Photocatalysis: Present, past and future


Photocatalysis: Present, past and future

A. Manikandan, E. Manikandan, S.Vadivel, M.Kumaravel, D. Maruthamani,
S. Hariganesh

As one of the most attractive technologies, photocatalysis has been emerging nowadays to harvesting the solar energy for producing green fuels and a wide range of environmental applications. Due to their unique physicochemical and optical properties, a wide variety of TiO2 based photocatalysts have emerged to drive various organic transformations and degradation reactions under light irradiation. In this chapter, we have systematically summarized the fundamentals of TiO2 based photocatalysts, including basic mechanism of heterogeneous photocatalysis, advantages, and challenges of g- TiO2 based photocatalysts. Through reviewing the important state-of-the-art advances on this topic, it may provide new opportunities for designing and constructing highly effective TiO2 and various bismuth-based photocatalysts for various applications in photocatalysis and other related fields, such as solar cells and photoelectrocatalysis.

Semiconductors, Photocatalyst, Degradation, TiO2, Bismuth Materials

Published online 4/1/2018, 24 pages


Part of Organic Pollutants in Wastewater I

[1] Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38.
[2] D. Chen, A.K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension, Water Res. 32 (1998) 3223-3234.
[3] A.A. Tahir, K.G.U. Wijayantha, Photoelectrochemical water splitting at nanostructured ZnFe2O4 electrodes, J. Photochem. Photobiol. A: Chem. 216 (2010) 119-125.
[4] L.B. Reutergadh, M. Iangphasuk, Photocatalytic decolourization of reactive azo dye: a comparison between TiO2 and CdS photocatalysis, Chemosphere 35 (1997) 585-596.
[5] Poulios, M. Kositzi, A. Kouras, Photocatalytic decomposition of triclopyr over aqueous semiconductor suspensions, J. Photochem. Photobiol. A: Chem. 115 (1998) 175-183.
[6] Poulios, I. Tsachpinis, Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides, J. Chem. Technol. Biotechnol.74 (1999) 349-357.<349::AID-JCTB5>3.0.CO;2-7
[7] A.P. Davis, C.P. Huang, The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide, Water Res.24 (1990)543-550.
[8] N. Kakuta, J.M. White, A. Campion, A.J. Bard, M.A. Fox, S.E. Webber, Surface analysis of semiconductor-incorporated polymer systems. 1. Nafion and cadmium sulfide-Nafion, J. Phys. Chem.89 (1985)48-52.
[9] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341-357.
[10] R.P.S. Suri, J. Liu, D.W. Hand, J.C. Crittenden, D.L. Perram, M.E. Mullins, Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water, Water Environ. Res.65 (1993)665-673.
[11] P. Qu, J. Zhao, T. Shen, H. Hidaka, TiO2-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution, J. Mol. Catal. A: Chem. 129 (1998) 257-268.
[12] T. Wu, G. Liu, J. Zhao, Evidence for H2O2 generation during the TiO2-assisted photodegradation of dyes in aqueous dispersions under visible light illumination, J. Phys. Chem. B 103 (1999) 4862-4867.
[13] Y. Wang, Solar photocatalytic degradation of eight commercial dyes in TiO2 suspension, Wat. Res. 34 (2000) 990-994.
[14] Arslan, A. Balcioglu, D.W. Bahnemann, Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts, Appl. Catal. B 26 (2000) 193-206.
[15] C.A.K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, P.P. Zamora, Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution, Chemosphere 40 (2000) 433-440.
[16] Galindo, P. Jacques, A. Kalt, Photooxidation of the phenylazonaphthol AO20 on TIO2: kinetic and mechanistic investigations, Chemosphere 45 (2001) 997-1005.
[17] T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation, J. Photochem. Photobiol. A 140 (2001) 163-172.
[18] Poulios, E. Micropoulou, R. Panou, E. Kostopoulou, Photooxidation of eosin Y in the presence of semiconducting oxides, Appl. Catal. B: Environ. 41 (2003) 345-355.
