Nanomaterials for Tissue Engineering: Synthesis, Characterisation and Application


Nanomaterials for Tissue Engineering: Synthesis, Characterisation and Application

Drishya Prakashan, Riya Sharma, Sayanti Halder, Sonu Gandhi

Tissue engineering has recently become an effective method for restoring and rebuilding injured tissues and organs. Scaffolds for tissue engineering are essential because they not only give targeted cells structural support, but also act as templates to direct regeneration of tissue and regulate structure of tissue. Nanomaterials of various types have gradually grown and attracted a wide spectrum of research interests over the previous few years due to their distinctive physicochemical properties and exceptional biocompatibility, allowing remarkable advancements in the repair of wounds, wound healing, regeneration of neural tissue, and cardiac tissue engineering. This chapter focuses on the most recent different types of nanomaterials, its synthesis method, functionalisation and characterisation method for the different application in tissue regeneration and engineering. The chapter also focusses on the developments in the usage of scaffolds, nanosheets, or hydrogels based on different nanomaterials that are designed to repair cartilage, bone, and skin tissues. We have also summarised the difficulties and potential of nanomaterial applications in tissue engineering.

Tissue Engineering, Nanoparticles, Surface Modifications, Functionalisation, Drug Delivery

Published online 2/10/2024, 37 pages

Citation: Drishya Prakashan, Riya Sharma, Sayanti Halder, Sonu Gandhi, Nanomaterials for Tissue Engineering: Synthesis, Characterisation and Application, Materials Research Foundations, Vol. 161, pp 27-63, 2024


Part of the book on Nanoparticle Toxicity and Compatibility

[1] A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, M.R. Dokmeci, F. Dehghani, A. Khademhosseini, Electrospun scaffolds for tissue engineering of vascular grafts, Acta Biomater. 10 (2014) 11–25.
[2] A. Paul, V. Manoharan, D. Krafft, A. Assmann, J.A. Uquillas, S.R. Shin, A. Hasan, M.A. Hussain, A. Memic, A.K. Gaharwar, A. Khademhosseini, Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments, J Mater Chem B. 4 (2016) 3544–3554.
[3] M.E. Gomes, M.T. Rodrigues, R.M.A. Domingues, R.L. Reis, Tissue Engineering and Regenerative Medicine: New Trends and Directions-A Year in Review, Tissue Eng Part B Rev. 23 (2017) 211–224.
[4] Y. Zheng, X. Hong, J. Wang, L. Feng, T. Fan, R. Guo, H. Zhang, 2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges, Adv Healthc Mater. 10 (2021) 2001743.
[5] A. Kaushik, R. Khan, P. Solanki, S. Gandhi, H. Gohel, Y.K. Mishra, From Nanosystems to a Biosensing Prototype for an Efficient Diagnostic: A Special Issue in Honor of Professor Bansi D. Malhotra, Biosensors 2021, Vol. 11, Page 359. 11 (2021) 359.
[6] P. Mishra, T. Munjal, S. Gandhi, Nanoparticles for detection, imaging, and diagnostic applications in animals, Nanoscience for Sustainable Agriculture. (2019) 437–477.
[7] D. Shahdeo, A. Roberts, V. Kesarwani, M. Horvat, R.S. Chouhan, S. Gandhi, Polymeric biocompatible iron oxide nanoparticles labeled with peptides for imaging in ovarian cancer, Biosci Rep. 42 (2022).
[8] E. Yasun, S. Gandhi, S. Choudhury, R. Mohammadinejad, F. Benyettou, N. Gozubenli, H. Arami, Hollow micro and nanostructures for therapeutic and imaging applications, J Drug Deliv Sci Technol. 60 (2020) 102094.
[9] D. Shahdeo, S. Gandhi, Next generation biosensors as a cancer diagnostic tool, Biosensor Based Advanced Cancer Diagnostics: From Lab to Clinics. (2022) 179–196.
[10] M. Shah, P. Kolhe, S. Gandhi, Nano-assembly of multiwalled carbon nanotubes for sensitive voltammetric responses for the determination of residual levels of endosulfan, Chemosphere. 321 (2023) 138148.
[11] A. Roberts, S. Mahari, D. Shahdeo, S. Gandhi, Label-free detection of SARS-CoV-2 Spike S1 antigen triggered by electroactive gold nanoparticles on antibody coated fluorine-doped tin oxide (FTO) electrode, Anal Chim Acta. 1188 (2021) 339207.
[12] J. Zhang, H. Chen, M. Zhao, G. Liu, J. Wu, 2D nanomaterials for tissue engineering application, Nano Res. 13 (2020) 2019–2034.
[13] D. Prakashan, A. Roberts, S. Gandhi, Recent advancement of nanotherapeutics in accelerating chronic wound healing process for surgical wounds and diabetic ulcers, Https://Doi.Org/10.1080/02648725.2023.2167432. (2023).
[14] A. Hasan, M. Morshed, A. Memic, S. Hassan, T.J. Webster, H.E.S. Marei, Nanoparticles in tissue engineering: applications, challenges and prospects, Int J Nanomedicine. 13 (2018) 5637.
[15] R. Sensenig, Y. Sapir, C. MacDonald, S. Cohen, B. Polyak, Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo, Https://Doi.Org/10.2217/Nnm.12.109. 7 (2012) 1425–1442.
