Contemporary Approaches in the Synthesis and Fabrication of Nanoparticles


Contemporary Approaches in the Synthesis and Fabrication of Nanoparticles

Preetha G. Prasad

Nowadays engineered nanomaterials and nano phases are fabricated through the manipulation of factors during their synthesis. The current chapter encompasses the trends and challenges of the diversified synthetic strategies including the physic chemical and biological techniques. Methods such as solvo-thermal, reduction, microemulsion, microwave-assisted, sonochemical, electrochemical, polyol and radiolytic processes are discussed under chemical approach. The various physical procedures included are milling, high-energy irradiation, ion implantation, laser ablation and spray pyrolysis. The rising trends of green protocols using biological systems like plant extracts, enzymes and microorganisms towards the surface tuning of these are also discussed.

Bottom-Up Method, Solvo Thermal, Microwave Assisted Synthesis, Green Synthesis, Sonochemical Technique, Ion Implantation

Published online 2/10/2024, 28 pages

Citation: Preetha G. Prasad, Contemporary Approaches in the Synthesis and Fabrication of Nanoparticles, Materials Research Foundations, Vol. 160, pp 24-51, 2024


Part of the book on Nanoparticles in Healthcare

[1] N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Mater. Adv. 2 (2021) 1821-1871.
[2] P.G. Jamkhande, N.W. Ghule, A.H. Bamer, M.G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J. Drug Deli. Sci. Tech. 53 (2019) 101174.
[3] S. Cao , C. Zhao , T. Han, L. Peng , Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers, Mater. Lett. 169 (2016) 17—20.
[4] J. Cao, C. Qin, Y. Wang, H. Zhang, B. Zhang, Y. Gong, X. Wang, G. Sun, H. Bala, Z. Zhang, Synthesis of g-C3N4 nanosheet modified SnO2 composites with improved performance for ethanol gas sensing, RSC Adv. 7 (2017) 25504-25511.c.
[5] T.H. Phuoc Nguyen,, Stable electochemical measurements of platinum screen printed electrodes modified with vertical ZnO nanorods for bacterial detection, J. nanomat. 2019 (2019) 1-9.
[6] S. Muniyappana, T. Solaiyammala, K. Sudhakara, A. Karthigeyan, P. Murugakoothan, Conventional hydrothermal synthesis of titanate nanotubes: Systematic discussions on structural, optical, thermal and morphological properties, Modern Elec. Mat. 3(4) (2017) 174-178.
[7] S.W. Hwang, A. Umar, G.N. Dar, S.H. Kim, R.I. Badran, Synthesis and characterization of iron oxide nanoparticles for phenyl hydrazine sensor applications, Sens. Lett. 12 (2014) 1-5.
[8] Z. Wang, A.A. Haidry, L. Xie, A. Zavabeti, Z. Li, W. Yin, R.L. Fomekong, B. Saruhan, Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method, Appl. Surf. Sci. 533 (2020) 147383.
[9] A.O. da Silva, A.F.C. Campos, M.O. Rodrigues, M.H. Sousa, Tuning magnetic and luminescent properties of iron oxide@C nanoparticles from hydrothermal synthesis: Influence of precursor reagents, Surfaces and Interfaces 36 (2023) 102624.
[10] E. Amutha, S. Rajaduraipandian, M. Sivakavinesan, G. Annadurai, Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst and antibacterial agent, Nanoscale Adv. 5 (2023) 255-268.
[11] M. Ikram, A. Raza, M. Imran, A. Ul-Hamid, A. Shahbaz & S. Ali, Hydrothermal synthesis of silver decorated reduced graphene oxide (rGO) nanoflakes with effective photocatalytic activity for wastewater treatment, Nanoscale Res. Lett. 15 (2020) 95-106.
[12] B. Ashok, N. Hariram, S. Siengchin , A. Varada Rajulu, Modification of tamarind fruit shell powder with in situ generated copper nanoparticles by single step hydrothermal method, J. Biores. and Bioproducts 5 (2020) 180-185.