[19] J. Yang, C. Chen, J. Hongwei, M. Wanhong, J. Zhao, Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation:  photoelectro catalytic study by TiO2-film electrodes, J. Phys. Chem. B 109 (2005) 21900-21907.
[20] X. Wang, S. Meng, X. Zhang, H. Wang, W. Zhong, Q. Du, Multi-type carbon doping of TiO2 photocatalyst, Chem. Phys. Lett. 444 (2007) 292-296.
[21] X. Ren, D. Han, D. Chen, F. Tang, Large-scale synthesis of hexagonal cone-shaped ZnO nanoparticles with a simple route and their application to photocatalytic degradation, Mater. Res. Bull.42 (2007) 807-813.
[22] S.K. Mohapatra, N. Kondamudi, S. Banerjee, M. Misra, Functionalization of self-organized TiO2 nanotubes with pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination, Langmuir 24 (2008) 11276-11281.
[23] Y. Wang, X. Li, N. Wang, X. Quan, Y. Chen, Controllable synthesis of ZnO nano flowers and their morphology-dependent photocatalytic aactivities, Sep. Purif. Technol. 62 (2008) 727-732.
[24] S.K. Pardeshi, A.B. Patil, Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method, J. Mol. Catal. A: Chem. 308 (2009) 32-40.
[25] Lu, Y. Wu, F. Mai, W. Chung, C. Wu, W. Lin, C. Chen, Degradation efficiencies and mechanisms of the ZnO-mediated photocatalytic degradation of Basic Blue 11 under visible light irradiation, J. Mol. Catal. A: Chem. 310 (2009) 159-165.
[26] A.N. Rao, B. Sivasankar, V. Sadasivam, Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst, J. Mol. Catal. A: Chem. 306 (2009) 77-81.
[27] J.H. Sun, S.Y. Dong, Y.K. Wang, S.P. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst, J. Hazard. Mater. 172 (2009) 1520-1526.
[28] Y. Tong, J. Cheng, Y. Liub, G.G. Siu, Enhanced photocatalytic performance of ZnO hierarchical nanostructures synthesized via a two-temperature aqueous solution route, Scr. Mater. 60 (2009) 1093-1096.
[29] M.S. Mohajerania, A. Laka, A. Simchia, Effect of morphology on the solar photocatalytic behavior of ZnO nanostructures, J. Alloys Compd. 485 (2009) 616-620.
[30] W.M. Wu, G.D. Liu, Q.H. Xie, S.J. Liang, H.R. Zheng, R.S. Yuan, W.Y. Su, L. Wu, A simple and highly efficient route for the preparation of p-phenylenediamine by reducing 4-nitroaniline over commercial CdS visible light-driven photocatalyst in water, Green Chem. 14 (2012) 1705-1709.
[31] M. Luo, Y. Liu, J.C. Hu, H. Liu, J.L. Li, One-Pot Synthesis of CdS and Ni-Doped CdS hollow spheres with enhanced photocatalytic activity and durability, ACS Appl. Mater. Interf. 4 (2012) 1813-1821.
[32] F. Chen, Y. Cao, D. Jia, X. Niu, Facile synthesis of CdS nanoparticles photocatalyst with high performance, Ceram. Int. 39 (2013) 1511-1517.
[33] J. Shi, H. Cui, Z. Liang, X. Lu, Y. Tong, C. Su, The roles of defect states in photoelectric and photocatalytic processes for ZnxCd1−xS, Energy Environ. Sci. 4 (2011) 466-470.
[34] M. Liu, L. Wang, G. Lu, X. Yao, L. Guo, Twins in Cd1−xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water Energy Environ. Sci. 4 (2011) 1372-1378.
[35] G. Zhang, W. Xu, Z. Li, W. Hu, Y. Wang, Preparation and characterization of multi-functional CoFe2O4–ZnO nanocomposites. Magn. Magn. Mater. 321 (2009) 1424-1427.
[36] W. Zhang, Y.B. Wang, Z. Wang, Z.Y. Zhong, R. Xu, Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light, Chem. Commun. 46 (2010) 7631-7633.