[16] R.S. Chouhan, M. Horvat, J. Ahmed, N. Alhokbany, S.M. Alshehri, S. Gandhi, Magnetic Nanoparticles—A Multifunctional Potential Agent for Diagnosis and Therapy, Cancers 2021, Vol. 13, Page 2213. 13 (2021) 2213.
[17] M. Borzenkov, G. Chirico, M. Collini, P. Pallavicini, Gold Nanoparticles for Tissue Engineering, in: 2018: pp. 343–390.
[18] J.; Huang, F.; Liu, H.; Su, J.; Xiong, L.; Yang, J.; Xia, Y. Liang, J. Huang, F. Liu, H. Su, J. Xiong, L. Yang, J. Xia, Y. Liang, Advanced Nanocomposite Hydrogels for Cartilage Tissue Engineering, Gels 2022, Vol. 8, Page 138. 8 (2022) 138.
[19] R. Eivazzadeh-Keihan, A. Maleki, M. de la Guardia, M.S. Bani, K.K. Chenab, P. Pashazadeh-Panahi, B. Baradaran, A. Mokhtarzadeh, M.R. Hamblin, Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review, J Adv Res. 18 (2019) 185–201.
[20] J.-O. You, M. Rafat, G.J.C. Ye, D.T. Auguste, Nanoengineering the Heart: Conductive Scaffolds Enhance Connexin 43 Expression, Nano Lett. 11 (2011) 3643–3648.
[21] G.N. Abdelrasoul, B. Farkas, I. Romano, A. Diaspro, S. Beke, Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect, Materials Science and Engineering: C. 56 (2015) 305–310.
[22] O.-J. SUL, J.-C. KIM, T.-W. KYUNG, H.-J. KIM, Y.-Y. KIM, S.-H. KIM, J.-S. KIM, H.-S. CHOI, Gold Nanoparticles Inhibited the Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-Induced Osteoclast Formation by Acting as an Antioxidant, Biosci Biotechnol Biochem. 74 (2010) 2209–2213.
[23] D.N. Heo, W.-K. Ko, M.S. Bae, J.B. Lee, D.-W. Lee, W. Byun, C.H. Lee, E.-C. Kim, B.-Y. Jung, I.K. Kwon, Enhanced bone regeneration with a gold nanoparticle–hydrogel complex, J. Mater. Chem. B. 2 (2014) 1584–1593.
[24] X. Li, H. Wang, H. Rong, W. Li, Y. Luo, K. Tian, D. Quan, Y. Wang, L. Jiang, Effect of composite SiO 2 @AuNPs on wound healing: In vitro and vivo studies, J Colloid Interface Sci. 445 (2015) 312–319.
[25] S. Anees Ahmad, S. Sachi Das, A. Khatoon, M. Tahir Ansari, Mohd. Afzal, M. Saquib Hasnain, A. Kumar Nayak, Bactericidal activity of silver nanoparticles: A mechanistic review, Mater Sci Energy Technol. 3 (2020) 756–769.
[26] F.A. Sheikh, N.A.M. Barakat, M.A. Kanjwal, R. Nirmala, J.H. Lee, H. Kim, H.Y. Kim, Electrospun titanium dioxide nanofibers containing hydroxyapatite and silver nanoparticles as future implant materials, J Mater Sci Mater Med. 21 (2010) 2551–2559.
[27] K. Madhumathi, P.T. Sudheesh Kumar, S. Abhilash, V. Sreeja, H. Tamura, K. Manzoor, S. V. Nair, R. Jayakumar, Development of novel chitin/nanosilver composite scaffolds for wound dressing applications, J Mater Sci Mater Med. 21 (2010) 807–813.
[28] J.-J. Kim, R.K. Singh, S.-J. Seo, T.-H. Kim, J.-H. Kim, E.-J. Lee, H.-W. Kim, Magnetic scaffolds of polycaprolactone with functionalized magnetite nanoparticles: physicochemical, mechanical, and biological properties effective for bone regeneration, RSC Adv. 4 (2014) 17325–17336.
[29] R. De Santis, A. Russo, A. Gloria, U. D’Amora, T. Russo, S. Panseri, M. Sandri, A. Tampieri, M. Marcacci, V.A. Dediu, C.J. Wilde, L. Ambrosio, Towards the Design of 3D Fiber-Deposited Poly( -caprolactone)/Iron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration, J Biomed Nanotechnol. 11 (2015) 1236–1246.
[30] B. Anu Priya, K. Senthilguru, T. Agarwal, S.N. Gautham Hari Narayana, S. Giri, K. Pramanik, K. Pal, I. Banerjee, Nickel doped nanohydroxyapatite: vascular endothelial growth factor inducing biomaterial for bone tissue engineering, RSC Adv. 5 (2015) 72515–72528.
[31] K.A. Mosa, M. El-Naggar, K. Ramamoorthy, H. Alawadhi, A. Elnaggar, S. Wartanian, E. Ibrahim, H. Hani, Copper Nanoparticles Induced Genotoxicty, Oxidative Stress, and Changes in Superoxide Dismutase (SOD) Gene Expression in Cucumber (Cucumis sativus) Plants, Front Plant Sci. 9 (2018).
