Interaction of Nanoparticles with Macromolecules: Biomedical and Food Science Applications


Interaction of Nanoparticles with Macromolecules: Biomedical and Food Science Applications

Deepa Sharma, Mohit Kumar, Nandlal Verma, Shivangi Sharma, Nisha Rathore, Sanjay Kataria, Gautam Jaiswar

In this chapter we focus on recent developments in nanotechnology, especially emphasizing the interaction between nanoparticles (NPs) and macromolecules. Nanoparticles and macromolecules depend on various parameters, including the sizes, shapes, charges, and chemical functionalities of these moieties. Macromolecules are nontoxic and extremely biocompatible but show strong affinity to bioactive compounds through various molecular interaction, such as π-π interactions, hydrophobic and hydrogen bonds. Nanoparticles and macromolecule carriers are capable of improving the efficacy of chemo therapeutics by their enhanced passive accumulation in tumor tissue as compared with low molecular weight drugs. Further we discussed the role of nanoparticles in foods science.

Nanoparticles, Protein, Carbohydrate, Nucleic Acid and Lipids

Published online 2/10/2024, 19 pages

Citation: Deepa Sharma, Mohit Kumar, Nandlal Verma, Shivangi Sharma, Nisha Rathore, Sanjay Kataria, Gautam Jaiswar, Interaction of Nanoparticles with Macromolecules: Biomedical and Food Science Applications, Materials Research Foundations, Vol. 161, pp 64-82, 2024


