Nanomaterials and their Synthesis for a Sustainable Future


Nanomaterials and their Synthesis for a Sustainable Future

Helena Gavilán, María B. Serrano, Juan Carlos Cabanelas

Nanomaterials are structured materials whose dimensions lie in the nanoscale, at least in one dimension. Their small size and high surface area lead to properties not observed in their bulky state, some of which have revolutionized different fields in the last decades. While it is acknowledged that nanomaterials have been obtained or created since ancient times, with little or no knowledge about nanotechnology itself, it was not until this century that the development of nanomaterials was done on purpose, achieving a high level of sophistication in terms of fine-tuning the nanomaterial’s properties, including size, shape, chemical composition, and structure. As such, nanomaterials are used in many industries as advanced materials with high strength while being light, superhydrophobicity, and antimicrobial properties, to name a few. Some of the nanomaterials with high value, given their outstanding properties, are quantum dots (superior luminescence properties), gold nanoparticles (localized surface plasmons), layered perovskites (optimal band gaps for materials like solar cells), and carbon nanotubes (very high tensile strength, electrical conductivity). Consequently, there has been a tremendous boom of nanomaterials in the industry, so they have been introduced into our daily lives. Despite the little knowledge available about their impact on the environment and our health, such intensified use has raised some concerns about the safe use of nanomaterials. Furthermore, due to the extended use of resources and current pollution levels, given that access to energy, food, clean water, and health is not guaranteed to future generations, the concept of “sustainability” and the transition from a linear to a circular economy is becoming more important in the manufacturing of products. As a result, society is making efforts to implement the 3Rs ‘reduce’, ‘reduce’, and ‘recycle’ in our community. In addition, other Rs are of utmost importance: ‘Recover’, ‘Redesign’, ‘Remanufacture’, etc., so that products, materials, and resources are maintained in the economy for as long as possible, and the generation of waste is minimized. This book chapter tackles all these aspects for nanomaterials and “nano-products” (nanomaterials already introduced in specific markets or industries). In particular, it analyzes and collects data available in the literature, where it was possible to implement the sustainability concept in different steps of the life-cycle of nanomaterials: from their synthesis to subsequent remanufacturing processes. In this line, this chapter discusses the ‘green’ synthesis of nanomaterials, which are environmentally friendly processes that take place in natural environments (i.e., processes where nanoparticles are produced by microorganisms), or techniques that eliminate toxic reagents, minimize waste, reduce energy consumption and use ecological solvents. In addition, a section of the chapter covers reported strategies where the recovery, reuse, and recycling of nanomaterials were successful. The chapter has been structured into five parts. First, a general introduction to nanomaterials is provided. Then, different green synthesis methods are described, focusing on the biosynthesis of metal/metal-based oxide nanoparticles. After, the definition and classification of nanowastes are given, as well as a general overview of nano-toxicity and the different management procedures applied to nanomaterials after their end-of-life. Then, the book chapter covers the reuse and recycling of nanomaterials. In the fourth section of the book chapter, we provide data on ‘safe- and sustainable-by-design’ (SSbD) synthesis methods of nanomaterials. SSbD is a key concept for implementing a circular economy on nanomaterials. Finally, we provide some conclusions and final remarks about nanomaterials and their synthesis for a sustainable future.

Nanomaterials, Green Synthesis, Ecotoxicology, Nano-Wastes, Nanomaterial Recycling and Reusing, Sustainable Nanomaterials

Published online 8/10/2023, 78 pages

Citation: Helena Gavilán, María B. Serrano, Juan Carlos Cabanelas, Nanomaterials and their Synthesis for a Sustainable Future, Materials Research Foundations, Vol. 149, pp 233-310, 2023


Part of the book on New Materials for a Circular Economy

[1] ISO/TS 80004-4:2011 Nanotechnologies – Vocabulary – Part 4: Nanostructured materials, (2011).
[2] A. Nowak, K. Śliżewska, and A. Otlewska, Antigenotoxic activity of lactic acid bacteria, prebiotics, and products of their fermentation against selected mutagens, J. Regul. Toxicol. Pharmacol., vol. 73, no. 3 (2015) 938-946.
[3] M. F. Hochella Jr, D. W. Mogk, J. Ranville, I. C. Allen, G. W. Luther, L. C. Marr, B. P. McGrail, M. Murayama, N. P. Qafoku, and K. M. Rosso, Natural, incidental, and engineered nanomaterials and their impacts on the Earth system, J. Sci., vol. 363, no. 6434 (2019) 8299.
[4] J. A. Dearing, K. L. Hay, S. M. Baban, A. S. Huddleston, E. M. Wellington, and P. Loveland, Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set, Geophys. J. Int., vol. 127, no. 3 (1996) 728-734.
[5] F. J. Martin-Martinez, K. Jin, D. López Barreiro, and M. J. Buehler, The rise of hierarchical nanostructured materials from renewable sources: learning from nature, ACS Nano, vol. 12, no. 8 (2018) 7425-7433.
[6] M. Loos, M. Loos, Ed. Nanoscience and Nanotechnology (2015). Oxford: William Andrew Publishing 1-36.
[7] S. Philippe, A. H. Abbass, Ed. Nanoparticles in Ancient Materials: The Metallic Lustre Decorations of Medieval Ceramics (2012). Rijeka: IntechOpen 1-25.
[8] C. Ouellet-Plamondon, P. Aranda, A. Favier, G. Habert, H. Van Damme, and E. Ruiz-Hitzky, The Maya blue nanostructured material concept applied to colouring geopolymers, RSC Adv., vol. 5, no. 120 (2015) 98834-98841.
[9] M. Sharon, M. Sharon, Ed. History of nanotechnology: from prehistoric to modern times (2019). John Wiley & Sons.
[10] T. Pradell, J. Molera, A. D. Smith, A. Climent-Font, and M. S. Tite, Technology of Islamic lustre, J. Cult. Herit., vol. 9, (2008) 123-128.
[11] J. Hulla, S. Sahu, and A. Hayes, Nanotechnology: History and future, J. Hum. Exp. Toxicol., vol. 34, no. 12 (2015) 1318-1321.
[12] J. Tersoff and D. R. Hamann, Theory and application for the scanning tunneling microscope, J. Phys. Rev. Lett., vol. 50, no. 25 (1983) 1998.
[13] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, and F. Rizzolio, The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine, J. Molecules, vol. 25, no. 1 (2019) 112.
[14] J. Hulla, S. Sahu, and A. Hayes, Nanotechnology: History and future, J. Hum. Exp. Toxicol., vol. 34, no. 12 (2015) 1318-1321.
[15] A. K. Yetisen, H. Qu, A. Manbachi, H. Butt, M. R. Dokmeci, J. P. Hinestroza, M. Skorobogatiy, A. Khademhosseini, and S. H. Yun, Nanotechnology in textiles, ACS Nano, vol. 10, no. 3 (2016) 3042-3068.
[16] V. S. Saji, H. C. Choe, and K. W. Yeung, Nanotechnology in biomedical applications: a review, Int. J. Biomater., vol. 3, no. 2 (2010) 119-139.
[17] B. S. Sekhon, Food nanotechnology-an overview, J. Nanotechnol. Sci. Appl. , vol. 3, (2010) 1-15.
[18] S. Manjunatha, D. Biradar, and Y. R. Aladakatti, Nanotechnology and its applications in agriculture: A review, Int. J. Farm Sci., vol. 29, no. 1 (2016) 1-13.