[32] E. Tomaszewska, S. Muszyński, K. Ognik, P. Dobrowolski, M. Kwiecień, J. Juśkiewicz, D. Chocyk, M. Świetlicki, T. Blicharski, B. Gładyszewska, Comparison of the effect of dietary copper nanoparticles with copper (II) salt on bone geometric and structural parameters as well as material characteristics in a rat model, Journal of Trace Elements in Medicine and Biology. 42 (2017) 103–110.
[33] J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, P. Couvreur, Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery, Chem. Soc. Rev. 42 (2013) 1147–1235.
[34] M. Mehrasa, M.A. Asadollahi, K. Ghaedi, H. Salehi, A. Arpanaei, Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering, Int J Biol Macromol. 79 (2015) 687–695.
[35] A. des Rieux, B. Ucakar, B.P.K. Mupendwa, D. Colau, O. Feron, P. Carmeliet, V. Préat, 3D systems delivering VEGF to promote angiogenesis for tissue engineering, Journal of Controlled Release. 150 (2011) 272–278.
[36] D. Shi, X. Xu, Y. Ye, K. Song, Y. Cheng, J. Di, Q. Hu, J. Li, H. Ju, Q. Jiang, Z. Gu, Photo-Cross-Linked Scaffold with Kartogenin-Encapsulated Nanoparticles for Cartilage Regeneration, ACS Nano. 10 (2016) 1292–1299.
[37] Q. Tang, T. Lim, L.Y. Shen, G. Zheng, X.J. Wei, C.Q. Zhang, Z.Z. Zhu, Well-dispersed platelet lysate entrapped nanoparticles incorporate with injectable PDLLA-PEG-PDLLA triblock for preferable cartilage engineering application, Biomaterials. 268 (2021) 120605.
[38] Y. XIE, W. LU, X. JIANG, Improvement of cationic albumin conjugated pegylated nanoparticles holding NC-1900, a vasopressin fragment analog, in memory deficits induced by scopolamine in mice, Behavioural Brain Research. 173 (2006) 76–84.
[39] M.D. Chavanpatil, A. Khdair, J. Panyam, Surfactant-polymer Nanoparticles: A Novel Platform for Sustained and Enhanced Cellular Delivery of Water-soluble Molecules, Pharm Res. 24 (2007) 803–810.
[40] Z. Sun, X. Wang, J. Liu, Z. Wang, W. Wang, D. Kong, X. Leng, ICG/ l -Arginine Encapsulated PLGA Nanoparticle-Thermosensitive Hydrogel Hybrid Delivery System for Cascade Cancer Photodynamic-NO Therapy with Promoted Collagen Depletion in Tumor Tissues, Mol Pharm. 18 (2021) 928–939.
[41] J. Huang, F. Liu, H. Su, J. Xiong, L. Yang, J. Xia, Y. Liang, Advanced Nanocomposite Hydrogels for Cartilage Tissue Engineering, Gels. 8 (2022) 138.
[42] J. Prakash, D. Prema, K.S. Venkataprasanna, K. Balagangadharan, N. Selvamurugan, G.D. Venkatasubbu, Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering, Int J Biol Macromol. 154 (2020) 62–71.
[43] A. Liu, Z. Hong, X. Zhuang, X. Chen, Y. Cui, Y. Liu, X. Jing, Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(l-lactide) composites, Acta Biomater. 4 (2008) 1005–1015.
[44] Inamuddin, J.N. Cruz, T. Altalhi, Green Sustainable Process for Chemical and Environmental Engineering and Science: Recent Advances in Nanocarriers, Elsevier, 2023.
[45] S.K. Balu, V. Sampath, S. Andra, S. Alagar, S. Manisha Vidyavathy, Fabrication of carbon and silver nanomaterials incorporated hydroxyapatite nanocomposites: Enhanced biological and mechanical performances for biomedical applications, Materials Science and Engineering: C. 128 (2021) 112296.
[46] D. Jiao, F. Lossada, J. Guo, O. Skarsetz, D. Hoenders, J. Liu, A. Walther, Electrical switching of high-performance bioinspired nanocellulose nanocomposites, Nature Communications 2021 12:1. 12 (2021) 1–10.
[47] E. De Giglio, M.A. Bonifacio, A.M. Ferreira, S. Cometa, Z.Y. Ti, A. Stanzione, K. Dalgarno, P. Gentile, Multi-compartment scaffold fabricated via 3D-printing as in vitro co-culture osteogenic model, Scientific Reports 2018 8:1. 8 (2018) 1–13.
[48] Inamuddin, T. Altalhi, J.N. Cruz, M.S.E.-D. Refat, Drug design using machine learning, 2022.
[49] C.J. Mortimer, C.J. Wright, The fabrication of iron oxide nanoparticle-nanofiber composites by electrospinning and their applications in tissue engineering, Biotechnol J. 12 (2017) 1600693.
[50] M.L. Carmo Bastos, J.V. Silva-Silva, J. Neves Cruz, A.R. Palheta da Silva, A.A. Bentaberry-Rosa, G. da Costa Ramos, J.E. de Sousa Siqueira, M.R. Coelho-Ferreira, S. Percário, P. Santana Barbosa Marinho, A.M. do R. Marinho, M. de Oliveira Bahia, M.F. Dolabela, Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex Miers (Apocynaceae) Induce Apoptosis by Caspase Pathway in Human Gastric Cancer Cells, Pharmaceuticals. 16 (2023) 765.
