Applications of MXenes in EMI shielding


Applications of MXenes in EMI shielding

Jhilmil Swapnalin, Bhargavi Koneru, Ramyakrishna Pothu, Ramachandra Naik, Rajender Boddula, Ahmed Bahgat Radwan, Noora Al-Qahtani, Prasun Banerjee

The tremendous growth of wireless communication and smart nano-micro electronic devices has triggered electromagnetic interference (EMI) pollution in the environment. EMI is a significant problem concerning both animals and humankind. Various problems like data leakage, interferences from electronic devices and health hazards can be addressed with an efficient electromagnetic (EM) wave shielding material. In this chapter, a new research interest, 2D material, is studied to investigate their EMI shielding capacity. 2D MXene are transition metal carbides or nitrides obtained from the parent MAX phase resulting in orderly stacked layers. Better EMI shielding mechanism within 2D layers and enhanced absorption in various composites of MXene are summarized.

MXene, 2D Materials, Ti3C2Tx, Intercalation, EMI Shielding

Published online 12/15/2023, 20 pages

Citation: Jhilmil Swapnalin, Bhargavi Koneru, Ramyakrishna Pothu, Ramachandra Naik, Rajender Boddula, Ahmed Bahgat Radwan, Noora Al-Qahtani, Prasun Banerjee, Applications of MXenes in EMI shielding, Materials Research Foundations, Vol. 155, pp 28-47, 2024


