Graphene-based Composites: Present, Past and Future for Supercapacitors


Graphene-based Composites: Present, Past and Future for Supercapacitors

P. Sathish Kumar, Samir Kumar Pal, T. K. Kannan, R. Rajasekar

Graphene-based materials are promising for applications in supercapacitors and other energy storage devices due to the outstanding properties like highly tunable surface area, outstanding electrical conductivity, good chemical stability and excellent mechanical behavior. This chapter is aimed to encapsulate recent development on graphene-based materials for supercapacitor electrodes. The on-going extensive researches in respect of rationalization of their structures at varying scales and dimensions, development of effective and low-cost synthesis techniques, design and architecture of graphene-based materials, as well as clarification of their electrochemical performance have generated renewed interest in graphene-based composites. The future studies are expected to focus on the overall device performance in energy storage devices and large-scale process in low costs for the promising applications in portable and wearable electronic, transport, electrical and hybrid vehicles.

Supercapacitors, Graphene, Thermal Reduction, Energy Materials, Electronic Applications, Electrode Materials

Published online 2/25/2018, 25 pages


Part of Electrochemical Capacitors

[1] Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes-A review, J. Materiomics 2 (2016) 37-54.
[2] L. Li, B. Song, L. Maurer, Z. Lin, G. Lian, C.C. Tuan, K.S. Moon, C.P. Wong, Molecular engineering of aromatic amine spacers for high-performance graphene-based supercapacitors, Nano Energy 21 (2016) 276-294.
[3] X. Yao, Y. Zhao, Three-dimensional porous graphene networks and hybrids for lithium-ion batteries and supercapacitors, Chem. 2 (2017) 171–200.
[4] S. Zheng , Z.S. Wu, S. Wang, H. Xiao, F. Zhou, C. Sun, X. Bao, H.M. Cheng, Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors, Energy Stor. Mater. 6 (2017) 70-97.
[5] J. Li, H. Xie, Y. Li, Enhanced electrochemical performance of poly(N-acetylaniline)/graphene composites as electrode materials for supercapacitors, Mater. Lett. 124 (2014) 215-218.
[6] K. Song, H. Ni, L.Z. Fan, Flexible graphene-based composite films for supercapacitors with tunable areal capacitance, Electrochim. Acta 235 (2017) 233-241.
[7] B. Xie, Y.Wang, W. Lai, W. Lin, Z. Lin, Z. Zhang, P. Zou, Y. Xu, S. Zhou, C. Yan, F. Kang, C.P. Wong, Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components, Nano Energy 26 (2016) 276–285.
[8] J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide derived carbon films for micro-supercapacitors, Sci. 328 (2010) 480-483.
[9] D. Pech, M. Brunet, H. Durou, P.Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh power micrometer sized supercapacitors based on onion like carbon, Nat. Nanotechnol. 5 (2010) 651-654.
[10] Z.S. Wu, K. Parvez, X. Feng, K. Mullen, Graphene-based in-plane micro-supercapacitors with high power and energy densities, Nat. Commun. 4 (2013) 2487.
[11] Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.B. Sun, F.S. Xiao, Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction, Nano Today 5 (2010) 15-20.
[12] M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nat. Commun. 4 (2013) 1475.
[13] Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li, P.R. Smalley, J. Lin, J.M. Tour, Flexible boron doped laser induced graphene micro supercapacitors, ACS Nano 9 (2015) 5868-5875.
[14] V.H. Nguyen, V.C. Tran, D. Kharismadewi, J.J. Shim, Ultralong MnO2 nanowires intercalated graphene/Co3O4 composites for asymmetric supercapacitors, Mater. Lett. 147 (2015) 123-127.
[15] H. Zhang, X. Zhang, H. Lin, K. Wang, X. Sun, N. Xu, C. Li, Y. Ma, Graphene and maghemite composites based supercapacitors delivering high volumetric capacitance and extraordinary cycling stability, Electrochim. Acta 156 (2015) 70-76.
[16] S. Mitra, S. Sampath, Electrochemical capacitors based on exfoliated graphite electrodes batteries, fuel cells, and energy conversion, Electrochem. Solid-State Lett. 7 (2004) 264-268.
[17] X. Wang, L.J. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8 (2008) 323-327.
[18] Q. Xie, G. Chen, R. Bao, Y. Zhang, S. Wu, Polystyrene foam derived nitrogen-enriched porous carbon/graphene composites with high volumetric capacitances for aqueous supercapacitors, Micropor. Mesopor. Mater. 239 (2017) 130-137.
[19] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Electric field effect in atomically thin carbon films, Sci. 306 (2004) 666-669.
[20] Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol. 3 (2008) 563-568.
[21] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498-3502.
[22] W. Gao, L.B. Alemany, L.J. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide, Nat. Chem. 1 (2009) 403-408.
[23] C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules or the green synthesis of graphene nanosheets, ACS Nano 4 (2010) 2429-2437.
[24] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid, Chem. Commun. 46 (2010) 1112-1114.
[25] W. Shi, J. Zhu, D.H. Sim, Y.Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H.H. Hng, Q. Yan, Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites, J. Mater. Chem. 21 (2011) 3422-3427.