[51] J. Cui, X. Yu, Y. Shen, B. Sun, W. Guo, M. Liu, Y. Chen, L. Wang, X. Zhou, M. Shafiq, X. Mo, Electrospinning Inorganic Nanomaterials to Fabricate Bionanocomposites for Soft and Hard Tissue Repair, Nanomaterials 2023, Vol. 13, Page 204. 13 (2023) 204.
[52] M. Dubský, Š. Kubinová, J. Širc, L. Voska, R. Zajíček, A. Zajícová, P. Lesný, A. Jirkovská, J. Michálek, M. Munzarová, V. Holáň, E. Syková, Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing, J Mater Sci Mater Med. 23 (2012) 931–941.
[53] V. Singh, P. Yadav, V. Mishra, Recent Advances on Classification, Properties, Synthesis, and Characterization of Nanomaterials, Green Synthesis of Nanomaterials for Bioenergy Applications. (2020) 83–97.
[54] K.A. Ozada N, Novel Microstructure Mechanical Activated Nano Composites for Tissue Engineering Applications, J Bioeng Biomed Sci. 05 (2015).
[55] E. Ryan, S. Yin, Compressive strength of β-TCP scaffolds fabricated via lithography-based manufacturing for bone tissue engineering, Ceram Int. 48 (2022) 15516–15524.
[56] A. Al-Kattan, V.P. Nirwan, A. Popov, Y. V. Ryabchikov, G. Tselikov, M. Sentis, A. Fahmi, A. V. Kabashin, Recent Advances in Laser-Ablative Synthesis of Bare Au and Si Nanoparticles and Assessment of Their Prospects for Tissue Engineering Applications, International Journal of Molecular Sciences 2018, Vol. 19, Page 1563. 19 (2018) 1563.
[57] J.P. Fan, P. Kalia, L. Di Silvio, J. Huang, In vitro response of human osteoblasts to multi-step sol–gel derived bioactive glass nanoparticles for bone tissue engineering, Materials Science and Engineering: C. 36 (2014) 206–214.
[58] S. Shokri, B. Movahedi, M. Rafieinia, H. Salehi, A new approach to fabrication of Cs/BG/CNT nanocomposite scaffold towards bone tissue engineering and evaluation of its properties, Appl Surf Sci. 357 (2015) 1758–1764.
[59] L.D.F.B. Torres, J.N. Cruz, Natural Products from the Amazon Used by the Cosmetic Industry, in: Drug Discovery and Design Using Natural Products, Springer, 2023: pp. 525–537.
[60] R. Jose Varghese, E.H.M. Sakho, S. Parani, S. Thomas, O.S. Oluwafemi, J. Wu, Introduction to nanomaterials: synthesis and applications, Nanomaterials for Solar Cell Applications. (2019) 75–95.
[61] A. Pal, R. Vel, S.H. Rahaman, S. Sengupta, S. Bodhak, Synthesis and characterizations of sugar-glass nanoparticles mediated protein delivery system for tissue engineering application, Nano Futures. 6 (2022) 025008.
[62] M.S. Orellano, G.S. Longo, C. Porporatto, N.M. Correa, R.D. Falcone, Role of micellar interface in the synthesis of chitosan nanoparticles formulated by reverse micellar method, Colloids Surf A Physicochem Eng Asp. 599 (2020) 124876.
[63] S. Moeini, M.R. Mohammadi, A. Simchi, In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering, Bioact Mater. 2 (2017) 146–155.
[64] Q. Zong, H. Chen, Y. Zhao, J. Wang, J. Wu, Bioactive carbon dots for tissue engineering applications, Smart Mater Med. 5 (2024) 1–14.
[65] V. Dutta, R. Verma, C. Gopalkrishnan, M.H. Yuan, K.M. Batoo, R. Jayavel, A. Chauhan, K.Y.A. Lin, R. Balasubramani, S. Ghotekar, Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review, Inorganics 2022, Vol. 10, Page 169. 10 (2022) 169.
[66] A. Rónavári, N. Igaz, D.I. Adamecz, B. Szerencsés, C. Molnar, Z. Kónya, I. Pfeiffer, M. Kiricsi, Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications, Molecules 2021, Vol. 26, Page 844. 26 (2021) 844.
[67] S. Fahimirad, F. Ajalloueian, M. Ghorbanpour, Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts, Ecotoxicol Environ Saf. 168 (2019) 260–278.
[68] S.K. Sahoo, G.K. Panigrahi, M.K. Sahu, A. Arzoo, J.K. Sahoo, A. Sahoo, A.K. Pradhan, A. Dalbehera, Biological synthesis of GO-MgO nanomaterial using Azadirachta indica leaf extract: A potential bio-adsorbent for removing Cr(VI) ions from aqueous media, Biochem Eng J. 177 (2022) 108272.
[69] H. Dabhane, S. Ghotekar, M. Zate, S. Kute, G. Jadhav, V. Medhane, Green synthesis of MgO nanoparticles using aqueous leaf extract of Ajwain (Trachyspermum ammi) and evaluation of their catalytic and biological activities, Inorg Chem Commun. 138 (2022) 109270.
[70] M.U. Zahid, E. Pervaiz, A. Hussain, M.I. Shahzad, M.B.K. Niazi, Synthesis of carbon nanomaterials from different pyrolysis techniques: a review, Mater Res Express. 5 (2018) 052002.
