Structural Characterization of Stone Flooring “Calçada Marble”, in Lisbon, Portugal

Structural Characterization of Stone Flooring “Calçada Marble”, in Lisbon, Portugal

Mohamed EL OMARI, Mohamed EL AMRAOUI, Imane FIKRI, Lahcen BEJJIT, Mustapha HADDAD, Saadia AIT LYAZDI, Aumeur EL AMRANI

download PDF

Abstract. The Lisbon “Calçada” sidewalks have a traditional style made of small flat and irregular cobblestones, representing magnificent mosaics. This work presents the characterization and identification of the mineralogical phases of sidewalk stones, originating from Lisbon, Portugal. Samples referenced MEKPBL (white) and MEKPNL (grey-black) were studied by means of Raman spectroscopy, ATR-FTIR and XRD. All Raman spectra show a strong band around 1089 cm-1 which can be attributed to the v1-symmetric stretching mode of (CO3)2-, indicating that calcite is the main crystal phase in both samples. All Raman spectra of MEKPNL show also graphite fingerprints localized around 1329 cm-1 and 1607 cm-1, which are characteristic respectively of the D and G peaks of the carbonaceous material. These carbonaceous materials are the substance responsible of the grey-black color to these stones. Furthermore, the Raman spectra of the MEKPNL sample show also a weak Raman band located at 460 cm-1 which can be attributed to the symmetrical stretching of Si-O-Si, characteristic of the α-quartz. Furthermore, ATR-FTIR and XRD analyses supported the Raman results.

Raman Spectroscopy, ATR-FTIR, XRD, Characterization, Mineralogical Phase, Flooring, Calçada

Published online 3/15/2024, 9 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Mohamed EL OMARI, Mohamed EL AMRAOUI, Imane FIKRI, Lahcen BEJJIT, Mustapha HADDAD, Saadia AIT LYAZDI, Aumeur EL AMRANI, Structural Characterization of Stone Flooring “Calçada Marble”, in Lisbon, Portugal, Materials Research Proceedings, Vol. 40, pp 294-302, 2024


The article was published as article 31 of the book Mediterranean Architectural Heritage

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] S. Khrissi, M. Haddad, L. Bejjit, S. A. Lyazidi, M. El Amraoui, C. Falguères, Raman and XRD characterization of Moroccan Marbles, IOP Conf. Ser: Mater. Sci. Eng. 186, (2017) 012028.
[2] J. Menningen, S. Siegesmund, L. Lopes et al. The Estremoz marbles: an updated summary on the geological, mineralogical and rock physical characteristics. Environ Earth Sci 77, (2018) 191.
[3] C.M. da Silva, S. Pereira. Walking on Geodiversity: the Artistic Stone-Paved Sidewalks of Lisbon (Portugal) and Their Heritage Value. Geoheritage 14, (2022) 98.
[4] D. Pacheco, J. Cotas, A. Domingues, S. Ressurreição, K. Bahcevandziev, L. Pereira. Chondracanthus teedei var. lusitanicus: the nutraceutical potential of an unexploited marine resource. Marine Drugs, 19(10), (2021) 570.
[5] Y. Chen, J. Fan. An applied study of Calçada Portuguesa in a former Portuguese colonial cityTake Goa, India as an example. India as an example. SSRN. (June 1, 2022).
[6] A. Rousaki, P. Vandenabeele. In situ Raman spectroscopy for cultural heritage studies. Journal of Raman Spectroscopy, 52(12), (2021) 2178-2189.
[7] A. Boukir, S. Fellak, P. Doumenq. Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD). Heliyon, 5(9). (2019).
[8] J. Jehlička, A. Šťastná, R. Přikryl. Raman spectral characterization of dispersed carbonaceous matter in decorative crystalline limestones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(3), (2009) 404-409.
[9] (accessed August 20, 2023)
[10] (accessed September 25, 2023).
[11] N. Buzgar, A. I. Apopei. The Raman study of certain carbonates. Geologie Tomul L, 2(2), (2009) 97-112.
[12] S. Gunasekaran, G. Anbalagan, S. Pandi. Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 37(9), (2006) 892-899.
[13] Y. Kim, M. C. Caumon, O. Barres, A. Sall, J. Cauzid. Identification and composition of carbonate minerals of the calcite structure by Raman and infrared spectroscopies using portable devices. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 261, (2021) 119980..
[14] M. Ostroumov, E. Faulques, E. Lounejeva. Raman spectroscopy of natural silica in Chicxulub impactite, Mexico. Comptes Rendus Geoscience, 334(1), (2002) 21-26..
[15] R. Palmeri, M. L. Frezzotti, G. Godard, R. J. Davies. Pressure‐induced incipient amorphization of α‐quartz and transition to coesite in an eclogite from Antarctica: a first record and some consequences. Journal of Metamorphic Geology, 27(9), (2009) 685-705..
[16] S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh. Remote Raman spectroscopy of various MIXED and composite mineral phases at 7.2 m distance. 37th Lunar and Planetary Science Conference, (2006).
[17] S. Raneri, F. Košek, L. Lazzarini, D. Wielgosz‐Rondolino, J. Jehlicka, F. Antonelli. Raman spectroscopy as a tool for provenancing black limestones (bigi morati) used in antiquity. Journal of Raman Spectroscopy, 52(1), (2021) 241-250.
[18] P. Makreski, G. Jovanovski, T. Stafilov, B. Boev. Minerals from Macedonia XII. The dependence of quartz and oral color on trace element composition-AAS, FT IR and MICRO-RAMAN spectroscopy study. Bulletin of the Chemists and Technologists of Macedonia, 23(2), (2004) 171-184.
[19] F. Bosch-Reig, J. V. Gimeno-Adelantado, F. Bosch-Mossi, A. Doménech-Carbó. Quantification of minerals from ATR-FTIR spectra with spectral interferences using the MRC method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 181, (2017) 7-12
[20] I. Ramalla, R. K. Gupta, K. Bansal. Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique at polluted areas for longer life and reliability. Int. J. Eng. Technol, 4(4), (2015) 509.
[21] O. Beyssac, B. Goffé, J. P. Petitet, E. Froigneux, M. Moreau, J. N. Rouzaud. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), (2003) 2267-2276.
[22] T. M. B. Senarathna, SHMPK. Janith, A. Dassanayake, S. P. Chaminda, C L. Jayawardena, Correlations between durability, mineralogy and strength properties of limestone (2021).
[23] P. Q. Zhao, L. C. Lu, S. D. Wang. Influence of high-silicon limestone on mineral structure and performance of belite-barium calcium sulphoaluminate clinker. Advanced Materials Research, 168, (2011) 460-465.
[24] V. Černý, G. Yakovlev, R. Drochytka, Š. Baránek, L. Mészárosová, J. Melichar, R. Hermann. Impact of Carbon Particle Character on the Cement-Based Composite Electrical Resistivity. Materials, 14(24), (2021) 7505.
[25] Z. Ren, J. Sun, W. Tang, X. Zeng, H. Zeng, Y. Wang, X. Wang. Mechanical and electrical properties investigation for electrically conductive cementitious composite containing nano-graphite activated magnetite. Journal of Building Engineering, 57, (2022) 104847.