Part of the book on Recent Advances and Allied Applications of Mxenes

[1] M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu, H.L. Shi, D.Q. Zhang, W.Z. Wang, J. Yuan, Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities, ACS Appl. Mater. Interfaces. 7 (2015) 19408-19415.
[2] N.S. Kumar, R.P. Suvarna, K.C.B. Naidu, P. Banerjee, A. Ratnamala, H. Manjunatha, A review on biological and biomimetic materials and their applications, Appl. Phys. A. 126 (2020) 1-18.
[3] S. Engels, N.-L. Schneider, N. Lefeldt, C.M. Hein, M. Zapka, A. Michalik, D. Elbers, A. Kittel, P.J. Hore, H. Mouritsen, Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird, Nature. 509 (2014) 353-356.
[4] I.S. Group, Brain tumour risk in relation to mobile telephone use: Results of the INTERPHONE international case-control study, Int. J. Epidemiol. 39 (2010) 675-694.
[5] M. Elwood, A.W. Wood, Health effects of radiofrequency electromagnetic energy, Health N Hav. 132 (2019).
[6] R.S. Kasevich, Cellphones, radars, and health [Speakout], IEEE Spectr. 39 (2002) 15-16.
[7] S. Gupta, N.-H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band, Carbon N. Y. 152 (2019) 159-187.
[8] P. Banerjee, A.F. Junior, D.B. Basha, K.C. Naidu, Magnetic nanomaterials for spintronics, Magnetochem: Mater. Appl. 66 (2020) 323.
[9] M. Prakash, N.S. Kumar, K.C.B. Naidu, M. Sarma, P. Banerjee, R.J. Kumar, R. Pothu, R. Boddula, Electrode materials for K‐ion batteries and applications, in: Inamuddin, R. Boddula, A.M. Asiri (Eds.), Potassium‐Ion Batteries: Materials and applications, 2020, pp.123-136.
[10] L.G. Pereira, R.L. de S. Silva, P. Banerjee, A. Franco Jr, Role of Gd3+ ions on the magnetic hyperthermic behavior of anisotropic CoFe2O4 nanoparticles, Phys. B Condens. Matter. 587 (2020) 412140.
[11] S.O. de Lira, R.L. de S. Silva, P. Banerjee, A. Franco Jr, Effects of defect dipoles on the colossal permittivity of ambipolar co-doped rutile TiO2 ceramics, J. Phys. Chem. Solids. 143 (2020) 109456.
[12] K. Srinivas, K.C.B. Naidu, G. Balakrishna, B.V.S. Reddy, N.S. Kumar, S. Ramesh, P. Banerjee, D.B. Basha, Magnetic nanomaterials for supercapacitors, Magnetochem. À Mater. Appl. 66 (2020) 259.
[13] G. Wang, L. Wang, L.H. Mark, V. Shaayegan, G. Wang, H. Li, G. Zhao, C.B. Park, Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications, ACS Appl. Mater. Interfaces. 10 (2018) 1195-1203.
[14] G. Wang, X. Peng, L. Yu, G. Wan, S. Lin, Y. Qin, Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition, J. Mater. Chem. A Mater. 3 (2015) 2734-2740.
[15] B. Wen, X.X. Wang, W.Q. Cao, H.L. Shi, M.M. Lu, G. Wang, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world, Nanoscale. 6 (2014) 5754-5761.
[16] W.-Q. Cao, X.-X. Wang, J. Yuan, W.-Z. Wang, M.-S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites, J. Mater. Chem. C Mater. 3 (2015) 10017-10022.
[17] V.K. Sachdev, S.K. Sharma, M. Tomar, V. Gupta, R.P. Tandon, EMI shielding of MWCNT/ABS nanocomposites in contrast to graphite/ABS composites and MWCNT/PS nanocomposites, RSC Adv. 6 (2016) 45049-45058.
[18] K. Lakshmi, H. John, K.T. Mathew, R. Joseph, K.E. George, Microwave absorption, reflection and EMI shielding of PU-PANI composite, Acta. Mater. 57 (2009) 371-375.
[19] L. Lyu, J. Liu, H. Liu, C. Liu, Y. Lu, K. Sun, R. Fan, N. Wang, N. Lu, Z. Guo, An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding, Eng. Sci. 2 (2018) 26-42.
[20] N.S. Kumar, K.C.B. Naidu, P. Banerjee, H. Manjunatha, A. Ratnamala, S. Janardan, Advanced ceramics for Microwave Absorber Applications, Appl. Adv. Ceram. Sci. Technol. Med. 3 (2020) 51.
[21] P. Banerjee, A. Franco, K.C.B. Naidu, Advanced ceramics for ferroelectric devices, Appl. Adv. Ceram. Sci. Technol. Med. 3 (2020) 95.
[22] G.G. Miranda, R.L. de S. Silva, P. Banerjee, A. Franco Jr, Role of Ga presence into the heterojunction of metal oxide semiconductor on the stability and tunability ZnO ceramics, Ceram Int. 46 (2020) 23390-23396.
[23] M. Wang, X.-H. Tang, J.-H. Cai, H. Wu, J.-B. Shen, S.-Y. Guo, Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review, Carbon N Y. 177 (2021) 377-402.
[24] Q. Liu, Q. Cao, X. Zhao, H. Bi, C. Wang, D.S. Wu, R. Che, Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography, ACS Appl. Mater. Interfaces. 7 (2015) 4233-4240.
