Ionanofluids: A review on its properties and thermal applications

Ionanofluids: A review on its properties and thermal applications

Rahaf Almutairi, Feroz Shaik, Syam Sundar Lingala

download PDF

Abstract. The dispersion of nanoparticles (NPs) into ionic liquids results in ionanofluids (INFs) (ILs). INFs are regarded as the newest type of heat transfer fluids (HTFs). INFs are discovered to improve the fluids’ thermophysical characteristics at high temperatures with negligible vapor pressure. The preparation techniques and theoretical models used to calculate the physical characteristics of ionofluids, including their density, heat capacity, thermal conductivity, and thermal applications, are summarized in this work.

Ionanofluids (INFs), Nanoparticles (NPs), Ionic Liquids (ILs), Heat Transfer Fluids (HTFs), Thermophysical, Thermal Applications

Published online 9/25/2023, 22 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Rahaf Almutairi, Feroz Shaik, Syam Sundar Lingala, Ionanofluids: A review on its properties and thermal applications, Materials Research Proceedings, Vol. 36, pp 16-37, 2023


The article was published as article 3 of the book AToMech1-2023 Supplement

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] M.C. Roco, Nanoparticles and nanotechnology research. Journal of Nanoparticle Research, 1(1) (1999) 1.‏
[2] C.A. Nieto de Castro, S.M.S. Murshed, M.J.V. Lourenço, F.J.V. Santos, M.L.M. Lopes, J.M.P. França, Ionanofluids: new heat transfer fluids for green processes development, in M.A. Inamuddin (Ed.), Green Solvents I, Springer, Dordrecht, Netherlands (2012) 233–249.
[3] E. Ettefaghi, A. Rashidi, H. Ahmadi, S.S. Mohtasebi, M. Pourkhalil, Thermal and rhe ological properties of oil-based nanofluids from different carbon nanostructures, International Communications in Heat and Mass Transfer 48 (2013) 178–182.
[4] A.P.C. Ribeiro, M.J.V. Lourenço, C.A. Nieto de Castro, Thermal conductivity of ionanofluids, 17th Symposium on Thermophysical Properties, Boulder, USA, (2009).
[5] R.D. Rogers, K.R. Seddon, Ionic Liquids—Solvents of the Future? Science 302 (2003) 792–793.
[6] P. Kubisa, Application of ionic liquids as solvents for polymerization processes, Prog. Polym. Sci. 29 (2004) 3–12.
[7] J. F. Wishart, Energy applications of ionic liquids, Energy Environ. Sci. 2 (2009) 956 961.
[8] P. Singh, K. Kumari, A. Katyal, R. Kalra, R. Chandra, Copper nanoparticles in ionic liquid: An easy and efficient catalyst for selective carba-Michael addition reaction. Catal. Lett. 127 (2009) 119–125.
[9] R.G. Reddy, Novel applications of ionic liquids in materials processing. J. Phys. Conf. Ser. 165 (2009) 012076.
[10] A.E. Jiménez, M.D. Bermúdez, Ionic liquids as lubricants of titanium-steel contact. Tribol. Lett. 40 (2010) 237–246.
[11] A.A. Minea, S.M.S. Murshed, A review on development of ionic liquid based nanofluids and their heat transfer behavior, Renew. Sust. Energ. Rev. 91 (2018) 584-599.
[12] A.P.C. Ribeiro, S.I.C. Vieira, J.M. França, C.S. Queirós, E. Langa, M.J.V. Lourenço, S.M.S. Murshed, C.A. Nieto de Castro, Thermal properties of ionic liquids and ionanofluids, in: A. Kokorin (Ed.), Ionic Liquids: Theory, Properties, New Approaches, InTech, Rijeka, Croatia (2011) 37–60.
[13] W. Wang, Z. Wu, B. Li, B. Sundén, A review on molten-salt-based and ionic-liquid based nanofluids for medium-to-high temperature heat transfer, J. Therm. Anal. Calorim. 136 (2019) 1037–1051.
[14] S. Mallakpour, M. Dinari, Ionic liquids as green solvents: progress and prospects, in: A. Mohammad, Inamuddin (Eds.), Green Solvents II: Properties and Applications of Ionic Liquids, Springer, Dordrecht, the Netherlands, (2012) 1–32.
[15] A. Kokorin, Ionic Liquids: Applications and Perspectives, InTech, Rijeka, Croatia, (2011).
