Conducting Polymer Electrodes for Sodium-Ion Batteries


Conducting Polymer Electrodes for Sodium-Ion Batteries

Shubham Singh, Sheenam Thatai, Parul Khurana, Christine Jeyaseelan and Dinesh Kumar

Sodium ion batteries (SIBs) are the sign of the future success available as another charge storage element due to the availability of plenty of sodium resources. Conducting polymer provides a great opportunity in the development of electrode material for these batteries. They are oligomer, easily processable, flexible, low weight and composed of units such as an aromatic or heteroaromatic ring. They are active redox species and are highly thermally stable up to 600°C. Conductive polymers well as its derivative have long cycle life, high surface area, high energy and power densities. In this chapter the development and properties of these batteries are discussed.

SIBs, Conducting Polymer, Electrode Material, Polyacetylene, Polyaniline, Polyphenylene

Published online 5/20/2020, 24 pages

Citation: Shubham Singh, Sheenam Thatai, Parul Khurana, Christine Jeyaseelan and Dinesh Kumar, Conducting Polymer Electrodes for Sodium-Ion Batteries, Materials Research Foundations, Vol. 76, pp 159-182, 2020


Part of the book on Sodium-Ion Batteries

[1] B. Häupler, A. Wild, U.S. Schubert: Carbonyls: Powerful organic materials for secondary batteries, Adv. Energy. Mater. 5 (2015) 1402034.
[2] H. Pan, Y.S. Hu, L. Chen: Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci. 6 (2013) 2338-2360.
[3] V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci. 5 (2012) 5884-5901.
[4] C. Grosjean, P.H. Miranda, M. Perrin, P. Poggi, Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry, Renew. Sust. Energ. Rev. 16 (2012) 1735-1744.
[5] A. Yaksic, J.E. Tilton, Using the cumulative availability curve to assess the threat of mineral depletion, The case of lithium, Resour. Pol. 34 (2009) 185-194.
[6] J. Tarascon, Is lithium the new gold? Nat. Chem. 2 (2010) 510.
[7] M Armand, J.M. Tarascon, Building better batteries, Nature 7179 (2008) 451-652.
[8] I. Hadjipaschalis, A Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications, Renew. Sust. Energ. Rev. 13 (2009) 1513-1522.
[9] D. EPRI, Electricity energy storage technology options-a white paper primer on applications, costs and benefits, Rept. 1020676 (2010) 1-170.
[10] J. Tzeng, R. Emerson, P. Moy, Composite flywheels for energy storage, Compos. Sci. Technol. 66 (2006) 2520-2527.
[11] A. Castillo, D.F. Gayme, Grid-scale energy storage applications in renewable energy integration, A Surv. Energy Conv. Mgmt. 87 (2014) 885-894.
[12] M. Smart, B. Ratnakumar, Effects of electrolyte composition on lithium plating in lithium-ion cells, J. Electrochem. Soc. 158 (2011) A379-A389.
[13] S. Futamura, A. Zhang, H. Einaga, H. Kabashima, Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants, Catal. Today 72 (2002) 259-265.
[14] A.S. Nagelberg, W.L. Worrell, A thermodynamic study of sodium-intercalated TaS2 and tis2, J.Solid. State. Chem. 29 (1979) 345-354.
[15] P. Gruber, P.A. Medina, A. Keoleian, S.E. Kesler, M.P. Everson, T.J. Wallington, Global lithium availability, J. Ind. Ecol. 15 (2011) 760-775.
[16] D. Stevens, J. Dahn, High capacity anode materials for rechargeable sodium‐ion batteries, J. Electrochem. Soc. 147 (2000) 1271-1273.
[17] M.S. Balogun, Y. Luo, W. Qiu, P. Liu, Y. Tong, A review of carbon materials and their composites with alloy metals for sodium ion battery anodes, C. 98 (2016) 162-178.
[18] J. Górka, C .Vix-Guterl, C. M. Ghimbeu, Recent progress in design of biomass-derived hard carbons for sodium ion batteries, C J. Carbon Res. 24 (2016) 1-17.
[19] L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, Recent developments in electrode materials for sodium-ion batteries, J. Mater. Chem. A 3 (2015) 9353-9378.
[20] M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries, Energy Environ. Sci. 8 (2015) 81-102.
[21] H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium‐ion batteries, Adv. Energ. Mater. 6 (2016) 1600943.
[22] S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium‐ion batteries: Potential alternatives to current lithium‐ion batteries, Adv. Energ. Mater. 2 (2012) 710-721.
