Polymer/Organic Solar Cells: Progress and Current Status

$30.00

Polymer/Organic Solar Cells: Progress and Current Status

L. Vidhya, S. Vinodha, S.J. Pradeeba, R. Jeba Beula

Organic solar cells (OSCs) have sparked widespread interest in recent decades due to benefits such as low cost, flexibility, semitransparency, non-toxicity, and suitability for roll-to-roll large-scale production. The development of OSCs with high-performance active layer materials, electrodes, and interlayers as well as innovative device architectures has made significant strides. In particular, the advancement of OSCs’ power conversion efficiency (PCE) has been greatly aided by the development of active layer materials, including novel acceptors and donors. Photovoltaic cells are one of the most promising renewable energy sources for resolving energy and environmental challenges. Organic solar cells (OSCs) have several advantages over other photovoltaic technologies, including low cost, lightweight, semi-transparency, and flexibility. This final benefit, which results from the inherent flexibility of organic active layers, is unique to OSCs. Flexible OSCs (F-OSCs), which have intriguing applications in areas like wearable electronics and building-integrated photovoltaic, have progressed quickly in recent years, and great progress has been made in this area. In this chapter, we provide an overview of current developments in semi-transparent organic solar cells, polymer-based solar cells and their Fullerene-containing polymers for organic solar cell. Additionally, a brief discussion of fullerene-containing polymers for organic solar cell was specified. The final step is the presentation of difficulties for the advancement of F-OSCs.

Keywords
Organic Solar Cells, Photovoltaic Cells, Polymer-based Solar Cells, Fullerene-containing Polymers

Published online 3/25/2024, 40 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: L. Vidhya, S. Vinodha, S.J. Pradeeba, R. Jeba Beula, Polymer/Organic Solar Cells: Progress and Current Status, Materials Research Foundations, Vol. 163, pp 52-91, 2024

DOI: http://dx.doi.org/10.21741/9781644903032-3

The article was published as article 3 of the book Third Generation Photovoltaic Technology