[13] Y. Chen, T. Chen, Z. Qin, Z. Xie, M. Liang, Y. Li, J. Lin, Rapid synthesis of AgInS2 quantum dots by microwave assisted-hydrothermal method and its application in white light emitting diodes, J. Alloys and Comp. 930 (2023) 167389-167403.
[14] T.T. Hoang, H.P. Pham, Q.T. Tran, A facile microwave-assisted hydrothermal synthesis of graphene quantum dots for organic solar cell efficiency improvement, J. Nano. 2020 (2020) 1-8.
[15] L. Durai, C. Yi Kong, S. Badhulika, One-step solvothermal synthesis of nanoflake-nanorod WS2 hybrid for non-enzymatic detection of uric acid and quercetin in blood serum, Mat. Sci. Eng. C 107 (2020) 110217-228.
[16] M. Sethi, U.S. Shenoy, S. Muthu, D. K. Bhat, Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications. Frront Mater. Sci. 14 (2020) 120-132.
[17] S. Suresh, C. Arunseshan, Dielectric properties of cadmium delenide (CdSe) Nanoparticles synthesized by solvothermal method, Appl. Nanosci. 4 (2014) 179–184.
[18] L. Marinescu, D. Ficai, A. Ficai, O. Oprea, A.I. Nicoara, B.S. Vasile, L.Boanta, A. Marin, E. Andronescu, A.M. Holban, Comparative antimicrobial activity of silver nanoparticles obtained by wet chemical reduction and solvothermal methods, Int. J. Mol. Sci. 23 (2022) 5982. 10.3390/ijms23115982
[19] K.M. Aiswarya, T. Raguram, K.S. Rajni, Synthesis and characterisation of nickel cobalt sulfide nanoparticles by the solvothermal method for dye-sensitized solar cell applications, Polyhedron 176 (2020) 114267.
[20] Z. Zhang, T. Cheng-An, J. Zhao, F. Wang, J. Huang, J. Wang, Microwave-assisted solvothermal synthesis of UiO-66-NH2 and Its catalytic performance toward the hydrolysis of a nerve agent simulant, Catalysts 10 (2020) 1086-97.
[21] A. Rizzuti,, Microwave-assisted solvothermal synthesis of Fe3O4/CeO2 nanocomposites and their catalytic activity in the imine formation from benzyl alcohol and aniline, Catalysts 10(11) (2020) 1325-47.
[22] A. Khan, A. Rashid, R. Younas, R. Chong, A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano. Lett 6 (2016) 21-26.
[23] M. Cobos, I. De-La-Pinta, G. Quindós, M.J. Fernández, M.D. Fernández, Graphene oxide–silver nanoparticle nanohybrids: synthesis, characterization, and antimicrobial properties, Nanomaterials 10(2) 2020 376-398.
[24] A. Ścigała, R. Szczesny, P. Kamedulski, M. Trzcinski, E. Szłyk, Copper nitride/silver nanostructures synthesized via wet chemical reduction method for the oxygen reduction reaction, Biomaterials Research 23 (2019) 27-42.
[25] K.R. Ranoszek-Soliwoda, E.Tomaszewska, E. Socha, P. Krzyczmonik, A. Ignaczak, P. Orlowski, M. Krzyzowska, G. Celichowski, J. Grobelny, The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles, J. Nanopart. Res. 19 (2017) 273-288.
[26] R. Ali , M.A. Khan, A. Mahmooda, A.H. Chughtai, A. Sultand, M. Shahide , M. Ishaqf, M.F. Warsia, Structural, magnetic and dielectric behavior of Mg 1-xCaxNiyFe2-yO4 nano-ferrites synthesized by the micro-emulsion method, Ceramics Int. 40 (2014) 3841–3846.
[27] B. Yoon, C.M. Wai, Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications, J. Am. Chem. Soc. 127(49) (2005) 17174–17175.