[19] M. T. Bohr, Nanotechnology goals and challenges for electronic applications, IEEE Trans. Nanotechnol., vol. 1, no. 1 (2002) 56-62.
[20] E. Serrano, G. Rus, and J. Garcia-Martinez, Nanotechnology for sustainable energy, J. Renew. Sustain. Energy Rev., vol. 13, no. 9 (2009) 2373-2384.
[21] R. K. Ibrahim, M. Hayyan, M. A. AlSaadi, A. Hayyan, and S. Ibrahim, Environmental application of nanotechnology: air, soil, and water, J. Environ. Sci. Pollut. Res. Int., vol. 23, no. 14 (2016) 13754-13788.
[22] V. Singh, P. Yadav, and V. Mishra, M. S. :Neha Srivastava, P. K. Mishra, Vijai Kumar Gupta, Ed. Recent advances on classification, properties, synthesis, and characterization of nanomaterials (2020). Wiley Online Library 83-97.
[23] A. Barhoum, M. L. García-Betancourt, J. Jeevanandam, E. A. Hussien, S. A. Mekkawy, M. Mostafa, M. M. Omran, M. S. Abdalla, and M. Bechelany, Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations, J. Nanomater., vol. 12, no. 2 (2022) 4418.
[24] S. Saha, S. Bansal, and M. Khanuja, M. G. a. M. A. Shahid, Ed. Classification of nanomaterials and their physical and chemical nature (2022). Elsevier 7-34.
[25] W. J. Stark, P. R. Stoessel, W. Wohlleben, and A. Hafner, Industrial applications of nanoparticles, Chem. Soc. Rev., vol. 44, no. 16 (2015) 5793-5805.
[26] S. D. Stranks and H. J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices, Nat. Nanotechnol., vol. 10, no. 5 (2015) 391-402.
[27] Y.-B. Cheng, A. Pascoe, F. Huang, and Y. Peng, Print flexible solar cells, Nature, vol. 539, no. 7630 (2016) 488-489.
[28] P.-C. Ma and Y. Zhang, Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials, J. Renew. Sust. Energ. Rev. , vol. 30, (2014) 651-660.
[29] S. Das, A review on Carbon nano-tubes-A new era of nanotechnology, Int. J. Emerging Technol. Adv. Eng., vol. 3, no. 3 (2013) 774-783.
[30] Y. Wei, P. Zhang, R. A. Soomro, Q. Zhu, and B. Xu, Advances in the synthesis of 2D MXenes, Adv. Mater., vol. 33, no. 39 (2021) 2103148.
[31] M. Ajith, M. Aswathi, E. Priyadarshini, and P. Rajamani, Recent innovations of nanotechnology in water treatment: A comprehensive review, J. Bioresour. Technol., vol. 342, (2021) 126000.
[32] H. Saleem and S. J. Zaidi, Nanoparticles in reverse osmosis membranes for desalination: A state of the art review, J. Desalination Water Treat., vol. 475, (2020) 114171.
[33] M. M. Abdullah, H. A. Al-Lohedan, and A. M. Atta, Novel magnetic iron oxide nanoparticles coated with sulfonated asphaltene as crude oil spill collectors, RSC Adv., vol. 6, no. 64 (2016) 59242-59249.
[34] W. Sricharussin, P. Threepopnatkul, and N. Neamjan, Effect of various shapes of zinc oxide nanoparticles on cotton fabric for UV-blocking and anti-bacterial properties, J. Fibers Polym., vol. 12, no. 8 (2011) 1037-1041.
[35] M. Z. Khan, V. Baheti, M. Ashraf, T. Hussain, A. Ali, A. Javid, and A. Rehman, Development of UV protective, superhydrophobic and antibacterial textiles using ZnO and TiO2 nanoparticles, J. Fibers Polym., vol. 19, no. 8 (2018) 1647-1654.
[36] S. B. Raut, D. Vasavada, and S. Chaudhari, Nano Particles-Application in Textile Finishing, J. Man-Made Text. India, vol. 53, no. 12 (2010) 7-12.
[37] M. Bilal and H. M. Iqbal, New insights on unique features and role of nanostructured materials in cosmetics, J. Cosmet. Dermatol. Sci. Appl., vol. 7, no. 2 (2020) 1-24.
[38] Y. Cui, S. Kumar, B. R. Kona, and D. van Houcke, Gas barrier properties of polymer/clay nanocomposites, RSC Adv., vol. 5, no. 78 (2015) 63669-63690.
[39] A. P. Ramos, M. A. Cruz, C. B. Tovani, and P. Ciancaglini, Biomedical applications of nanotechnology, J. Biophys. Rev., vol. 9, no. 2 (2017) 79-89.
[40] H.-P. Phan, Implanted flexible electronics: Set device lifetime with smart nanomaterials, J. Micromachines, vol. 12, no. 2 (2021) 157.
[41] H. Gavilán, S. K. Avugadda, T. Fernández-Cabada, N. Soni, M. Cassani, B. T. Mai, R. Chantrell, and T. Pellegrino, Magnetic nanoparticles and clusters for magnetic hyperthermia: Optimizing their heat performance and developing combinatorial therapies to tackle cancer, Chem. Soc. Rev., vol. 50, no. 20 (2021) 11614-11667.
[42] M. Aflori, Smart nanomaterials for biomedical applications-a review, J. Nanomater., vol. 11, no. 2 (2021) 396.
[43] P. Chandrasekharan, Z. W. Tay, D. Hensley, X. Y. Zhou, B. K. Fung, C. Colson, Y. Lu, B. D. Fellows, Q. Huynh, and C. Saayujya, Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications, J. Theranostics, vol. 10, no. 7 (2020) 2965.
[44] E. Beltrán-Gracia, A. López-Camacho, I. Higuera-Ciapara, J. B. Velázquez-Fernández, and A. A. Vallejo-Cardona, Nanomedicine review: Clinical developments in liposomal applications, J. Cancer Nanotechnol., vol. 10, no. 1 (2019) 1-40.
[45] E. Boisselier and D. J. C. s. r. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev., vol. 38, no. 6 (2009) 1759-1782.
[46] S. Tran, P.-J. DeGiovanni, B. Piel, and P. Rai, Cancer nanomedicine: a review of recent success in drug delivery, J. Transl. Med., vol. 6, no. 1 (2017) 1-21.
[47] L. Xiao, K. Hong, C. Roberson, M. Ding, A. Fernandez, F. Shen, L. Jin, S. Sonkusare, and X. Li, Hydroxylated fullerene: a stellar nanomedicine to treat lumbar radiculopathy via antagonizing TNF-α-induced ion channel activation, calcium signaling, and neuropeptide production, ACS Biomater. Sci. Eng., vol. 4, no. 1 (2018) 266-277.
[48] A. S. Chauhan, Dendrimers for drug delivery, J. Molecules, vol. 23, no. 4 (2018) 938.
[49] N. Lewinski, V. Colvin, and R. Drezek, Cytotoxicity of nanoparticles, Small, vol. 4, no. 1 (2008) 26-49.
[50] G. Yang, S. Z. F. Phua, A. K. Bindra, and Y. J. A. M. Zhao, Degradability and clearance of inorganic nanoparticles for biomedical applications, vol. 31, no. 10 (2019) 1805730.
