang, Y. Zhang, H. Zhong, Z. Zhang, Y. Jiang, Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries, J. Power Sources 283 (2015) 187-194. https://doi.org/10.1016/j.jpowsour.2015.02.096
[70] Y. Liu, M. Zhu, D. Chen, Sheet-like MoSe2/C composites with enhanced Li-ion storage properties, J. Mater. Chem. A 3 (2015) 11857-11862. https://doi.org/10.1039/C5TA02100F
[71] P. Ge, H. Hou, C. E. Banks, C. W. Foster, S. Li, Y. Zhang, J. He, C. Zhang, X. Ji, Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage, Energy Storage Mater. 12 (2018) 310–323. https://doi.org/10.1016/j.ensm.2018.02.012
[72] M. Zhu, Z. Luo, A. Pan, H. Yanga, T. Zhu, S. Liang, G. Cao, N-doped one-dimensional carbonaceous backbones supported MoSe2 nanosheets as superior electrodes for energy storage and conversion, Chem. Eng. J. 334 (2018) 2190–2200. https://doi.org/10.1016/j.cej.2017.11.158
[73] G. Liu, Y. Feng, Y. Li, M. Qin, H. An, W. Hu, et al. Three-dimensional multilayer assemblies of MoS2/reduced graphene oxide for high-performance lithium ion batteries, Part Syst. Charact. 32 (2015) 489–497. https://doi.org/10.1002/ppsc.201400207
[74] J. Wang, X. Zhao, Y.Fu, X. Wang, A molybdenum disulfide/reduced oxide-graphene nanoflakelet-on-sheet structure for lithium ion batteries, Applied Surface Science 399 (2017) 237–244. https://doi.org/10.1016/j.apsusc.2016.12.029
[75] J. Guo, X. Chen, S. Jin, M. Zhang, C. Liang. Synthesis of graphene-like MoS2 nanowall/graphene nanosheet hybrid materials with high lithium storage performance, Catal. Today 246 (2015) 165–171. https://doi.org/10.1016/j.cattod.2014.09.028
[76] L. Xu, Z. Jiao, P. Hu, Y. Wang, Y. Wang, H. Zhang. 3D MoS2 nanoflowers decorated onto graphene nanosheets for high-performance lithium-ion batteries, Electrochem. Acta 3(9) (2016)1503–1512. https://doi.org/10.1002/celc.201600409
[77] J. Wang, J. Liu, D. Chao, J. Yan, J. Lin, ZX. Shen. Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage, Adv. Mater .26 (2014) 7162–9. https://doi.org/10.1002/adma.201402728
[78] F. Pan, J. Wang, Z. Yang, L. Gu, Y. Yu MoS2–graphene nanosheet–CNT hybrids with excellent electrochemical performances for lithium-ion batteries, RSC Adv. 5: 775 (2015) 18–26. https://doi.org/10.1039/C5RA13262B
[79] Y. Hou, J. Li, Z. Wen, S. Cui, C. Yuan, J. Chen, N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries, Nano Energy 8 (2014) 157–64. https://doi.org/10.1016/j.nanoen.2014.06.003
[80] J. Yao, B. Liu, S. Ozden, J. Wu, S. Yang, M.T.F. Rodrigues, et al. 3D nanostructured molybdenum diselenide/graphene foam as anodes for long-cycle life lithium-ion batteries, Electrochim. Acta 176 (2015) 103–11. https://doi.org/10.1016/j.electacta.2015.06.138
[81] Z. Luo, J. Zhou, L. Wang, G. Fang, A. Pan, S. Liang. Two-dimensional hybrid nanosheets of few layered MoSe2 on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries, J. Mater. Chem. A; 4 (2016) 15302–8. https://doi.org/10.1039/C6TA04390A
[82] G. Huang, H. Liu, S. Wang, X. Yang, B. Liu, H. Chen, et al. Hierarchical architecture of WS2 nanosheets on graphene frameworks with enhanced electrochemical properties for lithium storage and hydrogen evolution, J. Mater. Chem. A 3 (2015) 24128–38. https://doi.org/10.1039/C5TA06840A
[83] K. Shiva, H.S.S.R Matte, H.B. Rajendra, A.J. Bhattacharyya, C.N.R. Rao. Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries, Nano Energy 2 (2013)787–93. https://doi.org/10.1016/j.nanoen.2013.02.001
[84] L. Ma, X. Zhou, L. Xu, X. Xu, L. Zhang, W. Chen. Ultrathin few-layered molybdenum selenide/graphene hybrid with superior electrochemical Li-storage performance, J. Power Sources 285 (2015) 274–80. https://doi.org/10.1016/j.jpowsour.2015.03.120
[85] Y. Wang, B. Qian, H. Li, L. Liu, L. Chen, H. Jiang VSe2/graphene nanocomposites as anode materials for lithium-ion batteries, Mater. Lett. 141 (2015) 35–8. https://doi.org/10.1016/j.matlet.2014.11.038
[86] F. Qi, Y.Chen, B. Zheng, J.He, Q. Li, X. Wang, J. Lin, J. Zhou, B. Yu, P. Li, W. Zhang, Hierarchical architecture of ReS2/rGO composites with enhanced electrochemical properties for lithium-ion batteries, Appl. Surf. Sci. 413 (2017) 123–128. https://doi.org/10.1016/j.apsusc.2017.03.296
[87] X. Ou, X. Liang, F. Zheng, Q. Pan, J. Zhou, X. Xiong, C. Yang, R. Hu, M. Liu, Exfoliated V5S8/graphite nanosheet with excellent electrochemical performance for enhanced lithium storage, Chem. Eng. J. 320 (2017) 485–493. https://doi.org/10.1016/j.cej.2017.03.069