[28] T.Tago, T.Hatsuta, K. Miyajima, M. Kishida, S. Tashiro, K. Wakabayashi, Novel synthesis of silica-coated ferrite nanoparticles prepared using water-in-oil microemulsion, J. Am. Ceram. Soc. 85(9) (2002) 2188-94.
[29] R.D. Rivera-Rangela , M.P. González-Muñoza, M. Avila-Rodriguez , T.A. Razo-Lazcanoa, C. Solans, Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent Colloids and Surfaces A, 536 (2018), 60-67.
[30] G. Asab, E.A. Zereffa, T.A. Seghne, Synthesis of silica-coated Fe3O4 nanoparticles by microemulsion method: characterization and evaluation of antimicrobial activity, Int. J. Biomat.. 2020 (2020) 4783612-23.
[31] Z. Ur Rehman, M. Nawaz, H. Ullah, I. Uddin, S. Shad,, Synthesis and characterization of Ni nanoparticles via the microemulsion technique and its applications for energy storage devices., Materials 16 (2023) 325-336.
[32] H. Liu, Z. He, J. Li-Ping, Z. Jun-Jie, Microwave-assisted synthesis of wavelength- tunable photoluminescent carbon nanodots and their potential applications, ACS Appl. Mater. Interfaces 7 (2015) 4913−4920.
[33] X. Wang, K. Qu, B. Xu, J. Ren, X. Qu, Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents, J. Mater. Chem. 21 (2011) 2445–2450.
[34] S. Mitra, S. Chandra, T. Kundu, R. Banerjee, P. Pramanik, A. Goswami, Rapid microwave synthesis of fluorescent hydrophobic carbon dots, RSC Adv. 2 (2012) 12129–12131.
[35] A.S. Bhatt, D.K. Bhat, T. Cheuk-Wai Tai, M.S. Santosh, Microwave-assisted synthesis and magnetic studies of cobalt oxide nanoparticles, Mater. Chem. Phys. 125 (3) (2011) 347-35.
[36] T.Oe, D. Dechojarassri, S. Kakinoki, H. Kawasaki, T. Furuike, H. Tamura, Microwave-assisted incorporation of AgNP into chitosan–alginate hydrogels for antimicrobial applications. J. Funct. Biomater. 199 (2023) 14-30. https://
[37] N. Garino, T. Limongi, B. Dumontel, M. Canta, L. Racca, M. Laurenti, M. Castellino, A. Casu, A. Falqui, V. Cauda, A microwave-assisted synthesis of zinc oxide nanocrystals finely tuned for biological applications, Nanomaterials 9 (2019) 212-229.
[38] G.Magdy, F. Belal, H. Elmansi, Rapid microwave-assisted synthesis of nitrogen-doped carbon quantum dots as fluorescent nanosensors for the spectrofluorimetric determination of palbociclib: application for cellular imaging and selective probing in living cancer cells, RSC Adv. 13 (2023) 4156-416.
[39] K.S. Suslick, Sonochemistry, Science, 247 (1990) 1439-1445.
[40] V.K. Yadav, D. Ali, S.H. Khan, G.Gnanamoorthy, N. Choudhary, K.K. Yadav, V.N. Thai, S.A. Hussain, S. Manhrdas, Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater, Nanomaterials 10 (2020) 1551-1568.
[41] M.A.S. Amulya, H.P. Nagaswarupa, M.R.A. Kumar, C.R. Ravikumar, S.C. Prashantha, K.B. Kusuma, Sonochemical synthesis of NiFe2O4 nanoparticles: characterization and their photocatalytic and electrochemical applications, Appl. Surf. Sci. Advances 1 (2020) 100023-100033.
[42] A.A. Ádám, M. Szabados. G. Varga, Á. Papp, K. Musza, Z. Kónya, Á. Kukovecz, P. Sipos, I. Pálinkó, Ultrasound-assisted hydrazine reduction method for the preparation of nickel nanoparticles, physicochemical characterization and catalytic application in Suzuki-Miyaura cross-coupling reaction, Nanomaterials 10 (2020) 632-650.