[51] M. Li, K. T. Al-Jamal, K. Kostarelos, and J. Reineke, Physiologically based pharmacokinetic modeling of nanoparticles, ACS Nano, vol. 4, no. 11 (2010) 6303-6317.
[52] S. A. M. Ealia and M. Saravanakumar, A review on the classification, characterisation, synthesis of nanoparticles and their application, in IOP conference series: materials science and engineering, 2017, vol. 263, no. 3, p. 032019: IOP Publishing.
[53] G. Gorrasi and A. Sorrentino, Mechanical milling as a technology to produce structural and functional bio-nanocomposites, J. Green Chem., vol. 17, no. 5 (2015) 2610-2625.
[54] C. A. Charitidis, P. Georgiou, M. A. Koklioti, A.-F. Trompeta, and V. Markakis, Manufacturing nanomaterials: from research to industry, J. Manuf. Rev., vol. 1, (2014) 1-11.
[55] C. Spreafico, D. Russo, and R. Degl’Innocenti, Laser pyrolysis in papers and patents, J. Intell. Manuf., vol. 33, (2021) 353-385.
[56] M. Parashar, V. K. Shukla, and R. Singh, Metal oxides nanoparticles via sol-gel method: a review on synthesis, characterization and applications, J. Mater. Sci.: Mater. Electron., vol. 31, no. 5 (2020) 3729-3749.
[57] N. Baig, I. Kammakakam, and W. Falath, Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges, Mater. Adv., vol. 2, no. 6 (2021) 1821-1871.
[58] P. T. Anastas and J. C. Warner, Green chemistry, Acc. Chem. Res., vol. 640 (1998) 1998.
[59] M. K. Panda, Y. D. Singh, R. K. Behera, and N. K. Dhal, J. Patra, Fraceto, L., Das, G., Campos, E., Ed. Biosynthesis of nanoparticles and their potential application in food and agricultural sector (2020). Springer, Cham. 213-225.
[60] S. Hasan, A review on nanoparticles: their synthesis and types, J. Res. J. Recent Sci., vol. 2277, (2015) 2502.
[61] P. Mohanpuria, N. K. Rana, and S. K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, J. Nanoparticle Res., vol. 10, no. 3 (2008) 507-517.
[62] J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, and P. Kumar, ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation, J. Nanobiotechnology, vol. 16, no. 1 (2018) 1-24.
[63] N. Srivastava, M. Srivastava, P. Mishra, and V. K. Gupta, N. Srivastava, Ed. Green Synthesis of Nanomaterials for Bioenergy Applications (2021). Wiley & Sons Ltd.
[64] J. M. Palomo and M. Filice, Biosynthesis of metal nanoparticles: novel efficient heterogeneous nanocatalysts, J. Nanomater., vol. 6, no. 5 (2016) 84.
[65] Y. Choi and S. Y. Lee, Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages, Nat. Rev. Chem., vol. 4, no. 12 (2020) 638-656.
[66] J. Jeevanandam, S. F. Kiew, S. Boakye-Ansah, S. Y. Lau, A. Barhoum, M. K. Danquah, and J. Rodrigues, Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts, Nanoscale, vol. 14, no. 7 (2022) 2534-2571.
[67] J. Al-Haddad, F. Alzaabi, P. Pal, K. Rambabu, and F. Banat, Green synthesis of bimetallic copper-silver nanoparticles and their application in catalytic and antibacterial activities, J. Clean Technol. Environ. Policy, vol. 22, no. 1 (2020) 269-277.
[68] M. Srivastava, P. Mishra, V. K. Gupta, and N. Srivastava, M. S. Neha Srivastava, P. K. Mishra, Vijai Kumar Gupta, Ed. Green Synthesis of Nanomaterials for Bioenergy Applications (2020). John Wiley & Sons.
[69] M. F. Al-Hakkani, Biogenic copper nanoparticles and their applications: A review, J. SN Appl. Sci., vol. 2, no. 3 (2020) 1-20.
[70] B. Malik, T. B. Pirzadah, M. Kumar, and R. U. Rehman, R. Prasad, Kumar, V., Kumar, M. , Ed. Biosynthesis of nanoparticles and their application in pharmaceutical industry (2017). Springer, Singapore 331-349.
[71] R. Chaudhary, K. Nawaz, A. K. Khan, C. Hano, B. H. Abbasi, and S. Anjum, An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications, J. Biomolecules, vol. 10, no. 11 (2020) 1498.
[72] P. Kurhade, S. Kodape, and R. Choudhury, Overview on green synthesis of metallic nanoparticles, J. Chem. Pap., vol. 75, no. 10 (2021) 5187-5222.
[73] S. Jadoun, R. Arif, N. K. Jangid, and R. K. Meena, Green synthesis of nanoparticles using plant extracts: A review, J. Environ. Chem. Lett. , vol. 19, no. 1 (2021) 355-374.
[74] S. Sinsinwar, M. K. Sarkar, K. R. Suriya, P. Nithyanand, and V. Vadivel, Use of agricultural waste (coconut shell) for the synthesis of silver nanoparticles and evaluation of their antibacterial activity against selected human pathogens, J. Microb. Pathog., vol. 124, (2018) 30-37.
[75] S. Busi and J. Rajkumari, A. M. Grumezescu, Ed. Microbially synthesized nanoparticles as next generation antimicrobials: scope and applications (2019). Elsevier 485-524.
[76] M. Ovais, A. T. Khalil, M. Ayaz, I. Ahmad, S. K. Nethi, and S. Mukherjee, Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach, Int. J. Mol. Sci., vol. 19, no. 12 (2018) 4100.
[77] A. Anandaradje, V. Meyappan, I. Kumar, and N. Sakthivel, A. Shukla, Ed. Microbial synthesis of silver nanoparticles and their biological potential (2020). Springer, Singapore. 99-133.
[78] R. K. Das, V. L. Pachapur, L. Lonappan, M. Naghdi, R. Pulicharla, S. Maiti, M. Cledon, L. M. A. Dalila, S. J. Sarma, and S. K. Brar, Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects, J. Nanotechnol. Environ. Eng., vol. 2, no. 1 (2017) 1-21.
[79] T. Klaus-Joerger, R. Joerger, E. Olsson, and C.-G. Granqvist, Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science, Trends Biotechnol., vol. 19, no. 1 (2001) 15-20.
[80] N. Durán, P. D. Marcato, O. L. Alves, G. I. De Souza, and E. Esposito, Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains, J. Nanobiotechnology, vol. 3, no. 1 (2005) 1-7.
[81] A. Fariq, T. Khan, and A. Yasmin, Microbial synthesis of nanoparticles and their potential applications in biomedicine, J. Appl. Biomed., vol. 15, no. 4 (2017) 241-248.
[82] I. Ocsoy, D. Tasdemir, S. Mazicioglu, C. Celik, A. Katı, and F. Ulgen, Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications, J. Mater. Lett., vol. 212, (2018) 45-50.
[83] M. Guilger-Casagrande and R. d. Lima, Synthesis of silver nanoparticles mediated by fungi: a review, J. Front. Bioeng. Biotechnol., vol. 7, (2019) 287.
[84] K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh, Biological synthesis of metallic nanoparticles, J. Nanomed.: Nanotechnol. Biol. Med., vol. 6, no. 2 (2010) 257-262.
[85] S. Mitra, A. Das, S. Sen, and B. Mahanty, Potential of metabolic engineering in bacterial nanosilver synthesis, World J. Microbiol. Biotechnol., vol. 34, no. 9 (2018) 1-10.
