Contemporary Dielectric Materials, Chapter 1


Electrical impedance analysis for nano crystalline NiO prepared by combustion method

N. Nallamuthu, S. Asath bahadur, V. Siva, A. Shameem

Nanocrystalline NiO material has been synthesized using a tartaric acid based sol-gel combustion method. The obtained XRD peaks for various calcinating temperatures have been analyzed and reported. The XRD particle size is determined by using the Scherrer formula and it is found to be ~27nm at 600 oC. The structural identification of NiO has been done using Fourier transform infrared spectroscopy (FTIR). The spherical shaped agglomerated NiO particles are characterized by using the SEM technique and the atomic percentages are verified by EDX techniques. The electrical conductivities of sintered NiO are evaluated through an impedance analysis and the activation energy is found to be 0.21 eV.

Nanocrystalline, XRD, SEM, Impedance, Electrical Conductivity, Cathode Materials

Published online 1/1/2017, 11 pages


Part of Contemporary Dielectric Materials

[1] J. Sort, S. Surinach, J. S. Munoz, M. D. Baro, J. Nogues, G. Chouteau, V. Skumryev and G. C. Hadjipanayis, Improving the energy product of hard magnetic materials physical review b, 65, (2002) 174420J.
[2] M. Chigane and M. Ishikawa, Characterization of electrochromic nickel oxide thin films prepared by anodic deposition, J. Chem. Soc., Faraday Trans., (1992) 88, 2203.
[3] B. C. Alcock, Z. Li, W. J. Fergus, and L. Wang, New electrochemical sensors for oxygen determination, Solid State Ionics, 39, (1992) 53.
[4] H. Kumagai, M. Matsumoto, K. Toyoda, and M. Obara, Preparation and characteristics of nickel oxide thin film by controlled growth with sequential surface chemical reactions, J. Mater. Sci. Lett., 15, (1996) 1081
[5] J. He, H. Lindstrom, A. Hagfeldt, S.-E. Lindquist, Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell, J. Phys. Chem B 103, (1999) 8940.
[6] Z. Ji, G. Natu, Y. Wu, Cyclometalated ruthenium sensitizers bearing a triphenylamino group for p-type NiO dye-sensitized solar cells, ACS Appl. Mater. Interfaces 5, (2013) 8641.
[7] C. Nitin, S. Sunayana, M.K. Sharma, R.K. Chaturvedi, Photocatalytic degradation of safranine O in the presence of nickel oxide, Int. J. Res. Chem. Environ. 1, (2011) 66.
[8] V. Srinivasan, J. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors, J. Electrochem. Soc. 144, (1997) L210.
[9] K. Soulantica, L. Erades, M. Sauvan, F. Senocq, A. Maisonnat, B. Chaudret, Synthesis of indium and indium oxide nanoparticles from indium cyclopentadienyl precursor and their application for gas sensing, Adv. Funct. Mater. 13 (2005) pp. 553–557.
[10] M. Epifani, E. Comini, J. Arbiol, R. Diaz, N. Sergent, T. Pagnier, P. Siciliano, G. Faglia, J.R. Morante, Chemical synthesis of In2O3 nanocrystals and their application in highly performing ozone-sensing devices, Sens. Actuators B 130, (2008) 483.
[11] C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO 2-based elements, Sens. Actuators B 3 (1991) 147.
[12] N. Yamazoe, New approaches for improving semiconductor gas sensors, Sens. Actuators B 5, (1991) 7.
[13] A. E. Danks, S. R. Hall and Z. Schnepp, The evolution of ‘sol–gel’chemistry as a technique for materials synthesis, Mater. Horizon 3, (2016) 91.
[14] S. Saravanakumar, R. Saravanan, S. Sasikumar, Effect of sintering temperature on the magnetic properties and charge density distribution of nano-NiO, Chemical papers 68, (2014) 788.
[15] S. Mohseni Meybodi, S. A. Hosseini, M. Rezaee, S. K. Sadrnezhaad, D. Mohammadyani, Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method, ultrasonics sonochemistry 19, (2012) 841.
[16] N. Nallamuthu, I. Prakash, M. Venkateswarlu, S. Balasubramanyam, N. Satyanarayana, Sol–gel synthesis and characterization of Li 2 O–As 2 O 5–SiO 2 glassy system, 9, (2008) 15.
[17] M. Muthuvinayagam, C. Gopinathan, Characterization of proton conducting polymer blend electrolytes based on PVdF-PVA, Polymer (2015) 68, 122.