[43] B.S.Lou, U. Rajaji, C. Shen-MingRajaji, C. Tse-Wei, A simple sonochemical assisted synthesis of NiMoO4/chitosan nanocomposite for electrochemical sensing of amlodipine in pharmaceutical and serum samples, Ultrasonics Sonochemistry, 64 (2020) 104827-36.
[44] J. Acharya, B. Gnana, B.G.S. Raj, T.H. Ko, M.S. Khil, H.Y. Kim, Byoung-Suhk Kim, Facile one pot sonochemical synthesis of CoFe2O4/ MWCNTs hybrids with well-dispersed MWCNTs for asymmetric hybrid supercapacitor applications, Int. J. Hydrogen energy 45 (2020) 3073-85.
[45] M.A. Dheyab, A.A. Aziz, M.S. Jameel, P.M. Khaniabadi, A.A. Oglat, Rapid sonochemically-assisted synthesis of highly stable gold nanoparticles as computed tomography contrast agents, Appl. Sci. 10 (2020) 7020-34.
[46] A. Qayyum, A. Dimitrios Giannakoudakis, D.Łomot, R.F.C. Quintero, A.P. LaGrow, K. Nikiforow, D. Lisovytskiy, J.C. Colmenares, Tuning the physicochemical features of titanium oxide nanomaterials by ultrasound: elevating photocatalytic selective partial oxidation of lignin-inspired aromatic alcohols, Ultrasonics Sonochemistry 94 (2023) 106306-316.
[47] Y. Bian, L. Liu, D. Liu, Z. Zhu, Y. Shao,L. Meixian, Electrochemical synthesis of carbon nano onions, : Inorg. Chem. Front. 7 ( 2020) 4404-12
[48] S.A. Ansari, N.A. Khan, Z. Hasan, A. A. Shaikh, K. Farhana, Ferdousi, H.R. Barai, N.S. Lopa, Md. M. Rahman, Electrochemical synthesis of titanium nitride nanoparticles onto titanium foil for electrochemical supercapacitors with ultrafast charge/discharge, Sustainable Energy and Fuels (2020) 1-11.
[49] M. Manjum, N. Serizawa, A.Ispas, A. Bund, Y. Katayama, Electrochemical preparation of cobalt-samarium Nanoparticles in an aprotic ionic liquid, J. Electrochem. Soc., 167 (2020) 042505-514.
[50] Y. Pei, M.Hu, Y. Xia, W. Huang, Z. Li, S. Chen, Electrochemical preparation of Pt nanoparticles modified nanoporous gold electrode with highly rough surface for efficient determination of hydrazine, Sensors and Actuators B: Chemical 304 (2020) 127416.
[51] T. Gevel, S. Zhuk, N. Leonova, A. Leonova, A. Trofimov, A. Suzdaltsev, Y. Zaikov, Electrochemical synthesis of nano-sSized silicon from KCl–K2SiF6 melts for powerful lithium-ion batteries. Appl. Sci. 11 (2021) 10927-39. app112210927
[52] A. Ghifari, D.X. Long, S. Kim, B. Ma, J. Hong, Transparent platinum counter electrode prepared by polyol reduction for bifacial, dye-sensitized solar cells, Nanomaterials 10 (2020) 502-512.
[53] M.A. Bousnina, A.D. Omrani, F. Schoenstein,Y. Soumare, A.H. Barry, J, Y. Piquemal, G.Viau, S.Mercone, N. Jouin, Enhanced magnetic behavior of cobalt nano-rods elaborated by the polyol process assisted with an external magnetic field, Nanomaterials 10 (2020) 334-48.
[54] J.V. Rojas, M.T.Gonzalez, M.C.M. Higgins, C.E. Castano, Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes, Materials Sci. Engg. B 205 (2016) 28–35.
[55] Y. Wang, Q. Chen, X. Shen, Preparation of low-temperature sintered UO2 nanomaterials by radiolytic reduction of ammonium uranyl tricarbonate, J. of Nuclear Mater. 479 (2016) 162e166.
[56] J.V. Rojas, C.H. Castano, Radiolytic synthesis of iridium nanoparticles onto carbon nanotubes, J. Nanopart. Res. 16 (2014) 2567-72.