[23] P.F. Wang, Y. You, Y.X. Yin, Y.G. Guo, Layered oxide cathodes for sodium‐ion batteries, Phase transition, air stability, and performance, Adv. Energ. Mater. 8 (2018) 1701912.
[24] Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices, An overview of organic electrode materials, Energy Environ. Sci. 6 (2013) 2280-2301.
[25] R. Emanuelsson, M. Sterby, M. Strømme, M. Sjödin, An all-organic proton battery, J. Am. Chem. Soc. 139 (2017) 4828-4834.
[26] Y. Zhang, J. Wang, S.N. Riduan, Strategies toward improving the performance of organic electrodes in rechargeable lithium (sodium) batteries, J. Mater. Chem. 4 A (2016) 14902-14914.
[27] G. Cheng, M. Aponte, C.A. Ramírez, Degradable polymides, Google Patents, (2008).
[28] B. Baumgartner, M.J. Bojdys, M.M. Unterlass, Geomimetics for green polymer synthesis: Highly ordered polyimides via hydrothermal techniques, Polym. Chem. 5 (2014), 3771-3776.
[29] Z. Song, H. Zhan, Y. Zhou, Polyimides: Promising energy‐storage materials, Angew. Chem. Int. Ed. 49 (2010), 8444-8448.
[30] H. Wang, S. Yuan, D.l. Ma, X.l. Huang, F.l. Meng, X.B. Zhang, Tailored aromatic carbonyl derivative polyimides for high‐power and long‐cycle sodium‐organic batteries, Adv. Energ. Mater. 4 (2014) 1301651 1-18.
[31] S. Prakash, C.R. Rao, M. Vijayan, Polyaniline–polyelectrolyte–gold (0) ternary nanocomposites: Synthesis and electrochemical properties, Electrochim. Acta 5424 (2009) 5919-5927.
[32] S. Prakash, C.R. Rao, M. Vijayan, New polyaniline (PANI)-polyelectrolyte (pddmac) composites: Synthesis and applications, Electrochimi. Acta 53 (2008) 5704-5710.
[33] L. Wei, G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors, Nano Energy 1 (2012) 52-56.
[34] S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen, X. Wang, J.M. Razal, Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications, Mater. Horiz. 6 (2019) 19-249.
[35] S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature 428 (2004) 6986.
[36] L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R Mao, X. Ai, H. Yang, Y. Cao, Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries, Energy Environ. Sci. 7 (2014) 323-328.
[37] L. Shao, J.W. Jeon, J.L. Lutkenhaus, Polyaniline/vanadium pentoxide layer-by-layer electrodes for energy storage, Chem. Mater. 24 (2011) 181-189.
[38] Y.H. Huang, J.B. Goodenough, High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers, Chem. Mater. 20 (2008) 7237-7241.
[39] S Liu, F Wang, R Dong, T Zhang, J Zhang, X Zhuang, Y Mai, X Feng, Dual‐template synthesis of 2d mesoporous polypyrrole nanosheets with controlled pore size, Adv. Mater. (2016) 28(38):8365-8370.
[40] J. Dubois, O. Sagnes, F. Henry, Polyheterocyclic conducting polymers and composites derivates, Synth. Met. 28 (1989) 871-878.
[41] L.C. Folgueras, M.C. Rezende, Multilayer radar absorbing material processing by using polymeric nonwoven and conducting polymer, Mater. Res. 11 (2008) 245-249.
[42] J. Margolis, Conductive polymers and plastics, Springer Sci. Busi. Med., (2012).
[43] F. Garnier, R. Hajlaoui, A. Yassar, P. Srivastava, All-polymer field-effect transistor realized by printing techniques, Science 265 (1994) 1684-1686.
[44] S. Grigorian, D. Tranchida, D. Ksenzov, F. Schäfers, H. Schönherr, U. Pietsch, Structural and morphological changes of p3ht films in the planar geometry of an ofet device under an applied electric field, Eur. Polym. J. 47 (2011) 2189-2196.
[45] R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, M. Lögdlund, Electroluminescence in conjugated polymers, Nature 397 (1999) 1-21.
[46] P.J. Nigrey, D. MacInnes, D.P. Nairns, A.G. MacDiarmid, A.J. Heeger, Lightweight rechargeable storage batteries using polyacetylene,(CH)x as the cathode‐active material, J. Electrochem. Soc. 128 (1981) 1651-1654.
[47] L. Shacklette, J. Toth, N. Murthy, R. Baughman, Polyacetylene and polyphenylene as anode materials for nonaqueous secondary batteries, J. Electrochem. Soc. 132 (1985) 1529-1535.
[48] A.G. MacDiarmid, A.J. Heeger, Organic metals and semiconductors, The chemistry of polyacetylene,(CH) x, and its derivatives. Synth. Met. (1980) 101-118.