Part of the book on Nanoparticle Toxicity and Compatibility

[1] R. Aksakal, C. Mertens, M. Soete, N. Badi, F. Du Prez, Applications of Discrete Synthetic Macromolecules in Life and Materials Science: Recent and Future Trends, Advanced Science. 8 (2021) 2004038.
[2] K. Matyjaszewski, N. V. Tsarevsky, Macromolecular Engineering by Atom Transfer Radical Polymerization, J Am Chem Soc. 136 (2014) 6513–6533.
[3] D. Pasini, D. Takeuchi, Cyclopolymerizations: Synthetic Tools for the Precision Synthesis of Macromolecular Architectures, Chem Rev. 118 (2018) 8983–9057.
[4] S. Ramadurai, A. Kohut, N.K. Sarangi, O. Zholobko, V.A. Baulin, A. Voronov, T.E. Keyes, Macromolecular inversion-driven polymer insertion into model lipid bilayer membranes, J Colloid Interface Sci. 542 (2019) 483–494.
[5] T. Fischer, J. Pietruszka, Key Building Blocks via Enzyme-Mediated Synthesis, in: 2010: pp. 1–43.
[6] P.J. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, E. Oberdorster, The potential risks of nanomaterials: a review carried out for ECETOC, Part Fibre Toxicol. 3 (2006) 11.
[7] A. Radomska, J. Leszczyszyn, M. Radomski, The Nanopharmacology and Nanotoxicology of Nanomaterials: New Opportunities and Challenges, Advances in Clinical and Experimental Medicine. 25 (2016) 151–162.
[8] A. Mostofizadeh, Y. Li, B. Song, Y. Huang, Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nanomaterials, J Nanomater. 2011 (2011) 1–21.
[9] Z. Alhalili, Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment, Molecules. 28 (2023) 3086.
[10] N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Mater Adv. 2 (2021) 1821–1871.
[11] M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis, Chem Rev. 116 (2016) 3722–3811.
[12] C. Liu, U. Burghaus, F. Besenbacher, Z.L. Wang, Preparation and Characterization of Nanomaterials for Sustainable Energy Production, ACS Nano. 4 (2010) 5517–5526.
[13] R.J. Ellis, Macromolecular crowding: an important but neglected aspect of the intracellular environment, Curr Opin Struct Biol. 11 (2001) 114–119.
[14] Y. Hou, Z. Wu, Z. Dai, G. Wang, G. Wu, Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance, J Anim Sci Biotechnol. 8 (2017) 24.
[15] Jianlin Cheng, A.N. Tegge, P. Baldi, Machine Learning Methods for Protein Structure Prediction, IEEE Rev Biomed Eng. 1 (2008) 41–49.
[16] F. CRICK, Central Dogma of Molecular Biology, Nature. 227 (1970) 561–563.
[17] E. Nwanochie, V.N. Uversky, Structure Determination by Single-Particle Cryo-Electron Microscopy: Only the Sky (and Intrinsic Disorder) is the Limit, Int J Mol Sci. 20 (2019) 4186.
[18] A. Bolje, S. Gobec, Analytical Techniques for Structural Characterization of Proteins in Solid Pharmaceutical Forms: An Overview, Pharmaceutics. 13 (2021) 534.
[19] G. Enkavi, M. Javanainen, W. Kulig, T. Róg, I. Vattulainen, Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance, Chem Rev. 119 (2019) 5607–5774.
[20] C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels, Chem Soc Rev. 40 (2011) 5588.
[21] C. Manzoni, D.A. Kia, J. Vandrovcova, J. Hardy, N.W. Wood, P.A. Lewis, R. Ferrari, Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences, Brief Bioinform. 19 (2018) 286–302.
[22] P. Rajput, H. Singh, A. Bandral, Richu, Q. Majid, A. Kumar, Explorations on thermophysical properties of nitrogenous bases (uracil/thymine) in aqueous l-histidine solutions at various temperatures, J Mol Liq. 367 (2022) 120548.
[23] D.E. Marsh, The Origins of Diversity: Darwin’s Conditions and Epigenetic Variations, Nutr Health. 19 (2007) 103–132.
[24] F. Javadi-Zarnaghi, C. Höbartner, Strategies for Characterization of Enzymatic Nucleic Acids, in: 2017: pp. 37–58.
[25] K. Shahane, M. Kshirsagar, S. Tambe, D. Jain, S. Rout, M.K.M. Ferreira, S. Mali, P. Amin, P.P. Srivastav, J. Cruz, R.R. Lima, An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L., Pharmaceuticals. 16 (2023) 611.
[26] C. de Carvalho, M. Caramujo, The Various Roles of Fatty Acids, Molecules. 23 (2018) 2583.
[27] M.F. Ramadan, H.F. Oraby, Fatty Acids and Bioactive Lipids of Potato Cultivars: An Overview, J Oleo Sci. 65 (2016) 459–470.
[28] Y. Luo, Q. Wang, Y. Zhang, Biopolymer-Based Nanotechnology Approaches To Deliver Bioactive Compounds for Food Applications: A Perspective on the Past, Present, and Future, J Agric Food Chem. 68 (2020) 12993–13000.
[29] M. Mahmoudi, I. Lynch, M.R. Ejtehadi, M.P. Monopoli, F.B. Bombelli, S. Laurent, Protein−Nanoparticle Interactions: Opportunities and Challenges, Chem Rev. 111 (2011) 5610–5637.
[30] L. Shang, Y. Wang, J. Jiang, S. Dong, pH-Dependent Protein Conformational Changes in Albumin:Gold Nanoparticle Bioconjugates: A Spectroscopic Study, Langmuir. 23 (2007) 2714–2721.