[25] Z. Yu, Z. Yao, N. Zhang, Z. Wang, C. Li, X. Han, X. Wu, Z. Jiang, Electric field-induced synthesis of dendritic nanostructured α-Fe for electromagnetic absorption application, J. Mater. Chem. A Mater. 1 (2013) 4571-4576.
[26] C. Wang, X. Han, X. Zhang, S. Hu, T. Zhang, J. Wang, Y. Du, X. Wang, P. Xu, Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies, J. Phys. Chem. C. 114 (2010) 14826-14830.
[27] J. Liu, R. Che, H. Chen, F. Zhang, F. Xia, Q. Wu, M. Wang, Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells, Small. 8 (2012) 1214-1221.
[28] L. Liu, M. Flores, N. Newman, Microwave loss in the high-performance dielectric Ba (Zn1/3 Ta2/3) O3 at 4.2 K, Phys Rev Lett. 109 (2012) 257601.
[29] H. Wang, K. Teng, C. Chen, X. Li, Z. Xu, L. Chen, H. Fu, L. Kuang, M. Ma, L. Zhao, Conductivity and electromagnetic interference shielding of graphene-based architectures using MWCNTs as free radical scavenger in gamma-irradiation, Mater. Lett. 186 (2017) 78-81.
[30] P. Banerjee, A. Franco Jr, K.C.B. Naidu, D.B. Basha, R. Pothu, R. Boddula, Active Materials for Flexible K‐Ion Batteries, in: Inamuddin, R. Boddula, A.M. Asiri (Eds.), Potassium‐Ion Batteries: Materials and Applications, 2020, pp. 137-145.
[31] P. Banerjee, A. Franco Jr, R. Boddula, K.C.B. Naidu, R. Pothu, Carbon Nanomaterials for Zn‐Ion Batteries, in: Inamuddin, R. Boddula, A.M. Asiri (Eds.), Zinc Batteries: Basics, Developments, and Applications, 2020, pp. 1-9.
[32] P. Banerjee, N.S. Kumar, K.C.B. Naidu, A. Franco, R. Dachepalli, Stability of 2D and 3D perovskites due to inhibition of light-induced decomposition, J. Electron. Mater. 49 (2020) 7072-7084.
[33] S.O. de Lira, R.L. de S. Silva, P. Banerjee, A. Franco Jr, Effects of defect dipoles on the colossal permittivity of ambipolar co-doped rutile TiO2 ceramics, J. Phys. Chem. Solids. 143 (2020) 109456.
[34] P. Banerjee, N.S. Kumar, A. Franco Jr, A.K. Swain, K. Chandra Babu Naidu, Insights into the dielectric loss mechanism of bianisotropic FeSi/SiC composite materials, ACS Omega. 5 (2020) 25968-25972.
[35] P. Banerjee, A.F. Junior, D.B. Basha, K.C. Naidu, Magnetic nanomaterials for spintronics, Magnetochem: Mater. Appl. 66 (2020) 323.
[36] H. Wang, S. Li, M. Liu, J. Li, X. Zhou, Review on shielding mechanism and structural design of electromagnetic interference shielding composites, Macromol. Mater. Eng. 306 (2021) 2100032.
[37] K. Nasouri, A.M. Shoushtari, M.R.M. Mojtahedi, Theoretical and experimental studies on EMI shielding mechanisms of multi-walled carbon nanotubes reinforced high performance composite nanofibers, J. Polym. Res. 23 (2016) 1-8.
[38] Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong, W.-H. Liao, Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy, Carbon N Y. 122 (2017) 74-81.
[39] Z. Li, Z. Wang, W. Lu, B. Hou, Theoretical study of electromagnetic interference shielding of 2D MXenes films, Metals (Basel). 8 (2018) 652.
[40] D.D.L. Chung, Materials for electromagnetic interference shielding, J Mater. Eng. Perform. 9 (2000) 350-354.
[41] A. Joshi, S. Datar, Carbon nanostructure composite for electromagnetic interference shielding, Pramana. 84 (2015) 1099-1116.
[42] X. Chen, Y. Zhao, L. Li, Y. Wang, J. Wang, J. Xiong, S. Du, P. Zhang, X. Shi, J. Yu, MXene/polymer nanocomposites: preparation, properties, and applications, Polym Rev. 61 (2021) 80-115.
[43] P. Kumar, F. Shahzad, S. Yu, S.M. Hong, Y.-H. Kim, C.M. Koo, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness, Carbon N Y. 94 (2015) 494-500.
[44] M. Born, E. Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, Elsevier, 2013.
[45] B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, Reduced graphene oxides: Light‐weight and high‐efficiency electromagnetic interference shielding at elevated temperatures, Adv. Mater. 26 (2014) 3484-3489.
[46] M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band, ACS Appl. Mater. Interfaces. 8 (2016) 21011-21019.
[47] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science 353 (2016) 1137-1140.
[48] S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu, S. Hong, Z.-Z. Yu, Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances, ACS Nano. 12 (2018) 11193-11202.
[49] G. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Layer‐by‐layer assembly of cross‐functional semi‐transparent MXene‐carbon nanotubes composite films for next‐generation electromagnetic interference shielding, Adv. Funct. Mater. 28 (2018) 1803360.
