Green Synthesis of Nanoparticles via Plant Extract: A New Era in Cancer Therapy

$30.00

Green Synthesis of Nanoparticles via Plant Extract: A New Era in Cancer Therapy

Kirti Rani Saad

There are many potential applications for the production of green nanoparticles (NPs) in medical and environmental sciences. Green synthesis is focused on minimizing the use of harmful chemicals. Scientists are working to create unique approaches for treatment and diagnostics of cancer in light of development of the newest technology. Primarily plant-based approaches have been chosen as the best course of action due to benefits of biogenic approaches over traditional synthesis, including their simplicity, speed, energy efficiency, one-pot operations, safety, economics, and biocompatibility. The finest sources of biogenic NPs are secondary metabolites that operate as stabilizers or reducers to form NPs. Here, we discuss the role of plant mediated NPs for cancer therapy.

Keywords
Cancer Therapy, Green Synthesis, Nanotechnology, Nanoparticles, Plant Extract, Plant Metabolites

Published online 2/10/2024, 22 pages

Citation: Kirti Rani Saad, Green Synthesis of Nanoparticles via Plant Extract: A New Era in Cancer Therapy, Materials Research Foundations, Vol. 160, pp 163-184, 2024

DOI: https://doi.org/10.21741/9781644902974-7

Part of the book on Nanoparticles in Healthcare

References
[1] Bharadwaj, K. K., Rabha, B., Pati, S., Sarkar, T., Choudhury, B. K., Barman, A., & Mohd Noor, N. H. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules, 2021, 26(21), [6389]. https://doi.org/10.3390/molecules26216389
[2] Ealia, S. A. M., & Saravanakumar, M. P. A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP conference series: materials science and engineering, 2017, Vol. 263, No. 3, p. 032019. IOP Publishing. https://doi.org/10.1088/1757-899X/263/3/032019
[3] Singh, J., Singh, T., & Rawat, M. Green synthesis of silver nanoparticles via various plant extracts for anti-cancer applications. Nanomedicine, 2017, 7(3), [1-4].
[4] Ali, A., Shah, T., Ullah, R., Zhou, P., Guo, M., Ovais, M., & Rui, Y. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Frontiers in chemistry, 2021, 9, [629054]. https://doi.org/10.3389/fchem.2021.629054
[5] Jeevanandam, J., Kulabhusan, P. K., Sabbih, G., Akram, M., & Danquah, M. K. Phytosynthesized nanoparticles as a potential cancer therapeutic agent. 3 Biotech, 2020, 10, [1-26]. https://doi.org/10.1007/s13205-020-02516-7
[6] Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 2021, 19, [355-374]. https://doi.org/10.1007/s10311-020-01074-x
[7] Hashemi, S. F., Tasharrofi, N., & Saber, M. M. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. Journal of Molecular structure, 2020, 1208, [127889]. https://doi.org/10.1016/j.molstruc.2020.127889
[8] Goel, A., & Bhatia, A. K. Phytosynthesized nanoparticles for effective cancer treatment: a review. Nanoscience & Nanotechnology-Asia, 2019, 9(4), [437-443]. https://doi.org/10.2174/2210681208666180724100646
[9] Ovais, M., Khalil, A. T., Raza, A., Khan, M. A., Ahmad, I., Islam, N. U., & Shinwari, Z. K. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine, 2016, 12(23), [3157-3177]. https://doi.org/10.2217/nnm-2016-0279
[10] Raghunandan, D., Ravishankar, B., Sharanbasava, G., Mahesh, D. B., Harsoor, V., Yalagatti, M. S., & Venkataraman, A. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer nanotechnology, 2011, 2, [57-65]. https://doi.org/10.1007/s12645-011-0014-8
[11] Khan, T., & Gurav, P. PhytoNanotechnology: enhancing delivery of plant based anti-cancer drugs. Frontiers in pharmacology, 2018, 8, [1002]. https://doi.org/10.3389/fphar.2017.01002
[12] Abdel-Fattah, W. I., & Ali, G. W. On the anti-cancer activities of silver nanoparticles. J Appl Biotechnol Bioeng, 2018, 5(2), [1-4]. https://doi.org/10.15406/jabb.2018.05.00116
[13] Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., & Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Frontiers in molecular biosciences, 2020, 7, [193]. https://doi.org/10.3389/fmolb.2020.00193
[14] Kashyap, D., Tuli, H. S., Yerer, M. B., Sharma, A., Sak, K., Srivastava, S., & Bishayee, A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. In Seminars in cancer biology, 2021, (Vol. 69, pp. 5-23. Academic Press. https://doi.org/10.1016/j.semcancer.2019.08.014