[71] Z. Li, Y. Sun, S. Ge, F. Zhu, F. Yin, L. Gu, F. Yang, P. Hu, G. Chen, K. Wang, A.A. Volinsky, An Overview of Synthesis and Structural Regulation of Magnetic Nanomaterials Prepared by Chemical Coprecipitation, Metals 2023, Vol. 13, Page 152. 13 (2023) 152.
[72] X. Hangxun, B.W. Zeiger, K.S. Suslick, Sonochemical synthesis of nanomaterials, Chem Soc Rev. 42 (2013) 2555–2567.
[73] G.-R. Li, H. Xu, X.-F. Lu, J.-X. Feng, Y.-X. Tong, C.-Y. Su, Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage, Nanoscale. 5 (2013) 4056–4069.
[74] D. Zhang, K. Ye, Y. Yao, F. Liang, T. Qu, W. Ma, B. Yang, Y. Dai, T. Watanabe, Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber, Carbon N Y. 142 (2019) 278–284.
[75] N. Sakono, Y. Ishida, K. Ogo, N. Tsumori, H. Murayama, M. Sakono, Molar-Fraction-Tunable Synthesis of Ag-Au Alloy Nanoparticles via a Dual Evaporation-Condensation Method as Supported Catalysts for CO Oxidation, ACS Appl Nano Mater. (2023).
[76] N.M. Chu, N.D. Hieu, D.T.M. Do, R. Sarathi, T. Nakayama, H. Suematsu, Synthesis of molybdenum carbide nanoparticles using pulsed wire discharge in mixed atmosphere of kerosene and argon, Journal of the American Ceramic Society. 102 (2019) 7108–7115.
[77] M. Behnke, P. Klemm, P. Dahlke, B. Shkodra, B. Beringer-Siemers, J.A. Czaplewska, S. Stumpf, P.M. Jordan, S. Schubert, S. Hoeppener, A. Vollrath, O. Werz, U.S. Schubert, Ethoxy acetalated dextran nanoparticles for drug delivery: A comparative study of formulation methods, Int J Pharm X. 5 (2023) 100173.
[78] H. Shimoshige, H. Kobayashi, S. Shimamura, T. Mizuki, A. Inoue, T. Maekawa, Isolation and cultivation of a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio, PLoS One. 16 (2021) e0248313.
[79] A. Michael, A. Singh, A. Roy, M.R. Islam, Fungal- and Algal-Derived Synthesis of Various Nanoparticles and Their Applications, Bioinorg Chem Appl. 2022 (2022).
[80] M. Nasrollahzadeh, S. Mahmoudi-Gom Yek, N. Motahharifar, M. Ghafori Gorab, Recent Developments in the Plant-Mediated Green Synthesis of Ag-Based Nanoparticles for Environmental and Catalytic Applications, The Chemical Record. 19 (2019) 2436–2479.
[81] N. Kumar, S. Sinha Ray, Synthesis and functionalization of nanomaterials, Springer Series in Materials Science. 277 (2018) 15–55.
[82] Inamuddin, T. Altalhi, J.N. Cruz, M. Luqman, Nanomaterial-Supported Enzymes, Materials Research Forum LLC, 2022.
[83] X. Liu, M.N. George, S. Park, A.L. Miller II, B. Gaihre, L. Li, B.E. Waletzki, A. Terzic, M.J. Yaszemski, L. Lu, 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization, Acta Biomater. 111 (2020) 129–140.
[84] K. Elkhoury, C.S. Russell, L. Sanchez-Gonzalez, A. Mostafavi, T.J. Williams, C. Kahn, N.A. Peppas, E. Arab-Tehrany, A. Tamayol, Soft-Nanoparticle Functionalization of Natural Hydrogels for Tissue Engineering Applications, Adv Healthc Mater. 8 (2019).
[85] F. Ahmad, M.M. Salem-Bekhit, F. Khan, S. Alshehri, A. Khan, M.M. Ghoneim, H.F. Wu, E.I. Taha, I. Elbagory, Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application, Nanomaterials. 12 (2022).
[86] M.A.M. Tarkistani, V. Komalla, V. Kayser, Recent Advances in the Use of Iron–Gold Hybrid Nanoparticles for Biomedical Applications, Nanomaterials 2021, Vol. 11, Page 1227. 11 (2021) 1227.
[87] M. Pourmadadi, A. Tajiki, S.M. Hosseini, A. Samadi, M. Abdouss, S. Daneshnia, F. Yazdian, A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications, J Drug Deliv Sci Technol. 76 (2022) 103767.
[88] Y. Wang, W. Zhang, C. Gong, B. Liu, Y. Li, L. Wang, Z. Su, G. Wei, Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels, Soft Matter. 16 (2020) 10029–10045.
[89] S.N. Mali, In silico Methods for Evaluating the Mode of Interaction of Nanoparticles with Molecular Target, Nanobiomaterials: Perspectives for Medical Applications in the Diagnosis and Treatment of Diseases. 145 (2023) 236–249.
[90] L.A. Kolahalam, I. V. Kasi Viswanath, B.S. Diwakar, B. Govindh, V. Reddy, Y.L.N. Murthy, Review on nanomaterials: Synthesis and applications, Mater Today Proc. 18 (2019) 2182–2190.