[31] R. Huang, R.P. Carney, F. Stellacci, B.L.T. Lau, Protein–nanoparticle interactions: the effects of surface compositional and structural heterogeneity are scale dependent, Nanoscale. 5 (2013) 6928.
[32] J. Piella, N.G. Bastús, V. Puntes, Size-Dependent Protein–Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona, Bioconjug Chem. 28 (2017) 88–97.
[33] J. Li, I. Pylypchuk, D.P. Johansson, V.G. Kessler, G.A. Seisenbaeva, M. Langton, Self-assembly of plant protein fibrils interacting with superparamagnetic iron oxide nanoparticles, Sci Rep. 9 (2019) 8939.
[34] C. Ge, J. Du, L. Zhao, L. Wang, Y. Liu, D. Li, Y. Yang, R. Zhou, Y. Zhao, Z. Chai, C. Chen, Binding of blood proteins to carbon nanotubes reduces cytotoxicity, Proceedings of the National Academy of Sciences. 108 (2011) 16968–16973.
[35] B. Yuan, B. Jiang, H. Li, X. Xu, F. Li, D.J. McClements, C. Cao, Interactions between TiO2 nanoparticles and plant proteins: Role of hydrogen bonding, Food Hydrocoll. 124 (2022) 107302.
[36] A.M.G.C. Dias, A. Hussain, A.S. Marcos, A.C.A. Roque, A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides, Biotechnol Adv. 29 (2011) 142–155.
[37] B. Chang, M. Zhang, G. Qing, T. Sun, Dynamic Biointerfaces: From Recognition to Function, Small. 11 (2015) 1097–1112.
[38] F.S. Alves, J.N. Cruz, I.N. de Farias Ramos, D.L. do Nascimento Brandão, R.N. Queiroz, G.V. da Silva, G.V. da Silva, M.F. Dolabela, M.L. da Costa, A.S. Khayat, J. de Arimatéia Rodrigues do Rego, D. do Socorro Barros Brasil, Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine, Separations. 10 (2023) 21.
[39] C. Wang, X. Gao, Z. Chen, Y. Chen, H. Chen, Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review, Polymers (Basel). 9 (2017) 689.
[40] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules. 28 (2023) 710.
[41] N. Nikravesh, G. Borchard, H. Hofmann, E. Philipp, B. Flühmann, P. Wick, Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: From production to clinical practice, Nanomedicine. 26 (2020) 102178.
[42] Z. Qiaorun, S. Honghong, L. Yao, J. Bing, X. Xiao, D. Julian McClements, C. Chongjiang, Y. Biao, Investigation of the interactions between food plant carbohydrates and titanium dioxide nanoparticles, Food Research International. 159 (2022) 111574.
[43] A. Brown, T. Brown, Curtailing their negativity, Nat Chem. 11 (2019) 501–503.
[44] B. Liu, J. Liu, Comprehensive Screen of Metal Oxide Nanoparticles for DNA Adsorption, Fluorescence Quenching, and Anion Discrimination, ACS Appl Mater Interfaces. 7 (2015) 24833–24838.
[45] Li, L.J. Rothberg, Label-Free Colorimetric Detection of Specific Sequences in Genomic DNA Amplified by the Polymerase Chain Reaction, J Am Chem Soc. 126 (2004) 10958–10961.
[46] L. Abarca-Cabrera, P. Fraga-García, S. Berensmeier, Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles, Biomater Res. 25 (2021) 12.
[47] C. Lu, Y. Liu, Y. Ying, J. Liu, Comparison of MoS 2 , WS 2 , and Graphene Oxide for DNA Adsorption and Sensing, Langmuir. 33 (2017) 630–637.
[48] J.M. Carnerero, A. Jimenez‐Ruiz, P.M. Castillo, R. Prado‐Gotor, Covalent and Non‐Covalent DNA–Gold‐Nanoparticle Interactions: New Avenues of Research, ChemPhysChem. 18 (2017) 17–33.
[49] Q. Li, J.P. Froning, M. Pykal, S. Zhang, Z. Wang, M. Vondrák, P. Banáš, K. Čépe, P. Jurečka, J. Šponer, R. Zbořil, M. Dong, M. Otyepka, RNA nanopatterning on graphene, 2d Mater. 5 (2018) 031006.
[50] R.B.M. de Almeida, D.B. Barbosa, M.R. do Bomfim, J.A.O. Amparo, B.S. Andrade, S.L. Costa, J.M. Campos, J.N. Cruz, C.B.R. Santos, F.H.A. Leite, M.B. Botura, Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies, Pharmaceuticals. 16 (2023) 95.
[51] E. Fahy, D. Cotter, M. Sud, S. Subramaniam, Lipid classification, structures and tools, Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids. 1811 (2011) 637–647.
[52] S. Gyergyek, D. Makovec, M. Drofenik, Colloidal stability of oleic- and ricinoleic-acid-coated magnetic nanoparticles in organic solvents, J Colloid Interface Sci. 354 (2011) 498–505.
[53] M. Rudolph, J. Erler, U.A. Peuker, A TGA–FTIR perspective of fatty acid adsorbed on magnetite nanoparticles–Decomposition steps and magnetite reduction, Colloids Surf A Physicochem Eng Asp. 397 (2012) 16–23.
[54] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front Microbiol. 14 (2023) 1188743.
[55] H.-C. Roth, S. Schwaminger, P. Fraga García, J. Ritscher, S. Berensmeier, Oleate coating of iron oxide nanoparticles in aqueous systems: the role of temperature and surfactant concentration, Journal of Nanoparticle Research. 18 (2016) 99.