References
[1] Abodunrin, T. J., Boyo, A. O., Usikalu, M. R. & Kesinro, O. (2018). Spectral responses of B.vulgaris dye-sensitized solar cells to change in electrolyte, IOP Conf. Series: Earth and Environmental Science, 173: 012047. https://doi.org/10.1088/1755-1315/173/1/012047
[2] Tsokos, K. A. (28 January 2010). Physics for the IB Diploma Full Colour. Cambridge University Press. ISBN 978-0-521-13821-5.
[3] Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, B Z. Science China Chemistry, 2022, 65: 224-26. https://doi.org/10.1007/s11426-021-1180-6
[4] Chiang CK, Fincher CR, Park YW Jr, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG. Electrical conductivity in doped polyacetylene. Physical Review Letters. 1977;39:1098-1101. DOI: 1010.1103/PhysRevLett.39.1098. https://doi.org/10.1103/PhysRevLett.39.1098
[5] Shaheen SE, Ginley DS, Jabbour GE. Organic-based photovoltaics: Toward low-cost power generation. MRS Bulletin. 2005;30:10-19. https://www.calpoly.edu/~rechols/Phys422/ MRS2005Intro.pdf. https://doi.org/10.1557/mrs2005.2
[6] C. W. Tang and A. C. Albrecht, “Photovoltaic effects of metal−chlorophyll-a−metal sandwich cells,” The Journal of Chemical Physics, vol. 62, no. 6, pp. 2139-2149, 1975. https://doi.org/10.1063/1.430780
[7] C. W. Tang, “Two-layer organic photovoltaic cell,” Applied Physics Letters, vol. 48, no. 2, pp. 183-185, 1986. https://doi.org/10.1063/1.96937
[8] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Applied Physics Letters, vol. 84, no. 16, pp. 3013-3015, 2004. https://doi.org/10.1063/1.1713036
[9] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Applied Physics Letters, vol. 85, no. 23, pp. 5757-5759, 2004. https://doi.org/10.1063/1.1829776
[10] M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3- hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends,” Applied Physics Letters, vol. 87, no. 8, Article ID 083506, 3 pages, 2005. https://doi.org/10.1063/1.2006986
[11] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “Mixed donoracceptor molecular heterojunctions for photovoltaic applications. II. Device performance,” Journal of Applied Physics, vol. 98, no. 12, Article ID 124903, 9 pages, 2005. https://doi.org/10.1063/1.2142073
[12] C. W. Tang and A. C. Albrecht, “Photovoltaic effects of metal−chlorophyll-a−metal sandwich cells,” The Journal of Chemical Physics, vol. 62, no. 6, pp. 2139-2149, 1975. https://doi.org/10.1063/1.430780
[13] C. W. Tang, “Two-layer organic photovoltaic cell,” Applied Physics Letters, vol. 48, no. 2, pp. 183-185, 1986. https://doi.org/10.1063/1.96937
[14] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Applied Physics Letters, vol. 84, no. 16, pp. 3013-3015, 2004. https://doi.org/10.1063/1.1713036
[15] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Applied Physics Letters, vol. 85, no. 23, pp. 5757-5759, 2004. https://doi.org/10.1063/1.1829776
[16] K. Takahashi, N. Kuraya, T. Yamaguchi, T. Komura, and K. Murata, “Three-layer organic solar cell with high-power conversion efficiency of 3.5%,” Solar Energy Materials and Solar Cells, vol. 61, no. 4, pp. 403-416, 2000. https://doi.org/10.1016/S0927-0248(99)00163-4
[17] K. Takahashi, N. Kuraya, T. Yamaguchi, T. Komura, and K. Murata, “Three-layer organic solar cell with high-power conversion efficiency of 3.5%,” Solar Energy Materials and Solar Cells, vol. 61, no. 4, pp. 403-416, 2000. https://doi.org/10.1016/S0927-0248(99)00163-4
[18] A. J. Breeze, A. Salomon, D. S. Ginley, H. Tillmann, H. Horhold, and B. A. Gregg, “Improved efficiencies in polymer-perylene diimide bilayer photovoltaics,” in Organic Photovoltaics III, vol. 4801 of Proceedings of SPIE, pp. 34-39, Seattle, Wash, USA, June 2002. https://doi.org/10.1117/12.452436
[19] A. J. Breeze, A. Salomon, D. S. Ginley, B. A. Gregg, H. Tillmann, and H.-H. Horhold, “Polymer-perylene diimide het- ¨ erojunction solar cells,” Applied Physics Letters, vol. 81, no. 16, pp. 3085-3087, 2002. https://doi.org/10.1063/1.1515362
[20] J.-I. Nakamura, C. Yokoe, K. Murata, and K. Takahashi, “Efficient organic solar cells by penetration of conjugated polymers into perylene pigments,” Journal of Applied Physics, vol. 96, no. 11, pp. 6878-6883, 2004. https://doi.org/10.1063/1.1804245