[86] G. Gahlawat and A. R. Choudhury, A review on the biosynthesis of metal and metal salt nanoparticles by microbes, RSC Adv., vol. 9, no. 23 (2019) 12944-12967.
[87] N. A. Gow, J.-P. Latge, and C. A. Munro, The fungal cell wall: structure, biosynthesis, and function, J. Microbiol. Spectr., vol. 5, no. 3 (2017) 1-25.
[88] A. Bhargava, N. Jain, M. A. Khan, V. Pareek, R. V. Dilip, and J. Panwar, Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B, J. Environ. Manage., vol. 183, (2016) 22-32.
[89] B. K. Salunke, S. S. Sawant, S.-I. Lee, and B. S. Kim, Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae, J. Appl. Microbiol. Biotechnol., vol. 99, no. 13 (2015) 5419-5427.
[90] X. Zhang, Y. Qu, W. Shen, J. Wang, H. Li, Z. Zhang, S. Li, and J. Zhou, Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols, J. Colloids Surf. A: Physicochem. Eng. Asp., vol. 497, (2016) 280-285.
[91] K. Chokshi, I. Pancha, T. Ghosh, C. Paliwal, R. Maurya, A. Ghosh, and S. Mishra, Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus, RSC Adv., vol. 6, no. 76 (2016) 72269-72274.
[92] G. Singaravelu, J. Arockiamary, V. G. Kumar, and K. Govindaraju, A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville, J. Colloids Surf. B: Biointerfaces, vol. 57, no. 1 (2007) 97-101.
[93] P. Vanathi, P. Rajiv, and R. Sivaraj, Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens, J. Mater. Sci., vol. 39, no. 5 (2016) 1165-1170.
[94] J. A. Lemire, J. J. Harrison, and R. J. J. N. R. M. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications, Nat. Rev. Microbiol., vol. 11, no. 6 (2013) 371-384.
[95] P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M. I. Khan, R. Kumar, and M. Sastry, Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum, J. ChemBioChem., vol. 3, no. 5 (2002) 461-463.<461::AID-CBIC461>3.0.CO;2-X
[96] M. Shahid, C. Dumat, S. Khalid, E. Schreck, T. Xiong, and N. K. Niazi, Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake, J. Hazard. Mater., vol. 325, (2017) 36-58.
[97] M. Ovais, A. T. Khalil, N. U. Islam, I. Ahmad, M. Ayaz, M. Saravanan, Z. K. Shinwari, and S. Mukherjee, Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles, J. Appl. Microbiol. Biotechnol., vol. 102, no. 16 (2018) 6799-6814.
[98] P. Kuppusamy, M. M. Yusoff, G. P. Maniam, and N. Govindan, Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-An updated report, Saudi Pharm. J., vol. 24, no. 4 (2016) 473-484.
[99] C. Pandit, A. Roy, S. Ghotekar, A. Khusro, M. N. Islam, T. B. Emran, S. E. Lam, M. U. Khandaker, and D. A. Bradley, Biological agents for synthesis of nanoparticles and their applications, J. King Saud Univ. Sci., vol. 34, no. 3 (2022) 101869.
[100] M. Rai and N. Duran, N. D. Mahendra Rai, Ed. Metal nanoparticles in microbiology (2011). Springer Berlin, Heidelberg.
[101] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, Journal. Type of Article vol. 107, no. Issue (2003) 668-677.
[102] N. Durán, P. D. Marcato, R. D. Conti, O. L. Alves, F. Costa, and M. J. J. o. t. B. C. S. Brocchi, Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action, J. Braz. Chem. Soc., vol. 21, (2010) 949-959.
[103] A. Bankar, B. Joshi, A. R. Kumar, and S. Zinjarde, Banana peel extract mediated novel route for the synthesis of silver nanoparticles, J. Colloids Surf. A: Physicochem. Eng. Asp., vol. 368, no. 1-3 (2010) 58-63.
[104] R. Ramanathan, A. P. O’Mullane, R. Y. Parikh, P. M. Smooker, S. K. Bhargava, and V. Bansal, Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans, Langmuir, vol. 27, no. 2 (2011) 714-719.
[105] Y. K. Tak, S. Pal, P. K. Naoghare, S. Rangasamy, and J. M. Song, Shape-dependent skin penetration of silver nanoparticles: does it really matter?, Sci. Rep., vol. 5, no. 1 (2015) 1-11.
[106] S. Pal, Y. K. Tak, and J. M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, J. Appl. Environ. Microbiol., vol. 73, no. 6 (2007) 1712-1720.
[107] S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan, D. Venkataraman, S. R. K. Pandian, J. Muniyandi, N. Hariharan, and S. H. Eom, Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli, J. Colloids Surf. B: Biointerfaces, vol. 74, no. 1 (2009) 328-335.
[108] E. O. Mikhailova, Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application, Funct. Biomater., vol. 12, no. 4 (2021) 70.
[109] T. Beveridge and R. Murray, Sites of metal deposition in the cell wall of Bacillus subtilis, J. Bacteriol., vol. 141, no. 2 (1980) 876-887.
[110] B. Srinath, K. Namratha, and K. Byrappa, Eco-friendly synthesis of gold nanoparticles by Bacillus subtilis and their environmental applications, J. Adv. Sci. Lett., vol. 24, no. 8 (2018) 5942-5946.
[111] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Ramani, R. Parischa, P. Ajayakumar, and M. Alam, Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed, Angew. Chem. Int., vol. 40, no. 19 (2001) 3585-3588.<3585::AID-ANIE3585>3.0.CO;2-K
[112] S. K. Srivastava, R. Yamada, C. Ogino, and A. Kondo, Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol, J. Nanoscale Res. Lett., vol. 8, no. 1 (2013) 1-9.
[113] P. Nagajyothi, K. Lee, and T. Sreekanth, Biogenic synthesis of gold nanoparticles (quasi-spherical, triangle, and hexagonal) using Lonicera japonica flower extract and its antimicrobial activity, J. Synth. React. Inorg. M., vol. 44, no. 7 (2014) 1011-1018.
[114] S. Ahmed and S. Ikram, Biosynthesis of gold nanoparticles: a green approach, J. Photochem. Photobiol. B, Biol., vol. 161, (2016) 141-153.
[115] K. S. Siddiqi, A. Husen, and R. A. Rao, A review on biosynthesis of silver nanoparticles and their biocidal properties, J. Nanobiotechnology, vol. 16, no. 1 (2018) 1-28.
[116] M. Saravanan, S. K. Barik, D. MubarakAli, P. Prakash, and A. Pugazhendhi, Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria, J. Microb. Pathog., vol. 116, (2018) 221-226.
[117] T. Klaus, R. Joerger, E. Olsson, and C.-G. Granqvist, Silver-based crystalline nanoparticles, microbially fabricated, Proc. Natl. Acad. Sci., vol. 96, no. 24 (1999) 13611-13614.
[118] S. A. Dahoumane, C. Jeffryes, M. Mechouet, and S. N. Agathos, Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition, J. Biomed. Eng., vol. 4, no. 1 (2017) 1-14.
[119] V. L. Das, R. Thomas, R. T. Varghese, E. Soniya, J. Mathew, and E. Radhakrishnan, Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area, J. 3 Biotech, vol. 4, no. 2 (2014) 121-126.