[56] J.L. Viota, F.J. Arroyo, A.V. Delgado, J. Horno, Electrokinetic characterization of magnetite nanoparticles functionalized with amino acids, J Colloid Interface Sci. 344 (2010) 144–149.
[57] K. Matsuura, T. Saito, T. Okazaki, S. Ohshima, M. Yumura, S. Iijima, Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions, Chem Phys Lett. 429 (2006) 497–502.
[58] J.R. Sosa-Acosta, J.A. Silva, L. Fernández-Izquierdo, S. Díaz-Castañón, M. Ortiz, J.C. Zuaznabar-Gardona, A.M. Díaz-García, Iron Oxide Nanoparticles (IONPs) with potential applications in plasmid DNA isolation, Colloids Surf A Physicochem Eng Asp. 545 (2018) 167–178.
[59] J.-J. Xue, F. Bigdeli, J.-P. Liu, M.-L. Hu, A. Morsali, Ultrasonic-assisted synthesis and DNA interaction studies of two new Ru complexes; RuO 2 nanoparticles preparation, Nanomedicine. 13 (2018) 2691–2708.
[60] M. Cano, K. Sbargoud, E. Allard, C. Larpent, Magnetic separation of fatty acids with iron oxide nanoparticles and application to extractive deacidification of vegetable oils, Green Chemistry. 14 (2012) 1786.
[61] B. Pelaz, G. Charron, C. Pfeiffer, Y. Zhao, J.M. de la Fuente, X.-J. Liang, W.J. Parak, P. del Pino, Interfacing Engineered Nanoparticles with Biological Systems: Anticipating Adverse Nano-Bio Interactions, Small. 9 (2013) 1573–1584.
[62] S.I. van Kasteren, S.J. Campbell, S. Serres, D.C. Anthony, N.R. Sibson, B.G. Davis, Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease, Proceedings of the National Academy of Sciences. 106 (2009) 18–23.
[63] Z. Shen, A. Wu, X. Chen, Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging, Mol Pharm. 14 (2017) 1352–1364.
[64] E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine, Chem. Soc. Rev. 41 (2012) 2740–2779.
[65] M.M. Abeer, P. Rewatkar, Z. Qu, M. Talekar, F. Kleitz, R. Schmid, M. Lindén, T. Kumeria, A. Popat, Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules, Journal of Controlled Release. 326 (2020) 544–555.
[66] C. Argyo, V. Weiss, C. Bräuchle, T. Bein, Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery, Chemistry of Materials. 26 (2014) 435–451.
[67] D. Dutta, S.K. Sundaram, J.G. Teeguarden, B.J. Riley, L.S. Fifield, J.M. Jacobs, S.R. Addleman, G.A. Kaysen, B.M. Moudgil, T.J. Weber, Adsorbed Proteins Influence the Biological Activity and Molecular Targeting of Nanomaterials, Toxicological Sciences. 100 (2007) 303–315.
[68] J.-S. Lee, J.J. Green, K.T. Love, J. Sunshine, R. Langer, D.G. Anderson, Gold, Poly(β-amino ester) Nanoparticles for Small Interfering RNA Delivery, Nano Lett. 9 (2009) 2402–2406.
[69] J. Conde, J.M. de la Fuente, P. V Baptista, In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles, Nanotechnology. 21 (2010) 505101.
[70] J. Conde, J. Rosa, J.M. de la Fuente, P. V. Baptista, Gold-nanobeacons for simultaneous gene specific silencing and intracellular tracking of the silencing events, Biomaterials. 34 (2013) 2516–2523.
[71] A. Martirosyan, Y.-J. Schneider, Engineered Nanomaterials in Food: Implications for Food Safety and Consumer Health, Int J Environ Res Public Health. 11 (2014) 5720–5750.
[72] Z. Chen, S. Han, S. Zhou, H. Feng, Y. Liu, G. Jia, Review of health safety aspects of titanium dioxide nanoparticles in food application, NanoImpact. 18 (2020) 100224.
[73] P. Talbot, J.M. Radziwill-Bienkowska, J.B.J. Kamphuis, K. Steenkeste, S. Bettini, V. Robert, M.-L. Noordine, C. Mayeur, E. Gaultier, P. Langella, C. Robbe-Masselot, E. Houdeau, M. Thomas, M. Mercier-Bonin, Food-grade TiO2 is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection, J Nanobiotechnology. 16 (2018) 53.
[74] A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, N. von Goetz, Titanium Dioxide Nanoparticles in Food and Personal Care Products, Environ Sci Technol. 46 (2012) 2242–2250.
[75] X. Zhu, L. Zhao, Z. Liu, Q. Zhou, Y. Zhu, Y. Zhao, X. Yang, Long-term exposure to titanium dioxide nanoparticles promotes diet-induced obesity through exacerbating intestinal mucus layer damage and microbiota dysbiosis, Nano Res. 14 (2021) 1512–1522.
[76] C.E. Handford, M. Dean, M. Henchion, M. Spence, C.T. Elliott, K. Campbell, Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks, Trends Food Sci Technol. 40 (2014) 226–241.
[77] J. Bing, X. Xiao, D.J. McClements, Y. Biao, C. Chongjiang, Protein corona formation around inorganic nanoparticles: Food plant proteins-TiO2 nanoparticle interactions, Food Hydrocoll. 115 (2021) 106594.
[78] B. Jiang, Q. Zhao, H. Shan, Y. Guo, X. Xu, D.J. McClements, C. Cao, B. Yuan, Impact of Heat Treatment on the Structure and Properties of the Plant Protein Corona Formed around TiO 2 Nanoparticles, J Agric Food Chem. 70 (2022) 6540–6551.