[15] Jain, N., Jain, P., Rajput, D., & Patil, U. K. Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters, 2021, 9(1), [5]. https://doi.org/10.1186/s40486-021-00131-6
[16] Karmous, I., Pandey, A., Haj, K. B., & Chaoui, A. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles. Biological trace element research, 2020, 196, [330-342]. https://doi.org/10.1007/s12011-019-01895-0
[17] Hano, C., & Abbasi, B. H. Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules, 2021, 12(1), [31]. https://doi.org/10.3390/biom12010031
[18] Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology, 2018, 16(1), [1-24]. https://doi.org/10.1186/s12951-018-0408-4
[19] Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R. K., Kruszka, D., Kachlicki, P., & Franklin, G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials, 2018, 11(6), [940]. https://doi.org/10.3390/ma11060940
[20] Akintelu, S. A., & Folorunso, A. S. A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. BioNanoScience, 2020, 10(4), [848-863]. https://doi.org/10.1007/s12668-020-00774-6
[21] Fierascu, R. C., Ortan, A., Avramescu, S. M., & Fierascu, I. Phyto-nanocatalysts: Green synthesis, characterization, and applications. Molecules, 2019, 24(19), [3418]. https://doi.org/10.3390/molecules24193418
[22] Akintelu, S. A., Folorunso, A. S., Folorunso, F. A., & Oyebamiji, A. K. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon, 2020, 6(7), e04508. https://doi.org/10.1016/j.heliyon.2020.e04508
[23] Begum, S. J., Pratibha, S., Rawat, J. M., Venugopal, D., Sahu, P., Gowda, A., … & Jaremko, M. Recent advances in green synthesis, characterization, and applications of bioactive metallic nanoparticles. Pharmaceuticals, 2022, 15(4), [455]. https://doi.org/10.3390/ph15040455
[24] Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. Green synthesis of metallic nanoparticles via biological entities. Materials, 2015, 8(11), [7278-7308]. https://doi.org/10.3390/ma8115377
[25] Rokade, S. S., Joshi, K. A., Mahajan, K., Patil, S., Tomar, G., Dubal, D. S., & Ghosh, S. Gloriosa superba mediated synthesis of platinum and palladium nanoparticles for induction of apoptosis in breast cancer. Bioinorganic chemistry and applications, 2018. https://doi.org/10.1155/2018/4924186
[26] Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International journal of molecular sciences, 2016, 17(9), [1534]. https://doi.org/10.3390/ijms17091534
[27] Roy, S., & Das, T. K. Plant mediated green synthesis of silver nanoparticles-A. Int. J. Plant Biol. Res, 2015, 3, [1044-1055].
[28] Jain, N., Jain, P., Rajput, D., & Patil, U. K. Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters, 2021, 9(1), [5]. https://doi.org/10.1186/s40486-021-00131-6
[29] Alharbi, N. S., & Alsubhi, N. S. Green synthesis and anticancer activity of silver nanoparticles prepared using fruit extract of Azadirachta indica. Journal of Radiation Research and Applied Sciences, 2022, 15(3), [335-345]. https://doi.org/10.1016/j.jrras.2022.08.009
[30] Sargazi, S., Laraib, U., Er, S., Rahdar, A., Hassanisaadi, M., Zafar, M. N., & Bilal, M. Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials, 2022, 12(7), [1102]. https://doi.org/10.3390/nano12071102
[31] Ijaz, I., Gilani, E., Nazir, A., & Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 2020, 13(3), [223-245]. https://doi.org/10.1080/17518253.2020.1802517
[32] Soto, K. M., Mendoza, S., López-Romero, J. M., Gasca-Tirado, J. R., & Manzano-Ramírez, A. Gold nanoparticles: Synthesis, application in colon cancer therapy and new approaches-review. Green Chemistry Letters and Reviews, 2021, 14(4), [665-678]. https://doi.org/10.1080/17518253.2021.1998648
[33] Tadele, K. T., Abire, T. O., & Feyisa, T. Y. Green synthesized silver nanoparticles using plant extracts as promising prospect for cancer therapy: a review of recent findings. J. Nanomed, 2021, 4, [1040].
[34] Erdogan, O., Abbak, M., Demirbolat, G. M., Birtekocak, F., Aksel, M., Pasa, S., & Cevik, O. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PloS one, 2019, 14(6), e0216496. https://doi.org/10.1371/journal.pone.0216496