[16] A. Maia, Room temperature ionic liquids: a “green” alternative to conventional organic solvents? MROC 8 (2011) 178–185.
[17] J.M. Dealy, J. Wang, Melt Rheology and its Applications in the Plastics Industry, 2nd ed. Springer, Dordrecht, the Netherlands, (2013).
[18] P.C. Mishra, S. Mukherjee, S.K. Nayak, A. Panda, A brief review on viscosity ofnanofluids, Int Nano Lett 4 (2014) 109–120. 014- 0126-3
[19] P. Kumar, K.M. Pandey, Effect on heat transfer characteristics of nanofluids flowing under laminar and turbulent flow regime – a review, IOP Conf. Ser.: Mater. Sci. Eng. 225 (2017), 012168.
[20] S.M.S. Murshed, P. Estellé, A state of the art review on viscosity of nanofluids, Renew. Sust. Energ. Rev. 76 (2017) 1134–1152. 2017.03.113
[21] M.T. Jamal-Abad, M. Dehghan, S. Saedodin, M.S. Valipour, A. Zamzamian, An experimental investigation of rheological characteristics of non- Newtonian nanofluids, Journal of Heat and Mass Transfer Research (JHMTR) 1 (2014) 17–23.
[22] T. Miri, Viscosity and oscillatory rheology, in: I.T. Norton, F. Spyropoulos, P. Cox (Eds.), Practical Food Rheology: An Interpretive Approach, Wiley-Blackwell, Oxford, UK (2011) 7–28.
[23] S.A. Khan, J.R. Royer, S.R. Raghana, Rheology: Tools and Methods, National Academic Press, Washington, USA, (1997).
[24] T.F. Tadros, Rheology of Dispersions: Principles and Applications, Wiley, Weinheim, Germany, (2010).
[25] T.G. Mezger, The Rheology Handbook: For Users of Rotational and Oscillatory Rhe ometers, 4th ed. Vincentz Network, Hanover, Germany, (2014).
[26] C.R. Jacobs, H. Huang, R.Y. Kwon, Introduction to Cell Mechanics and Mechanobiology, Garland Science, New York, USA, (2013).
[27] V. Falguera, A. Ibarz, Juice Processing: Quality, Safety and Value-Added Opportuni ies, CRC Press, Boca Raton, USA, (2014).
[28] D.R. Heldman, D.B. Lund, C. Sabliov, Handbook of Food Engineering, CRC Press, Boca Raton, USA, (2018).
[29] T.F. Tadros, Nanodispersions, De Gruyter, Berlin, Germany, (2016).
[30] H. Chen, Y. Ding, Heat transfer and rheological behaviour of nanofluids – a review, in L. Wang (Ed.), Advances in Transport Phenomena, Springer, Berlin, Germany (2009) 135–177.
[31] A.K. Sharma, A.K. Tiwari, A.R. Dixit, Rheological behaviour of nanofluids: a review, Renew. Sust. Energ. Rev. 53 (2016) 779–791.
[32] J.P. Meyer, S.A. Adio, M. Sharifpur, P.N. Nwosu, The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models, Heat Transfer Engineering 37 (2016) 387–421.
[33] H. Babar, M.U. Sajid, H.M. Ali, Viscosity of hybrid nanofluids: a critical review, Therm. Sci. 23 (2019) 1713–1754.
[34] K. Bashirnezhad, S. Bazri, M.R. Safaei, M. Goodarzi, M. Dahari, O. Mahian, A.S. Dalkılıça, S. Wongwises, Viscosity of nanofluids: a review of recent experimental studies, International Communications in Heat and Mass Transfer 73 (2016) 114–123.
[35] I.M. Mahbubul, R. Saidur, M.A. Amalina, Latest developments on the viscosity of nanofluids, Int. J. Heat Mass Transf. 55 (2012) 874–885.
[36] H.D. Koca, S. Doganay, A. Turgut, I.H. Tavman, R. Saidur, I.M. Mahbubul, Effect of particle size on the viscosity of nanofluids: a review, Renew. Sust. Energ. Rev. 82 (2018) 1664–1674.
[37] V.Y. Rudyak, Viscosity of nanofluids. Why it is not described by the classical theories, Advances in Nanoparticles 2 (2013) 720–726.
