Organometallic Halides-Based Perovskite Solar Cells


Organometallic Halides-Based Perovskite Solar Cells

Uzma Hira, Muhammad Husnain

The energy crisis is increasing day by day and the natural resources of energy are rapidly decreasing from all around the world. The utilization of solar energy has become popular in the last few years. But the silicone-based solar cells (SCs) are too costly and not easily bought by everyone. A lot of experiments have been performed to make less expensive and more stable solar cells. Currently, scientists are trying to develop SCs through the utilization of organic and inorganic ionic materials. These compounds are usually considered organometallic halides-based perovskite solar cells (OMHP-SCs). They have properties of semiconductors and a remarkable p-n junction. Perovskite solar cells (PSCs) have gained the attention of researchers owing to their excellent power conversion efficiency (PCE) and the maximum efficiency obtained so far is ~ 30%. But their instability in the environment ceases the practical application of OMHP-SCs. Therefore, in order to overcome the degradation of PSCs, a large number of passivation methods have been proposed such as suppression of ions, solvent engineering, hole conductor-free perovskite, etc. It is anticipated that OMHP-SCs will be available in the market in the coming years with great stability and PCE.

Solar Energy, Perovskite Solar Cells, Organometallic Halide-Based Perovskite Solar Cells, Power Conversion Efficiency, Passivation Methods

Published online 10/15/2023, 34 pages

Citation: Uzma Hira, Muhammad Husnain, Organometallic Halides-Based Perovskite Solar Cells, Materials Research Foundations, Vol. 151, pp 33-66, 2023