[26] S. Kannappan, K. Kaliyappan, R.K. Manian, A.S. Pandian, H. Yang, Y.S. Lee, J.H. Jang, W. Lu, Graphene based supercapacitors with improved specific capacitance and fast charging time at high current density,
[27] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863-4868.
[28] Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Sci. 332 (2011) 1537-1541.
[29] M. Sevilla, G.A. Ferrero, A.B. Fuertes, Graphene-cellulose tissue composites for high power supercapacitors, Energy Stor. Mater. 5 (2016) 33–42.
[30] B. Zhao, D.C. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, B.H. Rainwater, G.H. Waller, D. Zhen, Y. Ding, Y. Chen, C. Qu, D. Dang, C.P. Wong, M. Liu, A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes, Energy Stor. Mater. 7 (2017) 32–39.
[31] Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, K. Mullen, Three-dimensional nitrogen and boron co-doped graphene for high-performance all solid-state supercapacitors, Adv. Mater. 24 (2012) 5130–5135.
[32] S. Mao, G. Lu, J. Chen, Three-dimensional graphene-based composites for energy applications, Nanoscale 7 (2015) 6924–6943.
[33] C. Liang, L. Chen, D. Wu, C.Z.S. Xu, Y. Zhu, D. Xiong, P. Yang, L. Wang, P.K. Chu, Hybrid Co(OH)2/nano-graphene/Ni nano-composites on silicon microchannel plates for miniature supercapacitors, Mater. Lett. 172 (2016) 40-43.
[34] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage, Nat. Mater. 14 (2015) 271-279.
[35] K. Xie, J. Yang, Q. Zhang, H. Guo, S. Hu, Z. Zeng, X. Fang, Q. Xu, J. Huang, W. Qi, Burning the mixture of graphene and lithium nitride for high-performance supercapacitor electrodes, Mater. Lett. 195 (2017) 201-204.
[36] Y.T. Zhang, J.K. Li, G.Y. Liu, J.T. Cai, A. Zhou, J.S. Qiu, Preparation of MnO2/coal-based graphene composites for supercapacitors, New Carbon Mater. 31 (2016) 545-549.
[37] G. Sun, B. Li, J. Ran, X. Shen, H. Tong, Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide-chitosan hydrogels for high performance supercapacitors, Electrochim. Acta 171 (2015) 13-22.
[38] K.J. Huang, J.Z. Zhang, J.L. Cai, Preparation of porous layered molybdenum selenide-graphene composites on Ni foam for high-performance supercapacitor and electrochemical sensing, Electrochim. Acta 180 (2015) 770-777.
[39] Q. Xie, S. Zhou, A. Zheng, C. Xie, C. Yin, S. Wu, Y. Zhang, P. Zhao, Sandwich-like nitrogen-enriched porous carbon/graphene composites as electrodes for aqueous symmetric supercapacitors with high energy density, Electrochim. Acta 189 (2016) 22-31.
[40] M.X. Guo, S.W. Bian, F. Shao, S. Liu, Y.H. Peng, Hydrothermal synthesis and electrochemical performance of MnO2/graphene/polyester composite electrode materials for flexible supercapacitors, Electrochim. Acta 209 (2016) 486-497.
[41] Y. Haldorai, D.A. Salas, C.S. Rak, Y.S. Huh, Y.K. Han, W. Voit, Platinized titanium nitride/graphene ternary hybrids for direct methanol fuel cells and titanium nitride/graphene composites for high performance supercapacitors, Electrochim. Acta 220 (2016) 465-474.
[42] T. Yu, P. Zhu, Y. Xiang, H. Chen, S. Kang, H. Luo, S. Guan, Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors, Electrochim. Acta 222 (2016) 12-19.
[43] Y.G. Zhou, J.J. Chen, F.B. Wang, Z.H. Sheng, X.H. Xia, A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells, Chem. Commun. 46 (2010) 5951–5953.
[44] Y. Li, W. Gao, L. Ci, C. Wang, P.M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon 48 (2010) 1124–1130.
[45] L. Dong, R.R.S. Gari, Z. Li, M.M. Craig, S. Hou, Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation, Carbon 48 (2010) 781–787.
[46] J. Zeng, C. Francia, C. Gerbaldi, V. Baglio, S. Specchia, A.S. Arico, P. Spinelli, Hybrid ordered mesoporous carbons doped with tungsten trioxide as supports for Pt electrocatalysts for methanol oxidation reaction, Electrochim. Acta 94 (2013) 80–91.
[47] B.Y. Xia, H.B. Wu, J.S. Chen, Z. Wang, X. Wang, X.W. (David) Lou, Formation of Pt–TiO2–rGO3-phase junctions with significantly enhanced electro-activity for methanol oxidation, Phy. Chem. 14 (2012) 473–476.
[48] X. Yu, L. Kuai, B. Geng, CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells, Nanoscale 4 (2012) 5738–5743.
[49] Z.F. Li, H.Y. Zhang, Q. Liu, L.L. Sun, L. Stanciu, J. Xie, Fabrication of high-surface area graphene/polyaniline nanocomposites and their application in supercapacitors, ACS Appl. Mater. Inter. 5 (2013) 2685-2691.
[50] H.Y. Liu, W. Zhang, H.H. Song, X.H. Chen, J.S. Zhou, Z.K. Ma, Tremella-like graphene/polyaniline spherical electrode material for supercapacitors, Electrochim. Acta 146 (2014) 511-517.
[51] S. Kong, K. Cheng, T. Ouyang, Y. Gao, K. Ye, G. Wang, D. Cao, Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors, Electrochim. Acta 226 (2017) 29-39.
[52] B.S. Singu, K.R. Yoon, Synthesis and characterization of MnO2-decorated graphene for supercapacitors, Electrochim. Acta 231 (2017) 749-758.
[53] Y. Liu, K. Shi, I. Zhitomirsky, Asymmetric supercapacitor, based on composite MnO2-graphene and N-doped activated carbon coated carbon nanotube electrodes, Electrochim. Acta 233 (2017) 142-150.
[54] Y. Jiang, X. Zheng, X. Yan, Y. Li, X. Zhao, Y. Zhang, 3D architecture of a graphene/CoMoO4 composite for asymmetric supercapacitors usable at various temperatures, J. Colloid Interf. Sci. 493 (2017) 42-50.