[38] S.M.S. Murshed, P. Estellé, Rheological characteristics of nanofluids for advance heat transfer, in: A.A. Minea (Ed.), Advances in New Heat Transfer Fluids, CRC Press, Boca Raton, USA (2017) 227–266.
[39] R. Vajjha, D. Das, Rheology and CFD Studies of Nanofluids: Thermophysical Properties and Correlations, LAP Lambert Academic Publishing, Riga, Latvia, (2016).
[40] W.H. Azmi, K.V. Sharma, R. Mamat, G. Najafi, M.S. Mohamad, The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – a re view, Renew. Sust. Energ. Rev. 53 (2016) 1046–1058.
[41] L.S. Sundar, K.V. Sharma, M.T. Naik, M.K. Singh, Empirical and theoretical correlations on viscosity of nanofluids: a review, Renew. Sust. Energ. Rev. 25 (2013) 670–686,
[42] B. Abreu, A. Válega, B. Lamas, A. Fonseca, N. Martins, M. Oliveira, On the assessment of viscosity variability by nanofluid engineering: a review, J Nanofluids 5 (2016) 23 36.
[43] A.A. Nadooshan, H. Eshgarf, M. Afrand, Evaluating the effects of different parame ters on rheological behavior of nanofluids: a comprehensive review, Powder Technol. 338 (2018) 342–353.
[44] H. Khodadadi, S. Aghakhani, H. Majd, R. Kalbasi, S. Wongwises, M. Afrand, A com prehensive review on rheological behavior of mono and hybrid nanofluids: effec- tive parameters and predictive correlations, Int. J. Heat Mass Transf. 127 (2018) 997–1012.
[45] A. Shakeel, H. Mahmood, U. Farooq, Z. Ullah, S. Yasin, T. Iqbal, C. Chassagne, M. Moniruzzaman, Rheology of pure ionic liquids and their complex fluids: a review, ACS Sustain. Chem. Eng. 7 (2019) 13586–13626. acssuschemeng.9b02232
[46] K. Vignarooban, X. Xu, A. Arvay, K. Hsu, A.M. Kannan, Heat transfer fluids for concentrating solar power systems-A review. Appl. Energy, 146 (2015) 383–396.
[47] R. Malviya, A. Agrawal, P.V. Baredar, A Comprehensive review of different heat transfer working fluids for solar thermal parabolic trough concentrator. Mater. Today Proc. 46(11) (2021) 5490–5500.
[48] H.A. Zaharil, M. Hasanuzzaman, Modelling and performance analysis of parabolic trough solar concentrator for different heat transfer fluids under Malaysian condition, Renew. Energy. 149 (2020) 22–41.
[49] T. Conroy, M.N. Collins, J. Fisher, R. Grimes, Thermohydraulic analysis of single phase heat transfer fluids in CSP solar receivers. Renew. Energy. 129 (2018) 150–167.
[50] S.E. Trabelsi, L. Qoaider, A. Guizani, Investigation of using molten salt as heat transfer fluid for dry cooled solar parabolic trough power plants under desert conditions. Energy Convers. Manag. 15 (2018) 253–263.
[51] N. Boerema, G. Morrison, R. Taylor, G. Rosengarten, Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems. Sol. Energy. 86 (2012) 2293–2305.
[52] T. Fukushima, T. Aida, Ionic liquids for soft functional materials with carbon nanotubes. Chemistry–A European Journal, 13(18) (2007) 5048-5058.
[53] K.R. Seddon, A taste of the future, Nature materials, 2(6) (2003) 363-365.
[54] S. U. S. Choi, J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles (Argonne National Laboratory: Lemont, IL) (1995).
[55] J.D. Holbrey, K.R. Seddon, R. Wareing, A simple colorimetric method for the quality control of 1-alkyl-3-methylimidazolium ionic liquid precursors, Green Chemistry, 3(1) (2001) 33-36.
[56] T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 300(5628) (2003) 2072-2074.
[57] R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, Small particles, big impacts: A review of the diverse applications of nanofluids, J. Appl. Phys. 113 (2013) 011301.
[58] Y. Feng, E.E. Michaelides, G. Żyła, D. Jing, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids, Phys. Rep. 843 (2020) 1–81.