[57] E. Saion, E. Gharibshahi, K. Naghavi , Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method, Int. J. Mol. Sci. 14 (2013) 7880-7896.
[58] J. L.Howard,.C. Cao, D.L. Browne, 2018. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem. Sci. (2018) 3080-95.
[59] Y. Chen, C.P. Li, H. Chen, Y. Chen, One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process, Sci. Tech. Adv. Mater. 7 (2006) 839–846.
[60] J.S.Lee, K. Park, K. Myung-IL, P.IL-Woo, S.W. Kim, W.K. Cho, H.S. Han, S. Kim, ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders, J.Crys. Growth, 254(3-4) (2003) 423-431.
[61] N. Salah, S.S. Habib, Z.H. Khan, A. Memic, A. Azam, E. Alarfaj, N. Zahed, S. Al-Hamedi, High-energy ball milling technique for ZnO nanoparticles as antibacterial material, Int. J.Nanomedicine 6 (2011) 863–869.
[62] L. Protesescu, S. Yakunin, O. Nazarenko, D.N.Dirin, M.V. Kovalenko, Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling, ACS Appl. Nano Mater. 1 (3) (2018) 1300–1308.
[63] Z. Károly, I. Mohai, Sz. Klébert, A. Keszler, I.E. Sajó, J. Szépvölgyi, Synthesis of SiC powder by RF plasma technique, Powder Technology 214 (2011) 300–305.
[64] C.F. Lin, C.H.Kao, C.Y.Lin, K.L. Chen, Y.H. Lin, NH3 plasma-treated magnesium doped zinc oxide in biomedical sensors with electrolyte–insulator– semiconductor (EIS) structure for urea and glucose applications, Nanomaterials 10 (2020) 583-599.
[65] N. Mintcheva, S. Yamaguchi, S.A. Kulinich, Hybrid TiO2-ZnO nanomaterials prepared using laser ablation in liquid, Materials 13 (2020) 719-733.
[66] D. Tan, S. Zhou, J. Qiu, N. Khusro, Preparation of functional nanomaterials with femtosecond laser ablation in solution, J. Photochemistry and Photobiology C: Photochemistry Reviews 17 (2013) 50-68.
[67] E.A. Ganash, G.A. Al-Jabarti, R.M. Altuwirqi, The synthesis of carbon-based nanomaterials by pulsed laser ablation in water, Mater. Res. Express 7 (2020) 015002-13.
[68] K.R. Nemade, S.A.Waghuley, Synthesis of MgO nanoparticles by solvent mixed spray pyrolysis technique for optical investigation, Int. J. Metals 2014 (2014) 1-4.
[69] W. Cheng, H. Di, Z. Shi, D. Zhang, Synthesis of ZnS/CoS/CoS2@N-doped carbon nanoparticles derived from metal-organic frameworks via spray pyrolysis as anode for lithium-ion battery, J. Alloys. Compounds 831 (2020) 154607.
[70] A. Moazzeni, H.R. Madvar, S. Hamedi, Z. Kordrostami, Fabrication of graphene oxide-based resistive switching memory by the spray pyrolysis technique for neuromorphic computing, ACS Appl. Nano Mater. 6(3) 2023 2236–2248.
[71] X. Chen, G. Zou, Y. Yuan, Z. Xu, H. Zhao, Flame spray pyrolysis synthesized Ni-doped Fe/Ce oxygen carriers for chemical looping dry reforming of methane, Fuel 343 (2023) 127913.
[72] Y. Koo, S. Oh, K. Im, J. Kim, Ultrasonic spray pyrolysis synthesis of nano-cluster ruthenium on molybdenum dioxide for hydrogen evolution reaction, Appl. Surf. Sci., 611, Part B (2023) 155774.
[73] I.A. Kurzina, O.A. Laput , D.A. Zuzaa, I.V. Vaseninaa, M.C. Salvadoria, K.P. Savkin, D.N. Lytkinaa,V.V. Botvina, M.P. Kalashnikov, Surface property modification of biocompatible material based on polylactic acid by ion implantation, Surface coatings and Tech. 388 (2020) 125529-37.
