Particle migration modeling in solid propellants

Particle migration modeling in solid propellants

Raoul Andriulli, Nabil Souhair, Luca Fadigati, Mattia Magnani, Fabrizio Ponti

download PDF

Abstract. This work presents the development of an OpenFOAM solver to predict the migration of solid particles in concentrated suspensions under non-uniform shear flow. The solver modifies the pimpleFoam solver by implementing the conservation equation for particle volume fraction. It adapts the equation of motion for non-Newtonian flows and establishes a model for the viscous field using Krieger’s correlation. The code is successfully validated by the experimental results from literature.

Keywords
Solid Rocket Motors, Casting Process, Particle Migration, Numerical Simulation, OpenFOAM

Published online 11/1/2023, 5 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Raoul Andriulli, Nabil Souhair, Luca Fadigati, Mattia Magnani, Fabrizio Ponti, Particle migration modeling in solid propellants, Materials Research Proceedings, Vol. 37, pp 690-694, 2023

DOI: https://doi.org/10.21741/9781644902813-147

The article was published as article 147 of the book Aeronautics and Astronautics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] REN P, WANG H, ZHOU G, et al (2021) Solid rocket motor propellant grain burnback simulation based on fast minimum distance function calculation and improved marching tetrahedron method. Chinese Journal of Aeronautics 34:208–224. https://doi.org/10.1016/j.cja.2020.08.052
[2] Wang X, Jackson TL, Massa L (2004) Numerical simulation of heterogeneous propellant combustion by a level set method. Combustion Theory and Modelling 8:227–254. https://doi.org/10.1088/1364-7830/8/2/003
[3] Sutton GP, Biblarz O (2016) Rocket Propulsion Elements, 9th ed. John Wiley & Sons
[4] Breton P Le, Ribereau D (2002) Casting Process Impact on Small-Scale Solid Rocket Motor Ballistic Performance. J Propuls Power 18:1211–1217. https://doi.org/10.2514/2.6055
[5] Ghose B, Kankane DK (2008) Estimation of location of defects in propellant grain by X-ray radiography. NDT & E International 41:125–128. https://doi.org/10.1016/j.ndteint.2007.08.005
[6] Wang X, Jackson TL, Buckmaster J (2007) Numerical simulation of the 3-dimensional combustion of aluminized heterogeneous propellants. Proceedings of the Combustion Institute
[7] Jackson TL (2012) Modeling of Heterogeneous Propellant Combustion: A Survey. AIAA Journal 50:993–1006. https://doi.org/10.2514/1.J051585
[8] Kochevets S, Buckmaster J, Jackson TL, Hegab A (2001) Random Packs and Their Use in Modeling Heterogeneous Solid Propellant Combustion. J Propuls Power 17:883–891. https://doi.org/10.2514/2.5820
[9] Plaud M, Gallier S, Morel M (2015) Simulations of heterogeneous propellant combustion: Effect of particle orientation and shape. Proceedings of the Combustion Institute 35:2447–2454. https://doi.org/10.1016/j.proci.2014.05.020
[10] Ponti F, Mini S, Annovazzi A (2020) Numerical Evaluation of the Effects of Inclusions on Solid Rocket Motor Performance. AIAA Journal 58:4028–4036. https://doi.org/10.2514/1.J058735
[11] Ponti F, Mini S, Fadigati L, et al (2021) Effects of inclusions on the performance of a solid rocket motor. Acta Astronaut 189:283–297. https://doi.org/10.1016/j.actaastro.2021.08.030
[12] Ponti F, Mini S, Fadigati L, et al (2021) INFLUENCE OF NOZZLE RADIATION ON SOLID ROCKET MOTORS TAIL-OFF THRUST. International Journal of Energetic Materials and Chemical Propulsion 20:45–64. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2021038491
[13] Mini S, Ponti F, Brusa A, et al (2023) Prediction of Tail-Off Pressure Peak Anomaly on Small-Scale Rocket Motors. Aerospace 10:169. https://doi.org/10.3390/aerospace10020169
[14] Mini S, Ponti F, Annovazzi A, Gizzi E (2020) Impact of Thermal Protections Insulation Layer on Solid Rocket Motor Performance. In: AIAA Propulsion and Energy 2020 Forum. American Institute of Aeronautics and Astronautics, Reston, Virginia
[15] Le Breton P, Ribereau D, Marraud C, Lamarque P (2002) Experimental and Numerical Study of Casting Process Effects on Small Scale Solid Rocket Motor Ballistic Behavior. International Journal of Energetic Materials and Chemical Propulsion 5:132–145.
https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.160
[16] Mini S, Ponti F, Annovazzi A, et al (2022) A novel procedure to determine the effects of debonding on case exposure of solid rocket motors. Acta Astronaut 190:30–47. https://doi.org/10.1016/j.actaastro.2021.09.016
[17] Ponti F, Mini S, Fadigati L, et al (2022) Theoretical Study on The Influence of Debondings on Solid Rocket Motor Performance. International Journal of Energetic Materials and Chemical Propulsion 21:21–45. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2021039436
[18] Ao W, Liu X, Rezaiguia H, et al (2017) Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: Experiments and modeling. Acta Astronaut 136:219–229. https://doi.org/10.1016/j.actaastro.2017.03.013
[19] Emelyanov VN, Teterina IV, Volkov KN (2020) Dynamics and combustion of single aluminium agglomerate in solid propellant environment. Acta Astronaut 176:682–694. https://doi.org/10.1016/j.actaastro.2020.03.046
[20] (2023) OpenFOAM foam-extend toolbox. https://sourceforge.net/projects/foam-extend/. Accessed 26 Apr 2023
[21] LYON MK, LEAL LG (1998) An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J Fluid Mech 363:25–56. https://doi.org/10.1017/S0022112098008817
[22] Phillips RJ, Armstrong RC, Brown RA, et al (1992) A constitutive equation for concentrated suspensions that accounts for shear‐induced particle migration. Physics of Fluids A: Fluid Dynamics 4:30–40. https://doi.org/10.1063/1.858498
[23] Krieger IM (1972) Rheology of monodisperse latices. Adv Colloid Interface Sci 3:111–136. https://doi.org/10.1016/0001-8686(72)80001-0
[24] Kwon I, Jung HW, Hyun JC, et al (2018) Particle migration in planar Couette–Poiseuille flows of concentrated suspensions. J Rheol (N Y N Y) 62:419–435. https://doi.org/10.1122/1.4989416