[59] E.C. Okonkwo, I. Wole-Osho, I.W. Almanassra, Y.M. Abdullatif, T. Al-Ansari, An updated review of nanofluids in various heat transfer devices, J. Therm. Anal. Calorim. (2020)
[60] O. Mahian, L. Kolsi, M. Amani, P. Estellé, G. Ahmadi, C. Kleinstreuer, J.S. Marshall, M. Siavashi, R.A. Taylor, H. Niazmand, S. Wongwises, T. Hayat, A. Kolanjiyil, A. Kasaeian, I. Pop, Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory, Phys. Rep. 790 (2019) 1–48.
[61] M. Lomascolo, G. Colangelo, M. Milanese, A. de Risi, Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results, Renew. Sustain. Energy.
[62] W. Wang, Z. Wu, B. Li, B. Sundén, A review on molten-salt-based and ionic- liquid based nanofluids for medium-to-high temperature heat transfer, J. Therm. Anal. Calorim. 136 (2019) 1037–1051. 018- 7765- y
[63] A. Sobti, R.K. Wanchoo, Thermal conductivity of nanofluids, Mater. Sci. Forum757 (2013) 111–137.
[64] D. Tomida, Thermal conductivity of ionic liquids. In (Ed.), Impact of Thermal Conductivity on Energy Technologies. IntechOpen. (2018).
[65] C.N. De Castro, S.S. Murshed, M.J.V. Lourenço, F.J.V. Santos, M.M. Lopes, J.M.P. França, Enhanced thermal conductivity and specific heat capacity of carbon nanotubes Ionanofluids, International Journal of Thermal Sciences, 62 (2012) 34-39.‏
[66] L. Godson, B. Raja, D.M. Lal, S. Wongwises, Experimental investigation on the thermal conductivity and viscosity of silver-deionized water nanofluid, Exp. Heat Transfer 23 (2010) 317–332.
[67] S.M.S. Murshed, K.C. Leong, C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci. 47 (2008) 560–568.
[68] A. Riahi, S. Khamlich, M. Balghouthi, T. Khamliche, T.B. Doyle, W. Dimassi, A. Guizani, M. Maaza, Study of thermal conductivity of synthesized Al2O3-water nanofluid by pulsed laser ablation in liquid, J. Molecular Liquids 304 (2020) 112694.
[69] S. Zhang, Z. Ge, X. Fan, H. Huang, X. Long, Prediction method of thermal conductivity of nanofluids based on radial basis function, J. Therm. Anal. Calorim. 141 (2020) 859 880.
[70] Z. Said, S.M.A. Rahman, M. El Haj Assad, A.H. Alami, Heat transfer enhance- ment and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid, Sustain. Energy Technol. Assess. 31 (2019) 306–317.
[71] T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, H.G. Hsu, The effect of alumina/water nanofluid particle size on thermal conductivity, Appl. Therm. Eng. 30 (2010) 2213 2218. 05.036
[72] M.P. Beck, Y. Yuan, P. Warrier, A.S. Teja, The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol+ water mixtures. Journal of Nanoparticle research, 12(4) (2010) 1469-1477.‏
[73] W. Yu, H. Xie, L. Chen, Y. Li, Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids and surfaces A: Physicochemical and Engineering Aspects, 355(1-3) (2010) 109-113.‏
[74] H. Li, L. Wang, Y. He, Y. Hu, J. Zhu, B. Jiang, Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids, Appl. Therm. Eng. 88 (2015) 363–368. j.applthermaleng.2014.10.071
[75] Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 49(1-2) (2006) 240-35.
[76] A. Amrollahi, A.M. Rashidi, M. Emami Meibodi, K. Kashefi, Conduction heat transfer characteristics and dispersion behaviour of carbon nanofluids as a function of different parameters, Journal of Experimental Nanoscience, 4(4) (2009) 347-363.‏
[77] J.C. Maxwell, A treatise on electricity and magnetism (Vol.1). Clarendon press, (1873).
[78] R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-components system, Industrial & Engineering Chemistry Fundamentals, 1(3) (1962) 187-191.
[79] S.M.S. Murshed, K.C. Leong, C. Yang, Thermophysical and electrokinetic properties of nanofluids-a critical review, Applied Thermal Engineering, 28(17-18) (2008) 2109 2125.
[80] S.M.S. Murshed, K.C. Leong, C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, International Journal of Thermal Sciences, 47(5) (2008) 560 568.
[81] A. Wittmar, M. Gajda, D. Gautam, U. Dörfler, M. Winterer, M. Ulbricht, Influence of the cation alkyl chain length of imidazolium-based room temperature ionic liquids on the dispersibility of TiO2 nanopowders, Journal of Nanoparticle Research, 15(3) (2013) 1-12.‏
[82] J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room emperature ionic liquids incorporating the imidazolium cation, Green chemistry, 3(4) (2001) 156-164.