[91] S.R. Falsafi, H. Rostamabadi, E. Assadpour, S.M. Jafari, Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM, Adv Colloid Interface Sci. 280 (2020) 102166.
[92] M. Kaliva, M. Vamvakaki, Nanomaterials characterization, Polymer Science and Nanotechnology: Fundamentals and Applications. (2020) 401–433.
[93] O.M. Lemine, Microstructural characterisation of α-Fe2O3 nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR, Superlattices Microstruct. 45 (2009) 576–582.
[94] M. Šetka, R. Calavia, L. Vojkůvka, E. Llobet, J. Drbohlavová, S. Vallejos, Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles, Scientific Reports 2019 9:1. 9 (2019) 1–10.
[95] J.N. Cruz, Nanobiomaterials: Perspectives for Medical Applications in the Diagnosis and Treatment of Diseases, 2023.
[96] M.M. Abutalib, A. Rajeh, Influence of Fe3O4 nanoparticles on the optical, magnetic and electrical properties of PMMA/PEO composites: Combined FT-IR/DFT for electrochemical applications, J Organomet Chem. 920 (2020) 121348.
[97] A. Naskar, K.S. Kim, Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics, Pharmaceutics 2020, Vol. 12, Page 499. 12 (2020) 499.
[98] S. Sharifi, M.J. Hajipour, L. Gould, M. Mahmoudi, Nanomedicine in Healing Chronic Wounds: Opportunities and Challenges, Mol Pharm. 18 (2021) 550–575.
[99] M. Rodrigues, N. Kosaric, C.A. Bonham, G.C. Gurtner, Wound healing: A cellular perspective, Physiol Rev. 99 (2019) 665–706.
[100] S. Chakrabarti, P. Chattopadhyay, J. Islam, S. Ray, P.S. Raju, B. Mazumder, Aspects of Nanomaterials in Wound Healing, Curr Drug Deliv. 16 (2018) 26–41.
[101] I. Negut, V. Grumezescu, A.M. Grumezescu, Treatment Strategies for Infected Wounds, Molecules 2018, Vol. 23, Page 2392. 23 (2018) 2392.
[102] R.A.F. Clark, K. Ghosh, M.G. Tonnesen, Tissue Engineering for Cutaneous Wounds, Journal of Investigative Dermatology. 127 (2007) 1018–1029.
[103] A. Barroso, H. Mestre, A. Ascenso, S. Simões, C. Reis, Nanomaterials in wound healing: From material sciences to wound healing applications, Nano Select. 1 (2020) 443–460.
[104] R. Yu, H. Zhang, B. Guo, Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering, Nano-Micro Letters 2021 14:1. 14 (2021) 1–46.
[105] Z. Mbese, S. Alven, B.A. Aderibigbe, M. Meyer, I. Prade, E. Klüver, Collagen-Based Nanofibers for Skin Regeneration and Wound Dressing Applications, Polymers 2021, Vol. 13, Page 4368. 13 (2021) 4368.
[106] R.K. Thapa, K.L. Kiick, M.O. Sullivan, Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds, Acta Biomater. 103 (2020) 115–128.
[107] S.R. Gomes, G. Rodrigues, G.G. Martins, M.A. Roberto, M. Mafra, C.M.R. Henriques, J.C. Silva, In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study, Materials Science and Engineering: C. 46 (2015) 348–358.
[108] H. Bilgic, M. Demiriz, M. Ozler, T. Ide, N. Dogan, S. Gumus, A. Kiziltay, T. Endogan, V. Hasirci, N. Hasirci, Gelatin Based Scaffolds and Effect of EGF Dose on Wound Healing, J Biomater Tissue Eng. 3 (2013) 205–211.
[109] T. Hakkarainen, R. Koivuniemi, M. Kosonen, C. Escobedo-Lucea, A. Sanz-Garcia, J. Vuola, J. Valtonen, P. Tammela, A. Mäkitie, K. Luukko, M. Yliperttula, H. Kavola, Nanofibrillar cellulose wound dressing in skin graft donor site treatment, Journal of Controlled Release. 244 (2016) 292–301.
[110] A.H. Tayeb, E. Amini, S. Ghasemi, M. Tajvidi, Cellulose Nanomaterials—Binding Properties and Applications: A Review, Molecules 2018, Vol. 23, Page 2684. 23 (2018) 2684.
[111] R.J. Hickey, A.E. Pelling, Cellulose biomaterials for tissue engineering, Front Bioeng Biotechnol. 7 (2019) 45.
[112] L.M. Anaya-Esparza, J.M. Ruvalcaba-Gómez, C.I. Maytorena-Verdugo, N. González-Silva, R. Romero-Toledo, S. Aguilera-Aguirre, A. Pérez-Larios, E. Montalvo-González, Chitosan-TiO2: A Versatile Hybrid Composite, Materials 2020, Vol. 13, Page 811. 13 (2020) 811.
[113] A. Chanda, J. Adhikari, A. Ghosh, S.R. Chowdhury, S. Thomas, P. Datta, P. Saha, Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications, Int J Biol Macromol. 116 (2018) 774–785.
[114] M. Ovais, I. Ahmad, A.T. Khalil, S. Mukherjee, R. Javed, M. Ayaz, A. Raza, Z.K. Shinwari, Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects, Appl Microbiol Biotechnol. 102 (2018) 4305–4318.