[120] M. S. Shekhawat, M. Manokari, N. Kannan, J. Revathi, and R. Latha, Synthesis of silver nanoparticles using Cardiospermum halicacabum L. leaf extract and their characterization, Int. J. Phytopharm., vol. 2, (2013) 15-20.
[121] S. N. Kang, Y. M. Goo, M. R. Yang, R. I. H. Ibrahim, J. H. Cho, I. S. Kim, and O. H. Lee, Antioxidant and antimicrobial activities of ethanol extract from the stem and leaf of Impatiens balsamina L.(Balsaminaceae) at different harvest times, J. Molecules, vol. 18, no. 6 (2013) 6356-6365.
[122] V. Kathiravan, S. Ravi, S. Ashokkumar, S. Velmurugan, K. Elumalai, and C. P. Khatiwada, Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities, J. Spectrochim. Acta A Mol. Biomol. Spectrosc. , vol. 139, (2015) 200-205.
[123] J. Kesharwani, K. Y. Yoon, J. Hwang, and M. Rai, Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis, J. Bionanoscience, vol. 3, no. 1 (2009) 39-44.
[124] N. Vigneshwaran, N. Ashtaputre, P. Varadarajan, R. Nachane, K. Paralikar, and R. Balasubramanya, Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus, J. Mater. Lett., vol. 61, no. 6 (2007) 1413-1418.
[125] N. Jain, A. Bhargava, S. Majumdar, J. Tarafdar, and J. Panwar, Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective, Nanoscale, vol. 3, no. 2 (2011) 635-641.
[126] B. Ankamwar, C. Damle, A. Ahmad, and M. Sastry, Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution, J. Nanotechnol., vol. 5, no. 10 (2005) 1665-1671.
[127] S. P. Dubey, M. Lahtinen, and M. Sillanpää, Tansy fruit mediated greener synthesis of silver and gold nanoparticles, J. Process Biochem., vol. 45, no. 7 (2010) 1065-1071.
[128] S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J. Colloid Interface Sci., vol. 275, no. 2 (2004) 496-502.
[129] S. Majidi, F. Zeinali Sehrig, S. M. Farkhani, M. Soleymani Goloujeh, and A. Akbarzadeh, Current methods for synthesis of magnetic nanoparticles, J. Artif. Cells Nanomed. Biotechnol., vol. 44, no. 2 (2016) 722-734.
[130] L. S. Ganapathe, M. A. Mohamed, R. Mohamad Yunus, and D. D. Berhanuddin, Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation, J. Magnetochemistry, vol. 6, no. 4 (2020) 68.
[131] N. S. El-Gendy and H. N. Nassar, Biosynthesized magnetite nanoparticles as an environmental opulence and sustainable wastewater treatment, J. Sci. Total Environ., vol. 774, (2021) 145610.
[132] M. H. Ehrampoush, M. Miria, M. H. Salmani, and A. H. Mahvi, Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract, J. Environ. Health Sci. Eng. , vol. 13, no. 1 (2015) 1-7.
[133] Y. Mohamed, A. Azzam, B. Amin, and N. Safwat, Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity, Afr. J. Biotechnol., vol. 14, no. 14 (2015) 1234-1241.
[134] I. Kolinko, A. Lohße, S. Borg, O. Raschdorf, C. Jogler, Q. Tu, M. Pósfai, E. Tompa, J. M. Plitzko, and A. Brachmann, Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters, Nat. Nanotechnol., vol. 9, no. 3 (2014) 193-197.
[135] E. C. Descamps, J. B. Abbé, D. Pignol, and C. T. Lefèvre, D. Faivre, Ed. Iron oxides: from nature to applications: Controlled biomineralization of magnetite in bacteria (2016). Wiley Online Library.
[136] L. Marcano, A. García-Prieto, D. Muñoz, L. F. Barquín, I. Orue, J. Alonso, A. Muela, and M. Fdez-Gubieda, Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized by Magnetospirillum gryphiswaldense, J. Biochim. Biophys. Acta Rev. Cancer, vol. 1861, no. 6 (2017) 1507-1514.
[137] P. Samaddar, Y. S. Ok, K. H. Kim, E. E. Kwon, and D. C. Tsang, Synthesis of nanomaterials from various wastes and their new age applications, J. Clean. Prod., vol. 197, (2018) 1190-1209.
[138] S. K. Tiwari, M. Bystrzejewski, A. De Adhikari, A. Huczko, and N. Wang, Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications, Prog. Energy Combust. Sci., vol. 92, (2022) 101023.
[139] G. Zhao, Y. Li, G. Zhu, J. Shi, T. Lu, and L. Pan, Biomass-based N, P, and S self-doped porous carbon for high-performance supercapacitors, ACS Sustain. Chem. Eng., vol. 7, no. 14 (2019) 12052-12060.
[140] H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei, F. Fan, and G. Ji, Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties, Carbon, vol. 173, (2021) 501-511.
[141] D. Mateo, A. Garcia-Mulero, J. Albero, and H. Garcia, N-doped defective graphene decorated by strontium titanate as efficient photocatalyst for overall water splitting, J. Appl. Catal. B: Environ., vol. 252, (2019) 111-119.
[142] M. F. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Carbon nanotubes: present and future commercial applications, J. Sci., vol. 339, no. 6119 (2013) 535-539.
[143] V. B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, and E. R. Mbuta, Graphene synthesis, characterization and its applications: A review, J. Results Chem., vol. 3, (2021) 100163.
[144] Y. Yang, H. Zhang, and Y. Yan, Synthesis of CNTs on stainless steel microfibrous composite by CVD: effect of synthesis condition on carbon nanotube growth and structure, J. Compos. B. Eng., vol. 160, (2019) 369-383.
[145] M. Kumar, S. Yellampalli, Ed. Carbon nanotube synthesis and growth mechanism (2011) (Carbon nanotubes-synthesis, characterization, applications). Condens. Matter Phys.
[146] M. Kumar and Y. Ando, Carbon nanotubes from camphor: an environment-friendly nanotechnology, in Journal of Physics: Conference Series, 2007, vol. 61, no. 1, p. 129: IOP Publishing.
[147] B. Makgabutlane, L. N. Nthunya, M. S. Maubane-Nkadimeng, and S. D. Mhlanga, Green synthesis of carbon nanotubes to address the water-energy-food nexus: A critical review, J. Environ. Chem. Eng., vol. 9, no. 1 (2021) 104736.
[148] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, J. Nano Lett., vol. 8, no. 3 (2008) 902-907.
[149] M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, and W. A. de Heer, Approaching the Dirac point in high-mobility multilayer epitaxial graphene, J. Phys. Rev. Lett., vol. 101, no. 26 (2008) 267601.
[150] M. Kaur, H. Kaur, and D. Kukkar, Synthesis and characterization of graphene oxide using modified Hummer’s method, in AIP conference proceedings, 2018, vol. 1953, no. 1, p. 030180: AIP Publishing LLC.
[151] S. Pei and H.-M. Cheng, The reduction of graphene oxide, Carbon, vol. 50, no. 9 (2012) 3210-3228.
[152] B. Dai, L. Fu, L. Liao, N. Liu, K. Yan, Y. Chen, and Z. Liu, High-quality single-layer graphene via reparative reduction of graphene oxide, J. Nano Res., vol. 4, no. 5 (2011) 434-439.