[74] A. Idesaki, S. Yamamoto, M. Sugimoto, T. Yamaki, Y. Maekawa, Formation of Fe nanoparticles by ion implantation technique for catalytic graphitization of a phenolic resin, Quantum Beam Sci. 4 (2020) 11-22.
[75] F. Wei, Y. Mu, R. P. Tan, S.G. Wise, M.M. Bilek, Y. Zhou,Y. Xiao, Osteo-immunomodulatory role of interleukin-4-immobilized plasma immersion ion implantation membranes for bone regeneration, ACS Appl. Mater. Interfaces 15 (2023) 2590–2601.
[76] S. Majeed, M. Danish, M.N.M. Ibrahim, S. H. Sekeri, M. T. Ansari, A. Nanda, G. Ahmad, Bacteria mediated synthesis of iron oxide nanoparticles and their antibacterial, antioxidant, cytocompatibility properties. J Cluster Sci 32 (2021) 1083-1094.
[77] S. Saeed, A. Iqbal, M.A. Ashraf, Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environ Sci Pollut Res 27 (2020) 37347-37356.
[78] I. Ghiuta, C. Croitoru, J. Kost, R. Wenkert, D. Munteanu, Bacteria-mediated synthesis of silver and silver chloride nanoparticles and their antimicrobial activity, Appl. Sci. 11 (2021) 3134-47.
[79] S.Faisal, Abdullah, M.Rizwan, R.Ullah, A.Alotaibi, A.Khattak, N.Bibi, M.Idrees, Paraclostridium benzoelyticum bacterium-mediated zinc oxide nanoparticles and their in vivo multiple biological applications 2022 (2022) 1-15.
[80] H. Alam, N, Khatoon, M. A. Khan, S. A. Husain, M. Saravanan, M. Sardar, Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. J Clust Sci 31 (2020) 1003-1011.
[81] T. Ahmed, M. Shahid, M. Noman, M.B.K. Niazi, F. Mahmood, I. Manzoor, Y. Zhang, B. Li, Y. Yang, C. Yan, J. Chen, Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice, Pathogens 9 (2020) 160-177.
[82] N. Órdenes-Aenishanslins, G. Anziani-Ostuni, J.P. Monrás, A. Tello, D. Bravo, D. Toro-R., S. Soto-Rifo, R. Ricardo, P.N. Prasad, J.M. Pérez-Donoso, Bacterial synthesis of ternary CdSAg quantum dots through cation exchange: tuning the composition and properties of biological nanoparticles for bioimaging and photovoltaic applications, Microorganisms 8 (2020) 631-50.
[83] H. Korbekandi, S. Iravani, S. Abbasi, Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. Casei, J.Chemical Tech and Biotechnology. 87(7) (2012) 932-937.
[84] F. Ameen, A. A. Al-Homaidan, A. Al-Sabri, A. Almansob, S. AINAdhari, Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans. Appl Nanosci 13 (2023) 623-631.
[85] R. Rai, A. S. Vishwanathan, B. S. Vijayakumar, Antibacterial potential of silver nanoparticles synthesized using Aspergillus hortai. Bio Nano Sci. 13 (2023) 203-21.
[86] H. Mistry, R. Thakor, C. Patil, J. Trivedi, H. Bariya, Biogenically proficient synthesis and characterization of silver nanoparticles employing marine procured fungi Aspergillus brunneoviolaceus along with their antibacterial and antioxidative potency. Biotechnology Lett. 43 (2021) 3077-316.
[87] A. Syeda, M.H. Al Saedia , A.H. Bahkalia , A.M. Elgorgana, M. Kharatb, K.Pai , J. Pichtel, A. Ahmad, α-Au2S nanoparticles: fungal-mediated synthesis, structural characterization and bioassay, Green Chem. Lett. Rev. 15(1) (2022) 61–70.