[83] K.R. Seddon, A. Stark, M.J. Torres, Viscosity and density of 1-alkyl-3 methylimidazolium ionic liquids (2002).
[84] K. Dong, Q. Wang, X. Lu, Q. Zhou, S. Zhang, Structure, interaction and hydrogen bond, Structures and Interactions of Ionic Liquids, (2014) 1-38.
[85] L.F. Zubeir, M.A. Rocha, N. Vergadou, W.M. Weggemans, L.D. Peristeras, P.S. Schulz, M.C. Kroon, Thermophysical properties of imidazolium tricyanomethanide ionic liquids: experiments and molecular simulation, Physical Chemistry Chemical Physics, 18(33) (2016) 23121-23138.
[86] A. Wittmar, M. Ulbricht, Dispersions of various titania nanoparticles in two different ionic liquids, Ind. Eng. Chem. Res. 51 (2012) 8425–8433.
[87] N. Zhao, Evaluation of physical properties of ionic liquids (Doctoral dissertation, Queen’s University Belfast) (2017).‏
[88] J. Gao, P.M. Mwasame, N.J. Wagner, Thermal rheology and microstructure of shear thickening suspensions of silica nanoparticles dispersed in the ionic liquid [C_4mim][BF4], Journal of Rheology, 61(3) (2017) 525-535.
[89] K. Ueno, S. Imaizumi, K. Hata, M. Watanabe, Colloidal interaction in ionic liquids: Effects of ionic structures and surface chemistry on rheology of silica colloidal dispersions, Langmuir, 25(2) (2009) 825-831.‏
[90] H. Tokuda, S. Tsuzuki, M.A.B.H. Susan, K. Hayamizu, M. Watanabe, How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties, The Journal of Physical Chemistry B, 110(39) (2006) 19593-19600.
[91] J. Novak, M.M. Britton, Magnetic resonance imaging of the rheology of ionic liquid colloidal suspensions, Soft Matter, 9(9) (2013) 2730-2737
[92] F.F. Zhang, F.F. Zheng, X.H. Wu, Y.L. Yin, G. Chen, Variations of thermophysical properties and heat transfer performance of nanoparticle-enhanced ionic liquids, Royal Society Open Science, 6(4), (2019) 182040.
[93] V. Khare, M.Q. Pham, N. Kumari, H.S. Yoon, C.S. Kim, J.I. Park, S.H. Ahn, Graphene–ionic liquid based hybrid nanomaterials as novel lubricant for low friction and wear, ACS applied materials & interfaces, 5(10) (2013) 4063-4075.
[94] J. Liu, F. Wang, L. Zhang, X. Fang, Z. Zhang, Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications, Renewable Energy, 63 (2014) 519-523.
[95] W. Chen, C. Zou, X. Li, An investigation into the thermophysical and optical properties of SiC/ionic liquid nanofluid for direct absorption solar collector, Sol. Energy Mater. Sol. Cells 163 (2017) 157–163.
[96] H. Xie, Z. Zhao, J. Zhao, H. Gao, Measurement of thermal conductivity, viscosity and density of ionic liquid [EMIM][DEP]-based nanofluids, Chinese Journal of Chemical Engineering, 24(3) (2016) 331-338.
[97] K. Khanafer, K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids, International Journal of Heat and Mass Transfer, 54(19-20) (2011) 4410 4428.
[98] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701–3707.
[99] M. Sharifpur, S. Yousefi, J.P. Meyer, A new model for density of nanofluids including nanolayer, Int. Commun. Heat Mass Transfer 78 (2016) 168–174.
[100] R. Hentschke, On the specific heat capacity enhancement in nanofluids, Nanoscale research letters, 11(1) (2016) 1-11.
[101] A. Safaei, A.H. Nezhad, A. Rashidi, High temperature nanofluids based on therminol 66 for improving the heat exchangers power in gas refineries, Applied Thermal Engineering, 170 (2020) 114991.
[102] R.S. Vajjha, D.K. Das, B.M. Mahagaonkar, Density measurement of different nanofluids and their comparison with theory, Petroleum Science and Technology, 27(6) (2009) 612-624.