[37] Y. Hou, X. Li, Q. Zhao, X. Quan, G. Chen, Electrochemically assisted photocatalytic degradation of 4-chlorophenol by ZnFe2O4−modified TiO2 nanotube array electrode under visible light irradiation, Environ. Sci. Technol. 44 (2010) 5098-5103.
[38] M.H. Habibi, A.H. Habibi, Nanostructure composite ZnFe2O4–FeFe2O4–ZnO immobilized on glass: Photocatalytic activity for degradation of an azo textile dye F3B, J. Ind. Eng. Chem. 20 (2014) 68-73.
[39] V.R. Satsangi, S. Kumari, A.P. Singh, R. Shrivastav, S. Dass, Nanostructured hematite for photoelectrochemical generation of hydrogen, Int. J. Hydrogen Energy 33 (2008) 312-318.
[40] Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C6 (2005) 186-205.
[41] K. Lv, H. Zuo, J. Sun, K. Deng, S. Liu, X. Li, D. Wang, (Bi, C and N) codoped TiO2 nanoparticles, J. Hazard. Mater. 161 (2009) 396-401.
[42] W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669-13679.
[43] V. Brezova, A. Blazkova, L. Karpinsky, J. Groskova, B. Havlinova, V. Jorik, M. Ceppan, Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol-gel technique on glass fibres, J. Photochem. Photobiol. A 109 (1997) 177-183.
[44] Dvoranova, V. Brezova, M. Mazur, M.A. Malati, Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal. B 37 (2002) 91-105.
[45] G.P. Lepore, L. Persaud, C.H. Langford, Supporting titanium dioxide photocatalysts on silica gel and hydrophobically modified silica gel, J. Photochem. Photobiol. A98 (1996)103-111.
[46] C. Minero, F. Catozzo, E. Pelizzetti, Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions, Langmuir 8 (1992) 481-486.
[47] S. Sampath, H. Uchida, H. Yoneyama, photocatalytic degradation of gaseous pyridine over zeolite-supported titanium dioxide, J. Catal. 149 (1994) 189-194.
[48] J. Arana, J.M. D. Rodriguez, E.T. Rendon, C.G. Cabo, O.G. Diaz, J.A.H. Melinan, J.P. Pena, G. Colon, J.A. Navio, TiO2 activation by using activated carbon as a support: part I. Surface characterisation and decantability study, Appl. Catal. B 44 (2003) 161-172.
[49] D. Chatterjee, S. Dasgupta, N.N. Rao, Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light, Sol. Energy Mater. Sol. Cells 90 (2006) 1013-1020.
[50] C.F. Wang, C.T. Yu, B.H. Lin, J.H. Lee, Synthesis and characterization of TiO2/BaF2/ceramic radio-sensitive photocatalyst, J. Photochem. Photobiol A: Chem. 182 (2006) 93-98.
[51] L. Ge, M. Xu, Influences of the Pd doping on the visible light photocatalytic activities of InVO4–TiO2 thin films, Mater. Sci. Eng. B 131 (2006) 222-229.
[52] X. Zong, H.J. Yan, G.P. Wu, G.J. Ma, F.Y. Wen, L. Wang, Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc. 130 (2008) 7176-7177.
[53] H.G. Kim, D.W. Hwang, J.S. Lee, An undoped, single-phase oxide photocatalyst working under visible light, J. Am. Chem. Soc. 126 (2004) 8912-8913.
[54] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting, J. Am. Chem. Soc. 127 (2005) 8286-8287.
[55] S.H. Shen, L. Zhao, L.J. Guo, Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production, Int. J. Hydrogen Energy 33 (2008) 4501-4510.
[56] Sclafani, L. Palminsano, E. Davi, Photocatalytic degradaton of phenol in aqueous polycrystalline TiO2 dispersions: the influence of Fe3+, Fe2+ and Ag+ on the reaction rate, J. Photochem. Photobiol A: Chem. 56 (1991) 113-123.
[57] M.R. Prairie, L.R. Evans, B.M. Stange, S.L. Martinez, An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals, Environ. Sci. Technol. 27 (1993) 1776.