[49] X. Zhu, R. Zhao, W. Deng, X. Ai, H. Yang, Y. Cao, An all-solid-state and all-organic sodium-ion battery based on redox-active polymers and plastic crystal electrolyte, Electrochim. Acta 178 (2015) 55-59.
[50] G. Farrington, B. Scrosati, D .Frydrych, J. DeNuzzio, The electrochemical oxidation of polyacetylene and its battery applications, J. Electrochem. Soc. 131 (1984) 7-12.
[51] W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, Na-ion battery anodes: Materials and electrochemistry, Acc. Chem. Res. 49 (2016) 231-240.
[52] Y Shen, D Yuan, X Ai, H Yang, M Zhou, Poly (diphenylaminesulfonic acid sodium) as a cation-exchanging organic cathode for sodium batteries. Electrochem. Commun. 49 (2014) 5-8.
[53] L Zhu, Y Shen, M Sun, J Qian, Y Cao, X Ai, H Yang, Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries, Chem. Commun. (2013) 49(97):11370-11372.
[54] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene,(CH)x. J. Chem. Soc, Chem. Commun. (1977) 578-580.
[55] R. Zhao, L. Zhu, Y. Cao, X. Ai, H.X. Yang, An aniline-nitroaniline copolymer as a high capacity cathode for na-ion batteries, Electrochem. Commun. 21 (2012) 36-38.
[56] M. Zhou, L. Zhu, Y. Cao, R. Zhao, J. Qian, X. Ai, H. Yang, Fe (cn) 6− 4-doped polypyrrole, A high-capacity and high-rate cathode material for sodium-ion batteries, RSC. Adv. 2 ( 2012) 5495-5498.
[57] M. Zhou, Y. Xiong, Y. Cao, X. Ai, H. Yang, Electroactive organic anion‐doped polypyrrole as a low cost and renewable cathode for sodium‐ion batteries. J. Polym Sci Part B, PolyM. Phy. 51 (2013) 114-118.
[59] D. Su, J. Zhang, S. Dou, G. Wang, Polypyrrole hollow nanospheres, Stable cathode materials for sodium-ion batteries, Chem. Commun. 51 (2015) 16092-16095.
[59] K. Nakahara, S Iwasa, M Satoh, Y Morioka, J Iriyama, M Suguro, E Hasegawa, Rechargeable batteries with organic radical cathodes. Cheml Phy Lett. 359 (2002) 351-354.
[60] Y. Dai, Y. Zhang, L. Gao, G. Xu, J. Xie, A sodium ion based organic radical battery, Electrochem. Solid-State Lett. 13 (2010) A22-A24.
[61] J.K. Kim, Y. Kim, S. Park, H. Ko, Y. Kim, Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries, Energ. Environ. Sci. 9 (2016) 1264-1269.
[62] T. Janoschka, M.D. Hager, U.S. Schubert, Powering up the future: Radical polymers for battery applications, Adv. Mater. 24 (2012) 397-6409.
[63] L. Bugnon, C.J. Morton, P. Novak, J. Vetter, P. Nesvadba, Synthesis of poly (4-methacryloyloxy-tempo) via group-transfer polymerization and its evaluation in organic radical battery, Chem. Mater. 19 (2007) 2910-2914.
[64] Z-F Li, H Zhang, Q Liu, Y Liu, L Stanciu, J Xie, Novel pyrolyzed polyaniline-grafted silicon nanoparticles encapsulated in graphene sheets as li-ion battery anodes, ACS. Appl. Mater. Interfaces. 6 (2014) 5996-6002.
[65] K.S. Park, S.B. Schougaard, J. Goodenough:Conducting‐polymer/iron‐redox‐couple composite cathodes for lithium secondary batteries, Adv. Mater. 19 (2007) 848-851.
[66] J. Roncali, Electrogenerated functional conjugated polymers as advanced electrode materials, J. Mater. Chem. 9 (1999) 1875-1893.
[67] D.A. Pasquier, I. Plitz, S. Menocal, G. Amatucci, A comparative study of li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications, J. Power Sources 115 (2003) 171-178.
[68] D.A. Pasquier, A. Laforgue, P. Simon, G.G. Amatucci, J.F. Fauvarque, A nonaqueous asymmetric hybrid li4ti5 o 12/poly (fluorophenylthiophene) energy storage device, J. Electrochem. Soc.149 (2002) A302-A306.
[69] S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci. 34 (2009) 783-810.
[70] W. Stockton, M. Rubner, Molecular-level processing of conjugated polymers Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions, Macrom. 30 (1997) 2717-2725.
[71] D. Li, J. Huang, R.B. Kaner, Polyaniline nanofibers: A unique polymer nanostructure for ersatile applications, Acc. Chem. Res. 42 (2009) 135-145.
[72] I. Dumitrescu, P.R. Unwin, J.V. Macpherson, Electrochemistry at carbon nanotubes: Perspective and issues, Chem. Commun. 45 (2009) 6886-6901.
[73] H.D. Tran, D. Li, R.B. Kaner, One‐dimensional conducting polymer nanostructures: Bulk synthesis and applications, Adv. Mater. 21 (2009) 1487-1499.
[74] H. Ghenaatian, M. Mousavi, S. Kazemi, M. Shamsipur, Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor, Synth. Metals, 159 (2009) 1717-1722.