[103] K. Oster, C. Hardacre, J. Jacquemin, A.P.C. Ribeiro, A. Elsinawi, Understanding the heat capacity enhancement in ionic liquid-based nanofluids (ionanofluids), Journal of Molecular Liquids, 253 (2018) 326-339.
[104] I. Carrillo-Berdugo, R. Grau-Crespo, D. Zorrilla, J. Navas, Interfacial molecular layering enhances specific heat of nanofluids: Evidence from molecular dynamics, Journal of Molecular Liquids, 325 (2021) 115217.
[105] S.S. Murshed, C.N. de Castro, M.J.V. Lourenço, J. França, A.P.C. Ribeiro, S. I.C. Vieira, C.S. Queirós, Ionanofluids as novel fluids for advanced heat transfer applications, International Journal of Physical and Mathematical Sciences, 5(4), (2011) 579-582.
[106] D.R. Lide, CRC handbook of chemistry and physics (Vol. 85), CRC press (2004).
[107] J.M.P França, Thermal properties of ionanofluids (Doctoral dissertation, M. Sc. thesis, Faculdade de Ciências da Universidade de Lisboa, Portugal) (2010).
[108] K.N. Marsh, J.A. Boxall, R. Lichtenthaler, Room temperature ionic liquids and their mixtures—a review, Fluid Phase Equilibria, 219(1), (2004) 93-98.
[109] S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, Physical properties of ionic liquids: database and evaluation, Journal of physical and chemical reference data, 35(4) (2006) 1475 1517.
[110] S. Keskin, D. Kayrak-Talay, U. Akman, O. Hortaçsu, A review of ionic liquids towards supercritical fluid applications, The Journal of Supercritical Fluids, 43(1) (2007) 150 180
[111] M.J. Earle, K.R. Seddon, Ionic liquids: Green solvents for the future, Pure and applied chemistry, 72(7) (2000) 1391-1398.
[112] J. Holbrey, Heat capacities of common ionic liquids-potential applications as thermal fluids?. Chimica Oggi-Chemistry Today, 25 (2007) 24-26.
[113] P. Wasserscheid, T. Welton, Ionic liquids in synthesis, Weinheim: Wiley-Vch, 1 (2008) 145.
[114] M. Gaune-Escard, K.R. Seddon, Molten salts and ionic liquids: never the twain?. John Wiley & Sons (2012)
[115] C. Chiappe, D. Pieraccini, Ionic liquids: solvent properties and organic reactivity, Journal of Physical Organic Chemistry, 18(4) (2005) 275-297.
[116] A. Heintz, C. Wertz, Ionic liquids: A most promising research field in solution chemistry and thermodynamics, Pure and applied chemistry, 78(8) (2006) 1587-1593.
[117] C.A. Nieto de Castro, F. SANTOS, Measurement of ionic liquids properties. Are we doing it well?. Chimica oggi, 25(6) (2007) 20-23.
[118] J.M. França, C.A. Nieto de Castro, M.M. Lopes, V.M. Nunes, Influence of thermophysical properties of ionic liquids in chemical process design, Journal of Chemical & Engineering Data, 54(9), (2009) 2569-2575.
[119] C.A. Nieto de Castro, E. Langa, A.L. Morais, M.L.M. Lopes, M.J.V. Lourenço, F.J.V. Santos, M.S.C.S. Santos, J.S.L. Lopes, H.I.M. Veiga, M. Macatrão, J.M.S.S. Esperança, L.P.N. Rebelo, C.S. Marques, C.A.M. Afonso, Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca],[C2mim][EtOSO3] and [aliquat] [dca], Fluid Phase Equilibr 294 (2010) 157–179
[120] A.P.C. Ribeiro, M.J.V. Lourenço, C.N. de Castro, Thermal conductivity of Ionanofluids. In Proceedings of the 17th Symposium on Thermophysical Properties, (2009) 21-29.
[121] C.A. Nieto de Castro, M.J. V. Lourenço, A.P.C. Ribeiro, E. Langa, S.I.C Vieira, P. Goodrich, C. Hardacre, Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids, Journal of Chemical & Engineering Data, 55(2) (2010) 653-66.
[122] S.I.C Vieira, A. Ribeiro, M. Lourenço, C. Nieto de Castro, Paints with Ionanofluids as pigments for improvement of heat transfer on architectural and heat exchangers surfaces. In Proceedings of the 25th European symposium on applied thermodynamics, Saint Petersburg, Russia (2011).