Part of the book on Perovskite based Materials for Energy Storage Devices

[1] H.J. Snaith, Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells, J. Phys. Chem. Lett. 4 (2013) 3623-3630.
[2] L.M. Fraas, Low-cost Solar Electric Power, Springer, 2014.
[3] S.M. Hasnain, Solar energy education: A viable pathway for sustainable development, Renew. Energy 14 (1998) 387-392.
[4] S. Mekhilef, S.Z. Faramarzi, R. Saidur, Z. Salam, The application of solar technologies for sustainable development of the agricultural sector, Renew. Sustain. Energy Rev. 18 (2013) 583-594.
[5] I. Khan, F. Hou, H.P. Le, The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America, Sci. Total Environ. 754 (2021) 142222.
[6] M.A. Aktar, M.M. Alam, A.Q.A. Amin, Global economic crisis, energy use, CO2 emissions, and policy roadmap amid COVID-19, Sustain. Prod. Consum. 26 (2021) 770-781.
[7] A. Mikhaylov, Sustainable development and renewable energy: A new view to a global problem, Energies 15 (2022) 1397.
[8] M.V. Dambhare, B. Butey, S.V. Moharil, Solar photovoltaic technology: A review of different types of solar cells and its future trends, J. Phys. Conf. Ser. 1913 (2021) 012053.
[9] D. Verma, S. Nema, A.M. Shandilya, S.K. Dash, Maximum Power Point Tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems, Renew. Sustain. Energy Rev. 54 (2016) 1018-1034.
[10] M. Kratschmann, E. Dütschke, Selling the sun: A critical review of the sustainability of solar energy marketing and advertising in Germany, Energy Res. Soc. Sci. 73 (2021) 101919.
[11] S.O. Abril, J.A.P. León, J.O.G. Mendoza, Study of the benefit of solar energy through the management of photovoltaic systems in Colombia, Int. J. Energy Econ. Policy. 11 (2021) 96-103.
[12] T. Tsoutsos, N. Frantzeskaki, V. Gekas, Environmental impacts from solar energy technologies, Energy Policy. 33 (2005) 289-296.
[13] M.H. Shakil, Z.H. Munim, M. Tasnia, S. Sarowar, COVID-19 and the environment: A critical review and research agenda, Sci. Total Environ. 745 (2020) 141022.
[14] International Energy Outlook 2021.
[15] B.P. Singh, S.K. Goyal, P. Kumar, Solar PV cell materials and technologies: Analyzing the recent developments, Mater. Today Proc. 43 (2021) 2843-2849.
[16] J. Bisquert, The Physics of Solar Energy Conversion, first ed., CRC Press, 2022.
[17] M.A. Green, Photovoltaic principles, Physica E: Low-Dimens. Syst. Nanostruct. 14 (2002) 11-17.
[18] W.A. Badawy, A review on solar cells from Si-single crystals to porous materials and quantum dots, J. Adv. Res. 6 (2015) 123-132.
[19] M.A. Green, Third generation photovoltaics: Solar cells for 2020 and beyond, Physica E: Low-Dimens. Syst. Nanostruct. 14 (2002) 65-70.
[20] G.H. Kim, D.S. Kim, Development of perovskite solar cells with >25% conversion efficiency, Joule 5 (2021) 1033-1035.
[21] P. Roy, N.K. Sinha, S. Tiwari, A. Khare, A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status, Sol. Energy. 198 (2020) 665-688.
[22] C.D. Bailie, M.D. McGehee, High-efficiency tandem perovskite solar cells, MRS Bull. 40 (2015) 681-685.
[23] M. Mohan, Life cycle assessment, in: A. Thankappan, S. Thomas (Eds.), Perovskite photovoltaics: Basic to Advanced Concepts Implementation, Elsevier Inc., 2018, pp. 447-480.
[24] S.D. Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, C. Ballif, Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance, J. Phys. Chem. Lett. 5 (2014) 1035-1039.
[25] M.A. Green, A.H. Baillie, H.J. Snaith, The emergence of perovskite solar cells, Nat. Photonics 8 (2014) 506-514.
[26] X. Wang, M. Li, B. Zhang, H. Wang, Y. Zhao, B. Wang, Recent progress in organometal halide perovskite photodetectors, Org. Electron. 52 (2018) 172-183.
[27] N. Kumar, J. Rani, R. Kurchania, A review on power conversion efficiency of Lead Iodide perovskite-based solar cells, Mater. Today Proc. 46 (2020) 5570-5574.
[28] N. Ashurov, B.L. Oksengendler, S. Maksimov, S. Rashiodva, A.R. Ishteev, D.S. Saranin, I.N. Burmistrov, D. V. Kuznetsov, A.A. Zakhisov, Current state and perspectives for organo-halide perovskite solar cells. Part 1. Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotubes: A review, Mod. Electron. Mater. 3 (2017) 1-25.