[153] Q. Yu, J. Jiang, L. Jiang, Q. Yang, and N. Yan, Advances in green synthesis and applications of graphene, J. Nano Res., vol. 14, no. 11 (2021) 3724-3743.
[154] S. Malik, A. Vijayaraghavan, R. Erni, K. Ariga, I. Khalakhan, and J. P. Hill, High purity graphenes prepared by a chemical intercalation method, Nanoscale, vol. 2, no. 10 (2010) 2139-2143.
[155] K. De Silva, H.-H. Huang, R. Joshi, and M. Yoshimura, Chemical reduction of graphene oxide using green reductants, Carbon, vol. 119, (2017) 190-199.
[156] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, Reduction of graphene oxide via L-ascorbic acid, J. Chem. Commun., vol. 46, no. 7 (2010) 1112-1114.
[157] S. Anju and P. Mohanan, Impact of Nanoparticles in Balancing the Ecosystem, Biointerface Res. Appl. Chem., vol. 11, no. 3 (2021) 10461-10481.
[158] N. Musee, Nanowastes and the environment: Potential new waste management paradigm, J. Environ. Int., vol. 37, no. 1 (2011) 112-128.
[159] S. A. Younis, E. M. El-Fawal, and P. Serp, C. Hussain, Ed. Nano-wastes and the environment: Potential challenges and opportunities of nano-waste management paradigm for greener nanotechnologies (2018). Springer, Cham. 1-72.
[160] Z. Zahra, Z. Habib, S. Hyun, and M. Sajid, Nanowaste: Another Future Waste, Its Sources, Release Mechanism, and Removal Strategies in the Environment, J. Sustainability, vol. 14, no. 4 (2022) 2041.
[161] M. S. Giroux, Z. Zahra, O. A. Salawu, R. M. Burgess, K. T. Ho, and A. S. Adeleye, Assessing the environmental effects related to quantum dot structure, function, synthesis and exposure, Environ. Sci. Nano, vol. 9, no. 3 (2022) 867-910.
[162] O. V. Kharissova, L. M. T. Martínez, and B. I. Kharisov, L. M. T.-M. Oxana Vasilievna Kharissova, Boris Ildusovich Kharisov, Ed. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications (2021). Springer Cham.
[163] B. Nowack, J. F. Ranville, S. Diamond, J. A. Gallego‐Urrea, C. Metcalfe, J. Rose, N. Horne, A. A. Koelmans, and S. J. Klaine, Potential scenarios for nanomaterial release and subsequent alteration in the environment, J. Environ. Toxicol. Chem., vol. 31, no. 1 (2012) 50-59.
[164] A. A. Keller, S. McFerran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, J. Nanoparticle Res., vol. 15, no. 6 (2013) 1-17.
[165] M. Sajid, M. Ilyas, C. Basheer, M. Tariq, M. Daud, N. Baig, and F. Shehzad, Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects, J. Environ. Sci. Pollut. Res. Int., vol. 22, no. 6 (2015) 4122-4143.
[166] T. Takeuchi, M. Nakajima, and K. Morimoto, A human cell system for detecting asbestos cytogenotoxicity in vitro, J. Mutat. Res. Genet. Toxicol. Environ. Mutagen., vol. 438, no. 1 (1999) 63-70.
[167] M. Barbarino and A. Giordano, Assessment of the carcinogenicity of carbon nanotubes in the respiratory system, J. Cancer, vol. 13, no. 6 (2021) 1318.
[168] S. Sharifi, S. Behzadi, S. Laurent, M. L. Forrest, P. Stroeve, and M. J. C. S. R. Mahmoudi, Toxicity of nanomaterials, Chem. Soc. Rev., vol. 41, no. 6 (2012) 2323-2343.
[169] S. Medici, M. Peana, A. Pelucelli, and M. A. Zoroddu, An updated overview on metal nanoparticles toxicity, in Seminars in Cancer Biology, 2021, vol. 76, pp. 17-26: Elsevier.
[170] E. Asmatulu, M. N. Andalib, B. Subeshan, and F. Abedin, Impact of nanomaterials on human health: a review, J. Environ. Chem. Lett., vol. 20, (2022) 2509-2529.
[171] O. A. Mohamed, S. Aysha Ajith, R. Sabouni, G. Husseini, A. Karami, and R. G. Bai, Toxicological impact of nanoparticles on human health: A review, J. Mater. Express, vol. 12, no. 3 (2022) 389-411.
[172] S. A. Younis, E. M. El-Fawal, and P. Serp, C. Hussain, Ed. Nano-wastes and the environment: Potential challenges and opportunities of nano-waste management paradigm for greener nanotechnologies (2018). Springer, Cham. 1-72.
[173] A. Surendranath and P. V. Mohanan, Impact of Nanoparticles in Balancing the Ecosystem, (2020).
[174] J. X. Bouillard, B. R’Mili, D. Moranviller, A. Vignes, O. Le Bihan, A. Ustache, J. A. Bomfim, E. Frejafon, and D. J. J. o. n. r. Fleury, Nanosafety by design: risks from nanocomposite/nanowaste combustion, J. Nanoparticle Res., vol. 15, no. 4 (2013) 1-11.
[175] B. Mrowiec, Kierunki i możliwości bezpiecznej gospodarki nanoodpadami, J. Chemik, vol. 70, no. 10 (2016).
[176] J. Wu, G. Zhu, and R. Yu, Fates and impacts of nanomaterial contaminants in biological wastewater treatment system: A review, J. Water Air Soil Pollut., vol. 229, no. 1 (2018) 1-21.
[177] ISO/TR 13121:2011 Nanotechnologies – Nanomaterial risk evaluation, (2011).
[178] I. M. de Waal, Coherence in law: A way to stimulate the transition towards a circular economy? A critical analysis of the European Commission’s aspiration to achieve full coherence between chemicals legislation and waste legislation-and product legislation, Maastricht J. Eur. Comp., vol. 28, no. 6 (2021) 760-783.
[179] ISO 15270: 2008. PlasticsGuidelines for the recovery and recycling of plastics waste, (2018).
[180] L. M. C. M. Da Fonseca, ISO 14001: 2015: An improved tool for sustainability, Int. J. Ind. Eng. Manag., vol. 8, no. 1 (2015) 37-50.
[181] S. F. Hansen, R. Arvidsson, M. B. Nielsen, O. F. H. Hansen, L. P. W. Clausen, A. Baun, and A. Boldrin, Nanotechnology meets circular economy, Nat. Nanotechnol., vol. 17, no. 7 (2022) 682-685.
[182] Available at:
[183] H. C. Von Carlowitz, Sylvicultura Oeconomica Oder Haußwirthliche Nachricht und Naturmäßige Anweisung zur Wilden Baum-Zucht Nebst Gründlicher Darstellung Wie… dem allenthalben und insgemein einreissenden Grossen Holtz-Mangel, Vermittelst Säe-Pflantz-und Versetzung vielerhand Bäume zu rathen… Worbey zugleich eine gründliche Nachricht von dem in Churfl. Sächß. Landen Gefundenen Turff… befindlich, vol. 1. Bey Johann Friedrich Brauns sel. Erben (1732).
[184] S. V. de Freitas Netto, M. F. F. Sobral, A. R. B. Ribeiro, and G. R. d. L. Soares, Concepts and forms of greenwashing: A systematic review, J. Environ. Sci. Eur., vol. 32, no. 1 (2020) 1-12.