[115] S. Alizadeh, B. Seyedalipour, S. Shafieyan, A. Kheime, P. Mohammadi, N. Aghdami, Copper nanoparticles promote rapid wound healing in acute full thickness defect via acceleration of skin cell migration, proliferation, and neovascularization, Biochem Biophys Res Commun. 517 (2019) 684–690.
[116] N. Asadi, H. Pazoki-Toroudi, A.R. Del Bakhshayesh, A. Akbarzadeh, S. Davaran, N. Annabi, Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels, Int J Biol Macromol. 170 (2021) 728–750.
[117] S. Vieira, S. Vial, R.L. Reis, J.M. Oliveira, Nanoparticles for bone tissue engineering, Biotechnol Prog. 33 (2017) 590–611.
[118] R.E. McMahon, L. Wang, R. Skoracki, A.B. Mathur, Development of nanomaterials for bone repair and regeneration, J Biomed Mater Res B Appl Biomater. 101B (2013) 387–397.
[119] M. J Hill, B. Qi, R. Bayaniahangar, V. Araban, Z. Bakhtiary, M.R. Doschak, B.C. Goh, M. Shokouhimehr, H. Vali, J.F. Presley, A.A. Zadpoor, M.B. Harris, P.P.S.S. Abadi, M. Mahmoudi, Nanomaterials for bone tissue regeneration: updates and future perspectives, Https://Doi.Org/10.2217/Nnm-2018-0445. 14 (2019) 2987–3006.
[120] D. Zhang, D. Liu, J. Zhang, C. Fong, M. Yang, Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway, Materials Science and Engineering: C. 42 (2014) 70–77.
[121] D.N. Heo, W.K. Ko, M.S. Bae, J.B. Lee, D.W. Lee, W. Byun, C.H. Lee, E.C. Kim, B.Y. Jung, I.K. Kwon, Enhanced bone regeneration with a gold nanoparticle–hydrogel complex, J Mater Chem B. 2 (2014) 1584–1593.
[122] W.K. Ko, D.N. Heo, H.J. Moon, S.J. Lee, M.S. Bae, J.B. Lee, I.C. Sun, H.B. Jeon, H.K. Park, I.K. Kwon, The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells, J Colloid Interface Sci. 438 (2015) 68–76.
[123] J. Li, J. Zhang, Y. Chen, N. Kawazoe, G. Chen, TEMPO-Conjugated Gold Nanoparticles for Reactive Oxygen Species Scavenging and Regulation of Stem Cell Differentiation, ACS Appl Mater Interfaces. 9 (2017) 35683–35692.
[124] S.Y. Choi, M.S. Song, P.D. Ryu, A.T.N. Lam, S.W. Joo, S.Y. Lee, Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway, Int J Nanomedicine. 10 (2015) 4383–4392.
[125] N.L. Rosi, D.A. Giljohann, C.S. Thaxton, A.K.R. Lytton-Jean, M.S. Han, C.A. Mirkin, Oligonucleotide-modified gold nanoparticles for infracellular gene regulation, Science (1979). 312 (2006) 1027–1030.
[126] T. Qing, M. Mahmood, Y. Zheng, A.S. Biris, L. Shi, D.A. Casciano, A genomic characterization of the influence of silver nanoparticles on bone differentiation in MC3T3-E1 cells, Journal of Applied Toxicology. 38 (2018) 172–179.
[127] J. Radwan-Pragłowska, Ł. Janus, M. Piatkowski, D. Bogdał, D. Matysek, 3D Hierarchical, Nanostructured Chitosan/PLA/HA Scaffolds Doped with TiO2/Au/Pt NPs with Tunable Properties for Guided Bone Tissue Engineering, Polymers 2020, Vol. 12, Page 792. 12 (2020) 792.
[128] M. Ragothaman, A. Kannan Villalan, A. Dhanasekaran, T. Palanisamy, Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects, Materials Science and Engineering: C. 128 (2021) 112328.
[129] A. Halim, K.Y. Qu, X.F. Zhang, N.P. Huang, Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration, ACS Biomater Sci Eng. 7 (2021) 3503–3529.
[130] M.E. Marti, A.D. Sharma, D.S. Sakaguchi, S.K. Mallapragada, Nanomaterials for neural tissue engineering, Nanomaterials in Tissue Engineering: Fabrication and Applications. (2013) 275–301.
[131] R. Kumar, K.R. Aadil, S. Ranjan, V.B. Kumar, Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering, J Drug Deliv Sci Technol. 57 (2020) 101617.
[132] E.R.R. Collazo, Repair of Stump Neuroma Using AxoGuard® Nerve Protector and Avance® Nerve Graft in the Lower Extremity, Orthopedics and Rheumatology Open Access Journals. 1 (2015) 69–70.
[133] C. Bibbo, E. Rodrigues-Colazzo, A.G. Finzen, Superficial Peroneal Nerve to Deep Peroneal Nerve Transfer With Allograft Conduit for Neuroma in Continuity, The Journal of Foot and Ankle Surgery. 57 (2018) 514–517.
[134] W.H. Suh, K.S. Suslick, G.D. Stucky, Y.H. Suh, Nanotechnology, nanotoxicology, and neuroscience, Prog Neurobiol. 87 (2009) 133–170.