[29] M. Azzouzi, T. Kirchartz, J. Nelson, Factors controlling open-circuit voltage losses in organic solar cells, Trends Chem. 1 (2019) 49-62.
[30] D. Kiermasch, L.G. Escrig, H.J. Bolink, K. Tvingstedt, Effects of masking on open-circuit voltage and fill factor in solar cells, Joule. 3 (2019) 16-26.
[31] E. Mosconi, P. Umari., F.D. Angelis, Electrical and optical properties of MAPBX3 perovskites (X = I, Br, Cl): A unified DFT and GW theoretical analysis, Phys. Chem. Chem. Phys. 18 (2016) 27158-27164.
[32] Y. Dang, D. Ju, L. Wang, X. Tao, Recent progress in the synthesis of hybrid halide perovskite single crystals, CrystEngComm. 18 (2016) 4476-4484.
[33] C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L.M. Ghiringhelli, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides, Sci. Adv. 5 (2019) 1-10.
[34] F. Zhang, K. Zhu, Additive engineering for efficient and stable perovskite solar cells, Adv. Energy Mater. 10 (2019) 1902579.
[35] D. Ji, S.Z. Feng, L. Wang, S. Wang, M. Na, H. Zhang, C.M. Zhang, X. Li, Regulatory tolerance and octahedral factors by using vacancy in APbI3 perovskites, Vacuum. 164 (2019) 186-193.
[36] Y.C. Hsiao, T. Wu, M. Li, Q. Liu, W. Qin, B. Hu, Fundamental physics behind high-efficiency organo-metal halide perovskite solar cells, J. Mater. Chem: A, 3 (2015) 15372-15385.
[37] G.R. Berdiyorov, F.E. Mellouhi, M.E. Madjet, F.H. Alharbi, F.M. Peeters, S. Kais, Effect of halide-mixing on the electronic transport properties of organometallic perovskites, Sol. Energy Mater. Sol. Cells. 148 (2016) 2-10.
[38] X. Liu, W. Zhao, H. Cui, Y. Xie, Y. Wang, T. Xu, F. Huang, Organic-inorganic halide perovskite based solar cells – revolutionary progress in photovoltaics, Inorg. Chem. Front. 2 (2015) 315-335.
[39] L. Yang, A.T. Barrows, D.G. Lidzey, T. Wang, Recent progress and challenges of organometal halide perovskite solar cells, Reports Prog. Phys. 79 (2016) 26501.
[40] S. Bai, Z. Wu, X. Wu, Y. Jin, N. Zhao, Z. Chen, Q. Mei, X. Wang, Z. Ye, T. Song, R. Liu, S.T. Lee, B. Sun, High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering, Nano Res. 7 (2014) 1749-1758.
[41] L. Etgar, Hole Conductor Free Perovskite-based Solar Cells, Springer, 2016.
[42] G. Giorgi, J. Fujisawa, H. Segawa, K. Yamashita, Small photocarrier effective masses featuring ambipolar transport in Methylammonium Lead Iodide perovskite: A Density Functional Analysis, J. Phys. Chem. Lett. 4 (2013) 4213-4216.
[43] U. Mehmood, A.A. Ahmed, M. Afzaal, F.A.A. Sulaiman, M. Daud, Recent progress and remaining challenges in organometallic halides based perovskite solar cells, Renew. Sustain. Energy Rev. 78 (2017) 1-14.
[44] F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors, J. Mater. Chem: C, 3 (2015) 10715-10722.
[45] I. Borriello, G. Cantele, D. Ninno, Ab initio investigation of hybrid organic-inorganic perovskites based on Tin halides, Phys. Rev. B – Condens. Matter Mater. Phys. 77 (2008) 1-9.
[46] F. Brivio, A.B. Walker, A. Walsh, Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles, APL Mater. 1 (2013) 14-19.
[47] H. Zarenezhad, T. Balkan, N. Solati, M. Halali, M. Askari, S. Kaya, Efficient carrier utilization induced by conductive polypyrrole additives in organic-inorganic halide perovskite solar cells, Sol. Energy. 207 (2020) 1300-1307.
1 [48] F. Zhang, K. Zhu, On-device lead sequestration for perovskite solar cells, Nature 578 (2020) 555-558.
[49] M.M. Byranvand, A.N. Kharat, N. Taghavinia, Moisture stability in nanostructured perovskite solar cells, Mater. Lett. 237 (2019) 356-360.
[50] D. Wang, M. Wright, N.K. Elumalai, A. Uddin, Stability of perovskite solar cells, Sol. Energy Mater. Sol. Cells. 147 (2016) 255-275.
[51] J.A. Christians, P.A.M. Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air, J. Am. Chem. Soc. 137 (2015) 1530-1538.