[58] Lassaletta, A.R.G. Elipe, A. Justo, A. Fernandez, F.J. Ager, M.A. Respaldiza, J.C. Soares, M.F. Da Silva, Thermal and photochemical methods for the preparation of thin films of cermet materials, J. Mater. Sci. 31 (1996) 2325-2332.
[59] Sclafani, J.M. Herrmann, Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media, J. Photochem. Photobiol A: Chem. 113 (1998) 181-188.
[60] Ilisz, A. Dombi, Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. II. Effect of charge-trapping species on product distribution, Appl. Catal. A: Gen. 180 (1999) 35.
[61] C.A.K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, P.P. Zamora, Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO, Chemosphere 40 (2000) 427-432.
[62] C. Chen, X. Li, W. Ma, J. Zhao, Effect of Transition Metal Ions on the TiO2-assisted photodegradation of dyes under visible irradiation:  A probe for the interfacial electron transfer process and reaction mechanism, J. Phys. Chem. B 106 (2002) 318-324.
[63] M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S.G. Neophytides, P. Falaras, Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation, J. Catal. 220 (2003) 127-135.
[64] B. Li, X. Z. Li, The enhancement of photodegradation efficiency using Pt–TiO2 catalyst, Chemosphere 48 (2002) 1103-1111.
[65] I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, D. Labou, S.G. Neophytides, P. Falaras, Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange, Appl. Catal. B: Environ. 42 (2003) 187-201.
[66] V. Iliev, D. Tomova, L. Bilyarska, L. Petrov, Photooxidation of xylenol orange in the presence of palladium-modified TiO2 catalysts, Catal. Commun. 5 (2004) 759-763.
[67] Chun, T. Yuchao, T. Hongxiao, Characterization and photocatalytic activity of transition-metal-supported surface bond-conjugated TiO2/SiO2, Catal. Today 90 (2004) 325-330.
[68] Y. Xie, C. Yuan, Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation, Appl. Surf. Sci. 221 (2004) 17-24.
[69] C. Sahoo, A.K. Gupta, P. Anjali, Photocatalytic degradation of Crystal Violet (C.I. Basic Violet 3) on silver ion doped TiO2, Dyes Pigments 66 (2005) 189-196.
[70] N. Sobana, M. Muruganadham, M. Swaminathan, Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes, J. Mol. Catal. A: Chem. 258 (2006) 124-132.
[71] Wang, G. Zhang, Z. Zhang, X. Zhang, G. Zhao, F. Wen, Z. Pan, Y. Li, P. Zhang, P. Kang, Investigation on photocatalytic degradation of ethyl violet dyestuff using visible light in the presence of ordinary rutile TiO2 catalyst doped with upconversion luminescence agent, Water Res. 40 (2006) 2143-2150.
[72] R. Vinu, G. Madras, Synthesis and photoactivity of Pd substituted nano-TiO2, J. Mol. Catal. A: Chem. 291 (2008) 5-11.
[73] L. Ravichandran, K. Selvam, B. Krishnakumar, M. Swaminathan, Photovalorisation of pentafluorobenzoic acid with platinum doped TiO2, J. Hazard. Mater. 167 (2009) 763-769.
[74] M.V. Dozzi, L. Prati, P. Canton, E. Selli, Effects of gold nanoparticles deposition on the photocatalytic activity of titanium dioxide under visible light, Phys. Chem. Chem. Phys. 11 (2009) 7171-7180.
[75] Matos, J. Laine, J.M. Herrmann, Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon, Appl. Catal B 18 (1998) 281-291.
[76] J.M. Herrmann, J. Matos, J. Disdier, C. Guillard, J. Laine, S. Malato, Blanco, Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension, Catal. Today 54 (1999) 255-265.
[77] C.G. Da Silva, J.L. Faria, Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation, J. Photochem. Photobiol. A: Chem. 155 (2003) 133-143.
[78] S.K. Samantaray, P. Mohapatra, K. Parida, Physico-chemical characterisation and photocatalytic activity of nanosized SO42-/TiO2 towards degradation of 4-nitrophenol, J. Mol. Catal. A: Chem. 198 (2003) 277-287.
[79] S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon‐modified titanium dioxide, Angew. Chem. Int. Ed. 42 (2003) 4908-4911.