[21] H. Sirringhaus, “Device physics of solution-processed organic field-effect transistors,” Advanced Materials, vol. 17, no. 20, pp. 2411-2425, 2005 https://doi.org/10.1002/adma.200501152
[22] Chiang CK, Fincher CR, Park YW Jr, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG. Electrical conductivity in doped polyacetylene. Physical Review Letters. 1977;39:1098-1101. DOI: 1010.1103/PhysRevLett.39.1098. https://doi.org/10.1103/PhysRevLett.39.1098
[23] Shaheen SE, Ginley DS, Jabbour GE. Organic-based photovoltaics: Toward low-cost power generation. MRS Bulletin. 2005;30:10-19. https://www.calpoly.edu/~rechols/Phys422/ MRS2005Intro.pd. https://doi.org/10.1557/mrs2005.2
[24] Kesinro, R. O., Boyo, A. O., Akinyemi, M. L. & Mola, G. T. (2019). Fabrication of P3HT: PCBM bulk heterojunction organic solar cell, IOP Conf. Series: Earth and Environmental Science, 331: 01202. https://doi.org/10.1088/1755-1315/331/1/012028
[25] Kalyani, N. T. & Dhoble, S. J (2018). Empowering the future with organic solar cell devices, Nanomaterials for Green Energy.
[26] Kesinro, R. O., 2 Boyo, A. O, 1 Akinyemi, M. L., 1,3Emetere, M. E., 1 Aizebeokhai, A. P , Progress on Organic Solar Cells: A Short Review, 2021 IOP Conf. Ser.: Earth Environ. Sci. 665 012036. https://doi.org/10.1088/1755-1315/665/1/012036
[27] C. K. Chiang, C. R. Fincher Jr., Y. W. Park, et al., “Electrical conductivity in doped polyacetylene,” Physical Review Letters, vol. 30, no. 17, pp. 1098-1101, 1977. https://doi.org/10.1103/PhysRevLett.39.1098
[28] Thomas Kietzk, Recent Advances in Organic Solar Cell Volume 2007, Article ID 40285, 15 pages, Advances in OptoElectronics,, Hindawi Publishing Corporation. doi:10.1155/2007/40285. https://doi.org/10.1155/2007/40285
[29] T. Kietzke, D. A. M. Egbe, H.-H. Horhold, and D. Ne, “Comparative study of M3EH-PPV-based bilayer photovoltaic devices,” Macromolecules, vol. 39, no. 12, pp. 4018- 4022, 200. https://doi.org/10.1021/ma060199l
[30] M. M. Koetse, J. Sweelssen, K. T. Hoekerd, et al., “Efficient polymer: polymer bulk heterojunction solar cells,” Applied Physics Letters, vol. 88, no. 8, Article ID 083504, 3 pages, 2006. https://doi.org/10.1063/1.2176863
[31] Chang CY, Tsai FY. Highly efficient red fluorescent dyes for organic light-emitting diodes, Journal of Material Chemistry, 2011, 21: 5710-5715 https://doi.org/10.1039/c0jm03109g
[32] Distler A, Sauermann T, Egelhaaf HJ, Rodman S, Waller D, Cheon KS, Lee M, Guldi DM., The Effect of PCBM Dimerization on the Performance of Bulk Heterojunction Solar Cells, Advanced Energy Material, 2014, 4: 1300693. https://doi.org/10.1002/aenm.201400171
[33] Yan L, Yi J, Chen Q, Dou J, Yang Y, Liu X, Chen L, Ma CQ. Ultrafast Growth of High-Quality Monolayer WSe2 on Au Material Chemistry A, 2017, 5: 10010-10020. https://doi.org/10.1039/C7TA02492D
[34] S. Holliday, R. Ashraf, A. Wadsworth, D. Baran, S. Yousaf, C. B. Nielsen, C.-H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C. J. Brabec, A. Salleo, J. R. Durrant and I. McCulloch, Nat. Commun., 2016, 7, 11585. https://doi.org/10.1038/ncomms11585
[35] J. Cai, H. Wang, X. Zhang, W. Lia, D. Lia, Y. Mao, B. Dua, M. Chen, Y. Zhuang, D. Liu, H.-L. Qin, Y. Zhao, J. A. Smithe, R. C. Kilbridee, A. J. Parnelle, R. A. L. Jonese, D. G. Lidzeye and T. Wang, Fluorinated solid additives enable high efficiency non-fullerene organic solar cells Journal of Materials Chemistry A, 2020, 8, 4230-4238. https://doi.org/10.1039/C9TA13974E
[36] S. Park and H. J. Son, Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of non-fullerene acceptors, Journal of Materials Chemistry. A, 2019, 7, 25830- 258. https://doi.org/10.1039/C9TA07417A
[37] N. Y. Doumon, M. V. Dryzhov, F. V. Houard, V. M. Corre, A. Chatri, P. Christodoulis and L. Koster, Photo stability of Fullerene and Non-Fullerene Polymer Solar Cells: The Role of the Acceptors, Applied Material Interfaces, 2019, 11, 8310-8318. https://doi.org/10.1021/acsami.8b20493
[38] Dai S, Zhou J, Chandrabose S, Shi Y, Han G, Chen K, Xin J, Liu K, Chen Z, Xie Z, Ma W, Yi Y, Jiang L, Hodgkiss JM, Zhan X, High-Performance Fluorinated Fused-Ring Electron Acceptor with 3D Stacking and Exciton/Charge Transport, Advanced Materials, 2020, 32: 2000645. https://doi.org/10.1002/adma.202000645