[52] A. Poglitsch, D. Weber, Dynamic disorder in Methylammonium trihalogenoplumbates (II) observed by millimeter-wave spectroscopy, J. Chem. Phys. 87 (1987) 6373-6378.
[53] N. Aristidou, C. Eames, I.S. Molina, X. Bu, J. Kosco, M.S. Islam, S.A. Haque, Fast oxygen diffusion and Iodide defects mediate Oxygen-induced degradation of perovskite solar cells, Nat. Commun. 8 (2017) 1-10.
[54] D. Bryant, N. Aristidou, S. Pont, I.S. Molina, T. Chotchunangatchaval, S. Wheeler, J.R. Durrant, S.A. Haque, Light and Oxygen induced degradation limits the operational stability of Methylammonium Lead triiodide perovskite solar cells, Energy Environ. Sci. 9 (2016) 1655-1660.
[55] W. Chi, S.K. Banerjee, Development of perovskite solar cells by incorporating quantum dots, Chem. Eng. J. 426 (2021) 131588.
[56] M. Jeevaraj, S. Sudhahar, M.K. Kumar, Evolution of stability enhancement in organo-metallic halide perovskite photovoltaics-A review, Mater. Today Commun. 27 (2021) 102159.
[57] M.G. Rosell, A. Bou, J.A.J. Tejada, J. Bisquert, P.L. Varo, Analysis of the influence of selective contact heterojunctions on the performance of perovskite solar cells, J. Phys. Chem: C, 122 (2018) 13920-13925.
[58] J. Kang, R. Huang, S. Guo, G. Han, X. Sun, I. Ismail, C. Ding, F. Li, Q. Luo, Y. Li, C.Q. Ma, Suppression of ion migration through cross-linked PDMS doping to enhance the operational stability of perovskite solar cells, Sol. Energy. 217 (2021) 105-112.
[59] T. Ye, Y. Hou, A. Nozariasbmarz, D. Yang, J. Yoon, L. Zheng, K. Wang, K. Wang, S. Ramakrishna, S. Priya, Cost-effective high-performance charge-carrier-transport-layer-free perovskite solar cells achieved by suppressing ion migration, ACS Energy Lett. 6 (2021) 3044-3052.
[60] Z. Huang, A.H. Proppe, H. Tan, M.I. Saidaminov, F. Tan, A. Mei, C.S. Tan, M. Wei, Y. Hou, H. Han, S.O. Kelley, E.H. Sargent, Suppressed ion migration in reduced-dimensional perovskites improves operating stability, ACS Energy Lett. 4 (2019) 1521-1527.
[61] Z. Arain, C. Liu, Y. Yang, M. Mateen, Y. Ren, Y. Ding, X. Liu, Z. Ali, M. Kumar, S. Dai, Elucidating the dynamics of solvent engineering for perovskite solar cells, Sci. China Mater. 62 (2019) 161-172.
[62] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater. 13 (2014) 897-903.
[63] Y. Deng, Z. Ni, A.F. Palmstrom, J. Zhao, S. Xu, C.H.V. Brackle, X. Xiao, K. Zhu, J. Huang, Reduced self-doping of perovskites induced by short annealing for efficient solar modules, Joule 4 (2020) 1949-1960.
[64] E.B. Kim, M.S. Akhtar, H.S. Shin, S. Ameen, M.K. Nazeeruddin, A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances, J. Photochem. Photobiol. C Photochem. Rev. 48 (2021) 100405.
[65] M.C. Mathpal, P. Kumar, F.H. Aragón, M.A.G. Soler, H.C. Swart, Basic concepts, engineering, and advances in dye-sensitized solar cells, in S.K. Sharma, K. Ali (Eds.), Solar cells: From Materials to Device Technology, Springer, 2020, pp. 185-233.
[66] Y. Yang, W. Wang, Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3, J. Power Sources. 293 (2015) 577-584.
[67] G.L. Yang, H.Z. Zhong, Organometal halide perovskite quantum dots: Synthesis, optical properties, and display applications, Chinese Chem. Lett. 27 (2016) 1124-1130.
[68] N.G. Park, Perovskite solar cells: An emerging photovoltaic technology, Mater. Today. 18 (2015) 65-72.
[69] F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors, J. Mater. Chem: C, 3 (2015) 10715-10722.
[70] Y. Wang, W. Rho, H. Yang, T. Mahmoudi, S. Seo, D. Lee, Y. Hahn, Air-stable, hole-conductor-free high photocurrent perovskite solar cells with CH3NH3PbI3-NiO nanoparticles composite, Nano Energy. 27 (2016) 535-544.
[71] N.N. Lal, Y. Dkhissi, W. Li, Q. Hou, Y.B. Cheng, U. Bach, Perovskite tandem solar cells, Adv. Energy Mater. 7 (2017) 1-18.
[72] T. Todorov, T. Gershon, O. Gunawan, C. Sturdevant, S. Guha, Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage, Appl. Phys. Lett. 105 (2014) 173902.
[73] F. Wang, S. Bai, W. Tress, A. Hagfeldt, F. Gao, Defects engineering for high-performance perovskite solar cells, NPJ Flex. Electron. 2 (2018) 1-14.