[35] Felimban, A. I., Alharbi, N. S., & Alsubhi, N. S. Optimization, Characterization, and Anticancer Potential of Silver Nanoparticles Biosynthesized Using Olea europaea. International Journal of Biomaterials, 2022. https://doi.org/10.1155/2022/6859637
[36] Alahmad, A., Feldhoff, A., Bigall, N. C., Rusch, P., Scheper, T., & Walter, J. G. Hypericum perforatum L.-mediated green synthesis of silver nanoparticles exhibiting antioxidant and anticancer activities. Nanomaterials, 2021, 11(2), [487]. https://doi.org/10.3390/nano11020487
[37] Haque, S., Norbert, C. C., Acharyya, R., Mukherjee, S., Kathirvel, M., & Patra, C. R. Biosynthe-sized Silver Nanoparticles for Cancer Therapy and In Vivo Bioimaging. Cancers, 2021, 13, [6114]. https://doi.org/10.3390/cancers13236114
[38] Alharbi, N. S., Alsubhi, N. S., & Felimban, A. I. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences, 2022, 15(3), [109-124]. https://doi.org/10.1016/j.jrras.2022.06.012
[39] Donga, S., & Chanda, S. Facile green synthesis of silver nanoparticles using Mangifera indica seed aqueous extract and its antimicrobial, antioxidant and cytotoxic potential (3-in-1 system). Artificial Cells, Nanomedicine, and Biotechnology, 2021, 49(1), [292-302]. https://doi.org/10.1080/21691401.2021.1899193
[40] Devanesan, S., Jayamala, M., AlSalhi, M. S., Umamaheshwari, S., & Ranjitsingh, A. J. A. Antimicrobial and anticancer properties of Carica papaya leaves derived di-methyl flubendazole mediated silver nanoparticles. Journal of Infection and Public Health, 2021, 14(5), [577-587]. https://doi.org/10.1016/j.jiph.2021.02.004
[41] Wang, Y., Chinnathambi, A., Nasif, O., & Alharbi, S. A. Green synthesis and chemical characterization of a novel anti-human pancreatic cancer supplement by silver nanoparticles containing Zingiber officinale leaf aqueous extract. Arabian Journal of Chemistry, 2021, 14(4), [103081]. https://doi.org/10.1016/j.arabjc.2021.103081
[42] Das, G., Shin, H. S., Kumar, A., Vishnuprasad, C. N., & Patra, J. K. Photo-mediated optimized synthesis of silver nanoparticles using the extracts of outer shell fibre of Cocos nucifera L. fruit and detection of its antioxidant, cytotoxicity and antibacterial potential. Saudi Journal of Biological Sciences, 2021, 28(1), [980-987]. https://doi.org/10.1016/j.sjbs.2020.11.022
[43] Reddy, N. V., Li, H., Hou, T., Bethu, M. S., Ren, Z., & Zhang, Z. Phytosynthesis of silver nanoparticles using Perilla frutescens leaf extract: characterization and evaluation of antibacterial, antioxidant, and anticancer activities. International journal of nanomedicine, 2021, 16, [15]. https://doi.org/10.2147/IJN.S265003
[44] Padalia, H., & Chanda, S. Synthesis of silver nanoparticles using Ziziphus nummularia leaf extract and evaluation of their antimicrobial, antioxidant, cytotoxic and genotoxic potential (4-in-1 system). Artificial Cells, Nanomedicine, and Biotechnology, 2021, 49(1), [354-366]. https://doi.org/10.1080/21691401.2021.1903478
[45] Murugesan, A. K., Pannerselvam, B., Javee, A., Rajenderan, M., & Thiyagarajan, D. Facile green synthesis and characterization of Gloriosa superba L. tuber extract-capped silver nanoparticles (GST-AgNPs) and its potential antibacterial and anticancer activities against A549 human cancer cells. Environmental Nanotechnology, Monitoring & Management, 2021, 15, [100460]. https://doi.org/10.1016/j.enmm.2021.100460
[46] Manikandan, D. B., Sridhar, A., Sekar, R. K., Perumalsamy, B., Veeran, S., Arumugam, M., & Ramasamy, T. Green fabrication, characterization of silver nanoparticles using aqueous leaf extract of Ocimum americanum (Hoary Basil) and investigation of its in vitro antibacterial, antioxidant, anticancer and photocatalytic reduction. Journal of Environmental Chemical Engineering, 2021, 9(1), [104845]. https://doi.org/10.1016/j.jece.2020.104845
[47] Lashin, I., Fouda, A., Gobouri, A. A., Azab, E., Mohammedsaleh, Z. M., & Makharita, R. R. Antimicrobial and in vitro cytotoxic efficacy of biogenic silver nanoparticles (Ag-NPs) fabricated by callus extract of Solanum incanum L. Biomolecules, 2021, 11(3), [341]. https://doi.org/10.3390/biom11030341