[80] B. Tryba, T. Tsumura, M. Janus, A.W. Morawski, M. Inagaki, Carbon-coated anatase: adsorption and decomposition of phenol in water, Appl. Catal. B 50 (2004) 177-183.
[81] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A: Gen. 265 (2004) 115-121.
[82] Y. Li, D. S. Hwang, N.H. Lee, S.J. Kim, Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chem. Phys. Lett. 404 (2005) 25-29.
[83] Youji, L. Xiaodong, L. Junwen, J. Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Res. 40 (2006) 1119-1126.
[84] J. Yang, H. Bai, X. Tan, J. Lian, IR and XPS investigation of visible-light photocatalysis—Nitrogen–carbon-doped TiO2 film, Appl. Surf. Sci. 253 (2006) 1988-1994.
[85] H. Sun, Y. Bai, Y. Cheng, W. Jin, N. Xu, Preparation and characterization of visible-light-driven carbon−sulfur-codoped TiO2 photocatalysts, Ind. Eng. Chem. Res. 45 (2006) 4971-4976.
[86] D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity, Ind. Eng. Chem. Res. 46 (2007)2741-2746.
[87] Q. Xiao, J. Zhang, C. Xiao, Z. Si, X. Tan, Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension, Sol. Energy 82 (2008) 706-713.
[88] Z. Jiang, F. Yang, N. Luo, B.T.T. Chu, D. Sun, H. Shi, T. Xiao, P.P. Edwards, Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis, Chem. Commun. 47 (2008) 6372-6374.
[89] X. Hu, T. Zhang, Z. Jin, J. Zhang, W. Xu, J. Yan, J. Zhang, L. Zhang, Y. Wu, Fabrication of carbon-modified TiO2 nanotube arrays and their photocatalytic activity, Mater. Lett. 62 (2008) 4579-4581.
[90] K.M. Parida, N. Sahu, N.R. Biswal, B. Naik, A.C. Pradhan, Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light, J. Colloid Interface Sci. 318 (2008) 231-237.
[91] Y. Yu, H.H. Wu, B.L. Zhu, S.R. Wang, W.P. Huang, S.H. Wu, S.M. Zhang, Preparation, characterization and photocatalytic activities of F-doped TiO2 nanotubes, Catal. Lett. 121 (2008) 165-171.
[92] Vijayabalan, K. Selvam, R. Velmurugan, M. Swaminathan, Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4, J. Hazard. Mater. 172 (2009) 914-921.
[93] T.P. Ang, C.S. Toh, Y.F. Han, Synthesis, characterization, and activity of visible-light-driven nitrogen-doped TiO2−SiO2 mixed oxide photocatalysts, J. Phys. Chem. C 113 (2009) 10560-10567.
[94] Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic Carbon-Nanotube–TiO2 Composites, Adv. Mater. 21 (2009) 2233-2239.
[95] S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C.D. Valentin,
G. Pacchioni, Origin of photoactivity of nitrogen-doped titanium dioxide under visible light, J. Am. Chem. Soc. 128 (2006) 15666-15671.
[96] C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang, Ag/AgBr/TiO2 visible light photocatalyst for destruction of azo dyes and bacteria, J. Phys. Chem. B 110 (2006) 4066-4072.
[97] X.H. Wang, J.G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki, Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation, J. Phys. Chem. B 110 (2006) 6804-6809.
[98] M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria, J. Am. Chem. Soc. 129 (2007) 9552-9553.
[99] C.T. Yu, C.F. Wang, W.Z. Wang, Decomposition of organic resin by radio-sensitive photocatalyst, J. Photochem. Photobiol. A 186 (2007) 369-375.
[100] Y. Li, H. Zhang, Z. Guo, J. Han, X. Zhao, Q. Zhao, S.J. Kim, Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst, Langmuir 24 (2008) 8351-8357.
[101] Y. Zang, R. Farnood, Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation, Appl. Catal. 79 (2008) 334-340.
[102] J. Yu, G. Dai, B. Huang, Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays, J. Phys. Chem. C 113 (2009) 16394-16401.