[88] S. Noor, Z. Shah, A.Javed, A. Ali, S.B. Hussain, S.Z.H. Ali, S.A. Muhammad, A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities, J. Micro. Methods 174 (2020) 105966,
[89] P. Balaraman, B. Balasubramanian, D. Kaliannan, M. Durai,·H. Kamyab, · S. Park, S. Chelliapan, C.T. Lee, V. Maluventhen, A. Maruthupandian, Phyco synthesis of silver nanoparticles mediated from marine algae Sargassum myriocystum and its potential biological and environmental applications, Waste and Biomass Valorization 11 (2020) 5255-5271.
[90] B.Y. Öztürk, B.Y. Gürsu, İ. Dağ, Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum, Process Biochemistry 89 (2020) 208-219.
[91] A. K. Bishoyi, C. R. Sahoo, A. P. Sahoo, R. N. Padhy, Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. Applied Nanoscience. Appl. Nanosci. 11 (2021) 389-398).
[92] N.M. Aboeita, S.A. Fahmy, M.M.H. El-Sayed, H.M. El-Said Azzazy, T. Shoeib, Enhanced anticancer activity of nedaplatin loaded onto copper nanoparticles synthesized using red algae, Pharmaceutics 14 (2022) 418-32.
[93] T. Palaniyandi, G. Baskar, V. Bhagyalakshmi, S. Viswanathan, M.R.A. Wahab, M. K.Govindaraj, A. Sivaji, B.K. Rajendran, S. Kaliamoorthy, Biosynthesis of iron nanoparticles using brown algae Spatoglossum asperum and its antioxidant and anticancer activities through in vitro and in silico studies, Particulate Science and Technology.
[94] R. Algotiml, AliGab Alla, R. Seoudi, H.H. Abulreesh, M.Z. El Readi, K. Elbanna, Scientifc Reports 12 (2022) 2421-39.
[95] A.A. Ayoobul; K.S. Anil, M.V. Krishnasastry, M.K. Abyaneh, K.K.Sulabha, A. Absar, M.I. Khan, CdS quantum dots: enzyme mediated in vitro synthesis, characterization and conjugation with plant lectins, J.Biomedical Nanotech. 3(4) (2007) 406-413.
[96] S.A. Kumar, M.K. Abyaneh, S.W. Gosavi, S.K. Kulkarni, A. Ahmad, M.I. Khan, Sulfite reductase-mediated synthesis of gold nanoparticles capped with phytochelatin, Biotech. Appl.Biochem. 47(4) (2007) 191-195.
[97] M. Vanaja, G. Annadurai, Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity, Appl. Nanosci. 3 (2013) 217-223.
[98] S.S. Sana, D.V. Kumbhakar, A. Pasha, S.C. Pawar, A.N. Grace, R.P. Singh, V.H. Nguyen, Q.V.Le, W. Peng, Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: assessment of antimicrobial and anticancer activity, Molecules 25 ( 2020) 4896-4917.
[99] A.B. Habtemariam, M. Oumer, Plant extract mediated synthesis of nickel oxide nanoparticles, Mat. Int. 2 (2020) 0205-0209.
[100] S. Vijayakumar, P. Arulmozhi, N. Kumar, B. Sakthivel, S.P. Kumar, P.K. Praseetha, Acalypha fruticosa L. leaf extract mediated synthesis of ZnO nanoparticles: characterization and antimicrobial activities, Materials Today: Proceedings 23 Part 1 (2020) 73-80.
[101] G. Rajakumar, A.A. Rahuman, B. Priyamvada, V.G. Khanna, D.K. Kumar, P.J. Sujin, Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles, Materials Letters 68 (2012) 115-117.
[102] A. Balˇciunaitiene, M. Liaudanskas, V. Puzeryte, J. Viškelis, V. Janulis, P. Viškelis, E. Griškonis, V. Jankauskaite, Eucalyptus globulus and Salvia officinalis extracts mediated green synthesis of silver nanoparticles and their application as an antioxidant and antimicrobial agent, Plants 11 (2022) 1085-1101.