[185] J.J. Cai, Z. W. Lu, and Q. Yue, Some problems of recycling industrial materials, J. Iron Steel Res. Int., vol. 15, no. 5 (2008) 37-41.
[186] B. Björkman and C. Samuelsson, E. W. a. M. A. Reuter, Ed. Recycling of steel (2014). Elsevier 65-83.
[187] M. Niero and S. I. Olsen, Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements, J. Resour. Conserv. Recycl., vol. 114, (2016) 18-31.
[188] T. Thiounn and R. C. Smith, Advances and approaches for chemical recycling of plastic waste, J. Polym. Sci., vol. 58, no. 10 (2020) 1347-1364.
[189] I. Ervasti, R. Miranda, and I. Kauranen, A global, comprehensive review of literature related to paper recycling: A pressing need for a uniform system of terms and definitions, J. Waste Manag., vol. 48, (2016) 64-71.
[190] R. Lebullenger and F. O. Mear, J. H. J. David Musgraves, Laurent Calvez, Ed. Glass recycling (2019). Springer Cham. 1355-1377.
[191] C. Liu, H. Gong, W. Liu, B. Lu, and L. Ye, Separation and recycling of functional nanoparticles using reversible boronate ester and boroxine bonds, J. Ind. Eng. Chem. Res., vol. 58, no. 11 (2019) 4695-4703.
[192] M. Hassan, R. Naidu, J. Du, Y. Liu, and F. Qi, Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment, J. Sci. Total Environ., vol. 702, (2020) 134893.
[193] A. R. Mahdavian and M. A.-S. Mirrahimi, Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification, J. Chem. Eng., vol. 159, no. 1-3 (2010) 264-271.
[194] S. S. Leong, S. P. Yeap, S. C. Low, R. Mohamud, and J. Lim, N. T. K. Thanh, Ed. Current Progress in Magnetic Separation-Aided Biomedical Diagnosis Technology (2018). CRC Press, Taylor & Francis Group 175-200.
[195] S. M. Ansar, B. Fellows, P. Mispireta, O. T. Mefford, and C. L. Kitchens, pH triggered recovery and reuse of thiolated poly (acrylic acid) functionalized gold nanoparticles with applications in colloidal catalysis, Langmuir, vol. 33, no. 31 (2017) 7642-7648.
[196] N. V. Mdlovu, C. L. Chiang, K.-S. Lin, and R. C. Jeng, Recycling copper nanoparticles from printed circuit board waste etchants via a microemulsion process, J. Clean. Prod., vol. 185, (2018) 781-796.
[197] H. El Hadri and V. A. Hackley, Investigation of cloud point extraction for the analysis of metallic nanoparticles in a soil matrix, J. Environ. Sci. Nano, vol. 4, no. 1 (2017) 105-116.
[198] M. Hezarkhani, A. A. Wis, Y. Menceloglu, and B. S. Okan, Nanomaterials recycling in industrial applications (2022). Elsevier 375-395.
[199] B. Du, L. Chai, W. Li, X. Wang, X. Chen, J. Zhou, and R. C. Sun, Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers, J. Sep. Purif. Technol., vol. 297, (2022) 121509.
[200] H.-M. Wang, T. Q. Yuan, G. Y. Song, and R. C. Sun, Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world, J. Green Chem., vol. 23, no. 11 (2021) 3790-3817.
[201] Z. Yan, T. Wu, G. Fang, M. Ran, K. Shen, and G. Liao, Self-assembly preparation of lignin-graphene oxide composite nanospheres for highly efficient Cr (VI) removal, RSC Adv., vol. 11, no. 8 (2021) 4713-4722.
[202] E. C. Paris, J. O. Malafatti, H. C. Musetti, A. Manzoli, A. Zenatti, and M. T. Escote, Faujasite zeolite decorated with cobalt ferrite nanoparticles for improving removal and reuse in Pb2+ ions adsorption, Chin. J. Chem. Eng., vol. 28, no. 7 (2020) 1884-1890.
[203] E. Prabakaran and K. Pillay, Self-Assembled Silver Nanoparticles Decorated on Exfoliated Graphitic Carbon Nitride/Carbon Sphere Nanocomposites as a Novel Catalyst for Catalytic Reduction of Cr (VI) to Cr (III) from Wastewater and Reuse for Photocatalytic Applications, ACS Omega, vol. 6, no. 51 (2021) 35221-35243.
[204] M. E. Khan, T. H. Han, M. M. Khan, M. R. Karim, and M. H. Cho, Environmentally sustainable fabrication of Ag@g-C3N4 nanostructures and their multifunctional efficacy as antibacterial agents and photocatalysts, ACS Appl. Nano Mater., vol. 1, no. 6 (2018) 2912-2922.
[205] Q. Yang, Removal and reuse of Ag nanoparticles by magnetic polyaniline/Fe3O4 nanofibers, J. Mater. Sci., vol. 53, no. 12 (2018) 8901-8908.
[206] X. Guo, G. T. Fei, H. Su, and L. De Zhang, Synthesis of polyaniline micro/nanospheres by a copper (II)-catalyzed self-assembly method with superior adsorption capacity of organic dye from aqueous solution, J. Mater. Chem., vol. 21, no. 24 (2011) 8618-8625.
[207] V. Janaki, B.-T. Oh, K. Shanthi, K.-J. Lee, A. Ramasamy, and S. Kamala-Kannan, Polyaniline/chitosan composite: an eco-friendly polymer for enhanced removal of dyes from aqueous solution, J. Synth. Met., vol. 162, no. 11-12 (2012) 974-980.
[208] P. Chatterjee, M. M. Ghangrekar, and S. Rao, Disinfection of secondary treated sewage using chitosan beads coated with ZnO‐Ag nanoparticles to facilitate reuse of treated water, J. Chem. Technol. Biotechnol., vol. 92, no. 9 (2017) 2334-2341.
[209] N. U. Yamaguchi, L. F. Cusioli, H. B. Quesada, M. E. C. Ferreira, M. R. Fagundes-Klen, A. M. S. Vieira, R. G. Gomes, M. F. Vieira, and R. Bergamasco, A review of Moringa oleifera seeds in water treatment: Trends and future challenges, J. Process Saf. Environ., vol. 147, (2021) 405-420.
[210] T. R. T. dos Santos, M. F. Silva, M. B. de Andrade, M. F. Vieira, and R. Bergamasco, Magnetic coagulant based on Moringa oleifera seeds extract and super paramagnetic nanoparticles: optimization of operational conditions and reuse evaluation, J. Desalin. Water Treat., vol. 106, (2018) 226-237.
[211] M. A. Miranda, A. Ghosh, G. Mahmodi, S. Xie, M. Shaw, S. Kim, M. J. Krzmarzick, D. J. Lampert, and C. P. Aichele, Treatment and Recovery of High-Value Elements from Produced Water, J. Water, vol. 14, no. 6 (2022) 880.
[212] J. G. Speight, Heavy oil production processes (2013). Gulf Professional Publishing.
[213] W. F. Elmobarak and F. Almomani, Application of magnetic nanoparticles for the removal of oil from oil-in-water emulsion: Regeneration/reuse of spent particles, J. Pet. Sci. Eng., vol. 203, (2021) 108591.
[214] P. Verma and A. N. Bhaskarwar, S. T. Ange Nzihou, Nandakumar Kalarikkal, K.P. Jibin, Ed. Reuse of Magnetite (Fe3O4) Nanoparticles in De-Emulsification of Emulsion Effluents of Steel-rolling Mills (2022). Taylor & Francis 183.