[39] Lee S, Park KH, Lee J, Back H, Sung MJ, Lee J, Kim J, Kim H, KimY, Kwon S, Lee K. Achieving Thickness-Insensitive Morphology of the Photoactive Layer for Printable Organic Photovoltaic Cells via Side Chain Engineering in Nonfullerene Acceptors, Advanced Energy Materials, 2019, 9: 1900044. https://doi.org/10.1002/aenm.201900044
[40] Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim JH, Jiang K, Carpenter JH, Li H, Li Z, McAfee T, Zhao J, Ch en X, Lai JLY, Ma T, Bredas JL, Yan H, Ade H, Quantitative relations between interaction parameter, miscibility and function in organic solar cells, Nature Materials, 2018, 17: 253-260 https://doi.org/10.1038/s41563-017-0005-1
[41] Ye L, Li S, Liu X, Zhang S, Ghasemi M, Xiong Y, Hou J, Ade H. Joule, Quenching to the Percolation Threshold in Organic Solar Cells, 2019, 3: 443-45. https://doi.org/10.1016/j.joule.2018.11.006
[42] Mai J, Xiao Y, Zhou G, Wang J, Zhu J, Zhao N, Zhan X, Lu X. Hidden Structure Ordering Along Backbone of Fused-Ring Electron Acceptors Enhanced by Ternary Bulk Heterojunction, Advanced Materials, 2018, 30: 1802888. https://doi.org/10.1002/adma.201802888
[43] R, Yao H, Hong L, Qin Y, Zhu J, Cui Y, Li S, Hou Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nature Communications, 2018, 9: 4645. https://doi.org/10.1038/s41467-018-07017-z
[44] Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Liu Y, Meng L, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z., Recent progress in organic solar cells (Part II device engineering). Sci China Chem, 2022, 65, https://doi.org/10.1007/s11426-022-1256-8. https://doi.org/10.1007/s11426-022-1256-8
[45] Jacob van Franeker JJ, Turbiez M, Li W, Wienk MM, Janssen RAJ., A real-time study of the benefits of co-solvents in polymer solar cell processing. Nature Communications, 2015, 6: 622. https://doi.org/10.1038/ncomms7229
[46] Liang Q, Jiao X, Yan Y, Xie Z, Lu G, Liu J, Han Y., Separating Crystallization Process of P3HT and O-IDTBR to Construct Highly Crystalline Interpenetrating Network with Optimized Vertical Phase Separation, Advanced Functional Materials, 2019, 29: 180759. https://doi.org/10.1002/adfm.201807591
[47] Yan L, Yi J, Chen Q, Dou J, Yang Y, Liu X, Chen L, Ma CQ., J External load-dependent degradation of P3HT:PC61BM solar cells: behaviour, mechanism, and method of suppression, Journal of Material Chemistry A, 2017, 5: 10010-10020. https://doi.org/10.1039/C7TA02492D
[48] Eo M, Han D, Park M, Hong M, Do Y, Yoo S, Lee M. Polynorbornenes with pendant PCBM as an acceptor for OPVs: Ring-opening metathesis versus vinyl-addition polymerization. European Polymer Journal. 2014;5:37-44. DOI: 10.1016/j.eurpolymj.2013.11.018. https://doi.org/10.1016/j.eurpolymj.2013.11.018
[49] Eo M, Lee S, Park M, Lee M, Yoo S, Do Y. Vinyl-type polynorbornenes with pendant PCBM: A novel acceptor for organic solar cells. Macromolecular Rapid Communications. 2012;33:1119-1125. DOI: 10.1002/marc.201200023. https://doi.org/10.1002/marc.201200023
[50] Markov DE, Hummelen JC, Blom PWM, Sieval AB. Dynamics of exciton diffusion in poly(p-phenylene vinylene) fullerene heterostructures. Physical Review B. 2005;72:045216. DOI: doi.org/10.1103/PhysRevB.72.045216. https://doi.org/10.1103/PhysRevB.72.045216
[51] Renat B. Salikhov, Yuliya N. Biglova and Akhat G. Mustafin, New Organic Polymers for Solar Cells. http://dx.doi.org/10.5772/intechopen.74164. https://doi.org/10.5772/intechopen.74164
[52] Salikhov RB, Biglova YN, Yumaguzin YM, Salikhov TR, Miftakhov MS, Mustafin AG. Solar-energy photoconverters based on thin films of organic materials. Technical Physics Letters. 2013;39:854-857. https://link.springer.com/article/10.1134/S1063785013100106. https://doi.org/10.1134/S1063785013100106
[53] Wang W, Schiff EA. Polyaniline on crystalline silicon heterojunction solar cells. Applied Physics Letters. 2007; 91:133504. DOI: 10.1063/1.2789785. https://doi.org/10.1063/1.2789785
[54] Yang P, Chen S, Liu Y, Xiao Z, Ding L. A pyridine-functionalized pyrazolinofullerene used as a buffer layer in polymer solar cells. Physical Chemistry Chemical Physics. 2013;15:17076-17078. DOI: 10.1039/C3CP53426J. https://doi.org/10.1039/c3cp53426j
[55] Kim D, Jeong M, Seo H, Kim Y. Oxidation behavior of P3HT layers on bare and TiO2 – covered ZnO ripple structures evaluated by photoelectron spectroscopy. Physical Chemistry Chemical Physics. 2015;17:599-604. DOI: 10.1039/C4CP03665D. https://doi.org/10.1039/C4CP03665D