[135] S.K. Seidlits, J.Y. Lee, C.E. Schmidt, Nanostructured scaffolds for neural applications, Https://Doi.Org/10.2217/17435889.3.2.183. 3 (2008) 183–199.
[136] C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Metal nanoparticles and their assemblies, Chem Soc Rev. 29 (2000) 27–35.
[137] M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery, ACS Nano. 2 (2008) 889–896.
[138] Y.S. Lin, C.L. Haynes, Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity, J Am Chem Soc. 132 (2010) 4834–4842.
[139] S. Shah, A. Solanki, P.K. Sasmal, K.B. Lee, Single vehicular delivery of siRNA and small molecules to control stem cell differentiation, J Am Chem Soc. 135 (2013) 15682–15685.
[140] C. Lois, A. Alvarez-Buylla, Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia., Proceedings of the National Academy of Sciences. 90 (1993) 2074–2077.
[141] G. Orive, E. Anitua, J.L. Pedraz, D.F. Emerich, Biomaterials for promoting brain protection, repair and regeneration, Nature Reviews Neuroscience 2009 10:9. 10 (2009) 682–692.
[142] S. Bhattacharya, K.M. Alkharfy, R. Janardhanan, D. Mukhopadhyay, Nanomedicine: Pharmacological perspectives, Nanotechnol Rev. 1 (2012) 235–253.
[143] D. Maysinger, A. Morinville, Drug delivery to the nervous system, Trends Biotechnol. 15 (1997) 410–418.
[144] T. Yin, P. Wang, J. Li, R. Zheng, B. Zheng, D. Cheng, R. Li, J. Lai, X. Shuai, Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas, Biomaterials. 34 (2013) 4532–4543.
[145] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos Sci Technol. 63 (2003) 2223–2253.
[146] I. Ahmed, H.Y. Liu, P.C. Mamiya, A.S. Ponery, A.N. Babu, T. Weik, M. Schindler, S. Meiners, Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro, J Biomed Mater Res A. 76A (2006) 851–860.
[147] J.A. Hubbell, A. Chilkoti, Nanomaterials for Drug Delivery, Science (1979). 337 (2012) 303–305.
[148] J. Jacob, J.T. Haponiuk, S. Thomas, S. Gopi, Biopolymer based nanomaterials in drug delivery systems: A review, Mater Today Chem. 9 (2018) 43–55.
[149] Inamuddin, T. Altalhi, J.N. Cruz, Nutraceuticals: Sources, Processing Methods, Properties, and Applications, Elsevier, 2023.
[150] H.K.S. Yadav, A.A. Almokdad, S.I.M. Shaluf, M.S. Debe, Polymer-Based Nanomaterials for Drug-Delivery Carriers, Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery. (2019) 531–556.
[151] W. Wang, K.J. Lu, C.H. Yu, Q.L. Huang, Y.Z. Du, Nano-drug delivery systems in wound treatment and skin regeneration, Journal of Nanobiotechnology 2019 17:1. 17 (2019) 1–15.
[152] M. Biondi, F. Ungaro, F. Quaglia, P.A. Netti, Controlled drug delivery in tissue engineering, Adv Drug Deliv Rev. 60 (2008) 229–242.
[153] M. Xie, Y. Li, Z. Zhao, A. Chen, J. Li, Z. Li, G. Li, X. Lin, Development of silk fibroin-derived nanofibrous drug delivery system in supercritical CO2, Mater Lett. 167 (2016) 175–178.
[154] S. Perteghella, B. Crivelli, L. Catenacci, M. Sorrenti, G. Bruni, V. Necchi, B. Vigani, M. Sorlini, M.L. Torre, T. Chlapanidas, Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles, Int J Pharm. 520 (2017) 86–97.
[155] L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood, S. Hua, Advances and challenges of liposome assisted drug delivery, Front Pharmacol. 6 (2015) 163819.
[156] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front Microbiol. 14 (2023) 1188743.
[157] O.S. Fenton, K.N. Olafson, P.S. Pillai, M.J. Mitchell, R. Langer, O.S. Fenton, K.N. Olafson, P.S. Pillai, R. Langer, M.J. Mitchell, Advances in Biomaterials for Drug Delivery, Advanced Materials. 30 (2018) 1705328.
[158] L. Zhang, A. Beatty, L. Lu, A. Abdalrahman, T.M. Makris, G. Wang, Q. Wang, Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles, Materials Science and Engineering: C. 111 (2020) 110768.
[159] X. Liu, C. Li, J. Lv, F. Huang, Y. An, L. Shi, R. Ma, Glucose and H2O2 Dual-Responsive Polymeric Micelles for the Self-Regulated Release of Insulin, ACS Appl Bio Mater. 3 (2020) 1598–1606.
[160] X. Zheng, P. Zhang, Z. Fu, S. Meng, L. Dai, H. Yang, Applications of nanomaterials in tissue engineering, RSC Adv. 11 (2021) 19041–19058.
[161] H. Barabadi, M. Najafi, H. Samadian, A. Azarnezhad, H. Vahidi, M.A. Mahjoub, M. Koohiyan, A. Ahmadi, A Systematic Review of the Genotoxicity and Antigenotoxicity of Biologically Synthesized Metallic Nanomaterials: Are Green Nanoparticles Safe Enough for Clinical Marketing?, Medicina 2019, Vol. 55, Page 439. 55 (2019) 439.