[215] P. Pillai, S. Dharaskar, S. Sasikumar, and M. Khalid, Zeolitic imidazolate framework-8 nanoparticle: a promising adsorbent for effective fluoride removal from aqueous solution, J. Appl. Water Sci., vol. 9, no. 7 (2019) 1-12.
[216] M. G. F. Rodrigues, T. L. A. Barbosa, and D. P. A. Rodrigues, Zinc imidazolate framework-8 nanoparticle application in oil removal from oil/water emulsion and reuse, J. Nanoparticle Res., vol. 22, no. 11 (2020) 1-15.
[217] S. Ko, H. Lee, and C. Huh, Efficient removal of enhanced-oil-recovery polymer from produced water with magnetic nanoparticles and regeneration/reuse of spent particles, J. SPE Prod. Oper, vol. 32, no. 03 (2017) 374-381.
[218] A. Nautiyal and S. R. Shukla, Silver nanoparticles catalyzed reductive decolorization of spent dye bath containing acid dye and its reuse in dyeing, J. Water Process. Eng. , vol. 22, (2018) 276-285.
[219] R. Mrówczyński, A. Nan, and J. Liebscher, Magnetic nanoparticle-supported organocatalysts-an efficient way of recycling and reuse, RSC Adv., vol. 4, no. 12 (2014) 5927-5952.
[220] Z. Wang, X. Tuo, J. Zhou, and G. Xiao, Performance study of large capacity industrial lead‑carbon battery for energy storage, J. Energy Storage, vol. 55, (2022) 105398.
[221] S. Mandal, S. Thangarasu, P. T. Thong, S.-C. Kim, J.-Y. Shim, and H.-Y. Jung, Positive electrode active material development opportunities through carbon addition in the lead-acid batteries: A recent progress, J. Power Sources, vol. 485, (2021) 229336.
[222] A. Guleria, C. M. Baby, A. Tomy, D. K. Maurya, S. Neogy, A. K. Debnath, and S. Adhikari, Size Tuning, Phase Stabilization, and Anticancer Efficacy of Amorphous Selenium Nanoparticles: Effect of Ion-Pair Interaction,−OH Functionalization, and Reuse of RTILs as Host Matrix, J. Phys. Chem. C., vol. 125, no. 25 (2021) 13933-13945.
[223] H. Shon, S. Vigneswaran, J. Kandasamy, M. Zareie, J. Kim, D. Cho, J.-H. J. S. S. Kim, and Technology, Preparation and characterization of titanium dioxide (TiO2) from sludge produced by TiCl4 flocculation with FeCl3, Al2(SO4)3 and Ca(OH)2 coagulant aids in wastewater, J. Sep. Sci. Technol., vol. 44, no. 7 (2009) 1525-1543.
[224] Z. Wang, Y. Wang, C. Yu, Y. Zhao, M. Fan, and B. Gao, The removal of silver nanoparticle by titanium tetrachloride and modified sodium alginate composite coagulants: floc properties, membrane fouling, and floc recycle, J. Environ. Sci. Pollut. Res. Int., vol. 25, no. 21 (2018) 21058-21069.
[225] X. Li, M. Yue, W. Liu, and D. Zhang, Recycle of waste Nd-Fe-B sintered magnets via NdH x nanoparticles modification, J. IEEE Trans. Magn., vol. 51, no. 11 (2015) 1-3.
[226] U. Priyanto, K. Sakanishi, O. Okuma, and I. Mochida, Liquefaction of Tanito Harum coal with bottom recycle using FeNi and FeMoNi catalysts supported on carbon nanoparticles, J. Fuel Process. Technol., vol. 79, no. 1 (2002) 51-62.
[227] K. K. Brar, S. Magdouli, A. Othmani, J. Ghanei, V. Narisetty, R. Sindhu, P. Binod, A. Pugazhendhi, M. K. Awasthi, and A. Pandey, Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review, J. Environ. Res., vol. 207, (2022) 112202.
[228] A. Nassar, H. Salah, N. Hashem, M. Khodari, and H. Assaf, Electrochemical Sensor Based on CuO Nanoparticles Fabricated From Copper Wire Recycling-loaded Carbon Paste Electrode for Excellent Detection of Theophylline in Pharmaceutical Formulations, J. Electrocatalysis, vol. 13, no. 2 (2022) 154-164.
[229] C. J. Wrasman, C. Zhou, A. Aitbekova, E. D. Goodman, and M. Cargnello, Recycling of Solvent Allows for Multiple Rounds of Reproducible Nanoparticle Synthesis, J. Am. Chem. Soc., vol. 144, no. 26 (2022) 11646-11655.
[230] A. Mech, S. Gottardo, V. Amenta, A. Amodio, S. Belz, S. Bøwadt, J. Drbohlavová, L. Farcal, P. Jantunen, and A. Małyska, Safe-and sustainable-by-design: The case of Smart Nanomaterials. A perspective based on a European workshop, J. Regul. Toxicol. Pharmacol., vol. 128, (2022) 105093.
[231] M. El-Shetehy, A. Moradi, M. Maceroni, D. Reinhardt, A. Petri-Fink, B. Rothen-Rutishauser, F. Mauch, and F. Schwab, Silica nanoparticles enhance disease resistance in Arabidopsis plants, Nat. Nanotechnol., vol. 16, no. 3 (2021) 344-353.
[232] I. Sochová, J. Hofman, and I. Holoubek, Using nematodes in soil ecotoxicology, J. Environ. Int., vol. 32, no. 3 (2006) 374-383.
[233] A. M. Mebert, C. J. Baglole, M. F. Desimone, and D. Maysinger, Nanoengineered silica: Properties, applications and toxicity, J. Food Chem. Toxicol., vol. 109, (2017) 753-770.
[234] M. Delample, N. Villandier, J.-P. Douliez, S. Camy, J.-S. Condoret, Y. Pouilloux, J. Barrault, and F. Jérôme, Glycerol as a cheap, safe and sustainable solvent for the catalytic and regioselective β, β-diarylation of acrylates over palladium nanoparticles, J. Green Chem., vol. 12, no. 5 (2010) 804-808.
[235] B. Fadeel and A. E. Garcia-Bennett, Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications, Adv. Drug Deliv. Rev., vol. 62, no. 3 (2010) 362-374.
[236] N. González-Ballesteros, S. Prado-López, J. Rodríguez-González, M. Lastra, and M. Rodríguez-Argüelles, Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells, J. Colloids Surf. B: Biointerfaces, vol. 153, (2017) 190-198.
[237] I. Ali, Water photo splitting for green hydrogen energy by green nanoparticles, Int. J. Hydrog. Energy, vol. 44, no. 23 (2019) 11564-11573.
[238] B. Archana, K. Manjunath, G. Nagaraju, K. C. Sekhar, and N. Kottam, Enhanced photocatalytic hydrogen generation and photostability of ZnO nanoparticles obtained via green synthesis, Int. J. Hydrog. Energy, vol. 42, no. 8 (2017) 5125-5131.
[239] A. Charanpahari, N. Gupta, V. Devthade, S. Ghugal, and J. Bhatt, L. Martínez, Kharissova, O., Kharisov, B., Ed. Ecofriendly nanomaterials for sustainable photocatalytic decontamination of organics and bacteria (2019). Springer, Cham. 1777-1805.