[50] X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu, Y. Zhang, Y. Dai, R. Yang, Z.-Z. Yu, Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding, Chem. Eng. J. 381 (2020) 122622.
[51] M. Han, X. Yin, K. Hantanasirisakul, X. Li, A. Iqbal, C.B. Hatter, B. Anasori, C.M. Koo, T. Torita, Y. Soda, Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption, Adv. Opt. Mater. 7 (2019) 1900267.
[52] T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee, M. Kim, S.J. Kim, D. Kim, Y. Gogotsi, S.O. Kim, Electromagnetic shielding of monolayer MXene assemblies, Adv. Mater. 32 (2020) 1906769.
[53] Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng, Y. Liu, Z. Xie, A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding, Chem. Eng. J. 381 (2020) 122696.
[54] C.I. Idumah, Recent advancements in electromagnetic interference shielding of polymer and Mxene nanocomposites, Polym-Plastics Technol Mater. 62 (2023) 19-53.
[55] Z. He, H. Xie, H. Wu, J. Chen, S. Ma, X. Duan, A. Chen, Z. Kong, Recent advances in MXene/polyaniline-based composites for electrochemical devices and electromagnetic interference shielding applications, ACS Omega. 6 (2021) 22468-22477.
[56] Y. Li, B. Zhou, Y. Shen, C. He, B. Wang, C. Liu, Y. Feng, C. Shen, Scalable manufacturing of flexible, durable Ti3C2Tx MXene/Polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications, Compos B Eng. 217 (2021) 108902.
[57] Y.-J. Wan, K. Rajavel, X.-M. Li, X.-Y. Wang, S.-Y. Liao, Z.-Q. Lin, P.-L. Zhu, R. Sun, C.-P. Wong, Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength, Chem. Eng. J. 408 (2021) 127303.
[58] L. Wang, L. Chen, P. Song, C. Liang, Y. Lu, H. Qiu, Y. Zhang, J. Kong, J. Gu, Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application, Compos. B Eng. 171 (2019) 111-118.
[59] Z. Tan, H. Zhao, F. Sun, L. Ran, L. Yi, L. Zhao, J. Wu, Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: Toward enhanced electromagnetic interference shielding and thermal management capacity, Compos. Part A Appl. Sci. Manuf. 155 (2022) 106809.
[60] T. Tang, S. Wang, Y. Jiang, Z. Xu, Y. Chen, T. Peng, F. Khan, J. Feng, P. Song, Y. Zhao, Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding, J. Mater. Sci. Technol. 111 (2022) 66-75.
[61] Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch, S. Abdolhosseinzadeh, J. Heier, F. Nüesch, C. Zhang, G. Nyström, Nanocellulose‐MXene biomimetic aerogels with orientation‐tunable electromagnetic interference shielding performance, Adv. Sci. 7 (2020) 2000979.
[62] Y. Li, Y. Chen, X. He, Z. Xiang, T. Heinze, H. Qi, Lignocellulose nanofibril/gelatin/MXene composite aerogel with fire-warning properties for enhanced electromagnetic interference shielding performance, Chem. Eng. J. 431 (2022) 133907.
[63] H. Liu, Z. Huang, T. Chen, X. Su, Y. Liu, R. Fu, Construction of 3D MXene/Silver nanowires aerogel reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity, Chem. Eng. J. 427 (2022) 131540.
[64] Y. Yao, S. Jin, M. Wang, F. Gao, B. Xu, X. Lv, Q. Shu, MXene hybrid polyvinyl alcohol flexible composite films for electromagnetic interference shielding, Appl. Surf. Sci. 578 (2022) 152007.
[65] J. Liu, H. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z. Yu, Hydrophobic, flexible, and lightweight MXene foams for high‐performance electromagnetic‐interference shielding, Adv. Mater. 29 (2017) 1702367.
[66] K. Raagulan, R. Braveenth, H.J. Jang, Y.S. Lee, C. Yang, B.M. Kim, J.J. Moon, K.Y. Chai, Fabrication of nonwetting flexible free‐standing MXene‐carbon fabric for electromagnetic shielding in S‐band region, Bull Korean Chem. Soc. 39 (2018) 1412-1419.
[67] Z. Zhan, Q. Song, Z. Zhou, C. Lu, Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding, J. Mater. Chem. C Mater. 7 (2019) 9820-9829.
[68] X. Jin, J. Wang, L. Dai, X. Liu, L. Li, Y. Yang, Y. Cao, W. Wang, H. Wu, S. Guo, Flame-retardant poly (vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances, Chem. Eng. J. 380 (2020) 122475.
[69] M. Zhu, X. Yan, H. Xu, Y. Xu, L. Kong, Highly conductive and flexible bilayered MXene/cellulose paper sheet for efficient electromagnetic interference shielding applications, Ceram. Int. 47 (2021) 17234-17244.