[48] Jabir, M. S., Hussien, A. A., Sulaiman, G. M., Yaseen, N. Y., Dewir, Y. H., Alwahibi, M. S., & Rizwana, H. Green synthesis of silver nanoparticles from Eriobotrya japonica extract: a promising approach against cancer cells proliferation, inflammation, allergic disorders and phagocytosis induction. Artificial cells, nanomedicine, and biotechnology, 2021, 49(1), [48-60]. https://doi.org/10.1080/21691401.2020.1867152
[49] Çetintaş, Y., Nadeem, S., Sakalli, E., Eliuz, E., & Ozler, M. Green synthesis, antimicrobial and anticancer activities of AgNPs prepared from the leaf extract of Eucalyptus camaldulensis. Mugla Journal of Science and Technology, 2020, 6(1), [146-155]. https://doi.org/10.22531/muglajsci.714696
[50] Al-Nuairi, A. G., Mosa, K. A., Mohammad, M. G., El-Keblawy, A., Soliman, S., & Alawadhi, H. Biosynthesis, characterization, and evaluation of the cytotoxic effects of biologically synthesized silver nanoparticles from cyperus conglomeratus root extracts on breast cancer cell line MCF-7. Biological trace element research, 2020, 194, [560-569]. https://doi.org/10.1007/s12011-019-01791-7
[51] Deepika, S., Selvaraj, C. I., & Roopan, S. M. Screening bioactivities of Caesalpinia pulcherrima L. swartz and cytotoxicity of extract synthesized silver nanoparticles on HCT116 cell line. Materials Science and Engineering:, C, 2020, 106, [110279]. https://doi.org/10.1016/j.msec.2019.110279
[52] Ghramh, H. A., Ibrahim, E. H., Kilnay, M., Ahmad, Z., Alhag, S. K., Khan, K. A., … & Asiri, F. M. Silver nanoparticle production by Ruta graveolens and testing its safety, bioactivity, immune modulation, anticancer, and insecticidal potentials. Bioinorganic Chemistry and Applications, 2020. https://doi.org/10.1155/2020/5626382
[53] Hemlata, Meena, P. R., Singh, A. P., & Tejavath, K. K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS omega, 2020, 5(10), [5520-5528]. https://doi.org/10.1021/acsomega.0c00155
[54] Sattari, R., Khayati, G. R., & Hoshyar, R. Biosynthesis and characterization of silver nanoparticles capped by biomolecules by fumaria parviflora extract as green approach and evaluation of their cytotoxicity against human breast cancer MDA-MB-468 cell lines. Materials Chemistry and Physics, 2020, 241, [122438]. https://doi.org/10.1016/j.matchemphys.2019.122438
[55] Rani, N., Rawat, K., Saini, M., Yadav, S., Shrivastava, A., Saini, K., & Maity, D. Azadirachta indica leaf extract mediated biosynthesized rod-shaped zinc oxide nanoparticles for in vitro lung cancer treatment. Materials Science and Engineering: B, 2022, 284, [115851]. https://doi.org/10.1016/j.mseb.2022.115851
[56] Kiran, M. S., Kumar, C. R., Shwetha, U. R., Onkarappa, H. S., Betageri, V. S., & Latha, M. S. Green synthesis and characterization of gold nanoparticles from Moringa oleifera leaves and assessment of antioxidant, antidiabetic and anticancer properties. Chemical Data Collections, 2021, 33, [100714]. https://doi.org/10.1016/j.cdc.2021.100714
[57] Abed, A. S., Khalaf, Y. H., & Mohammed, A. M. Green synthesis of gold nanoparticles as an effective opportunity for cancer treatment. Results in Chemistry, 2023, 5, [100848]. https://doi.org/10.1016/j.rechem.2023.100848
[58] Mukherjee, S., Sushma, V., Patra, S., Barui, A. K., Bhadra, M. P., Sreedhar, B., & Patra, C. R. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology, 2012, 23(45), [455103]. https://doi.org/10.1088/0957-4484/23/45/455103
[59] Patra, S., Mukherjee, S., Barui, A. K., Ganguly, A., Sreedhar, B., & Patra, C. R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science and Engineering: C, 2015, 53, [298-309]. https://doi.org/10.1016/j.msec.2015.04.048
[60] Jabeen, S., Qureshi, R., Munazir, M., Maqsood, M., Munir, M., Shah, S. S. H., & Rahim, B. Z. Application of green synthesized silver nanoparticles in cancer treatment—a critical review. Materials Research Express, 2021, 8(9), [092001]. https://doi.org/10.1088/2053-1591/ac1de3
[61] De Matteis, V., Malvindi, M. A., Galeone, A., Brunetti, V., De Luca, E., Kote, S., & Pompa, P. P. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomedicine: Nanotechnology, Biology and Medicine, 2015, 11(3), [731-739]. https://doi.org/10.1016/j.nano.2014.11.002
[62] Rageh, M. M., El-Gebaly, R. H., & Afifi, M. M. Antitumor activity of silver nanoparticles in Ehrlich carcinoma-bearing mice. Naunyn-Schmiedeberg’s archives of pharmacology, 2018, 391, [1421-1430]. https://doi.org/10.1007/s00210-018-1558-5