Scrap for New Steel

$30.00

Scrap for New Steel

Carola Celada-Casero, Félix A. López, Carlos Capdevila, Roberto Castelo, Santiago Oliver

Steel is the main structural material to our modern society. To guarantee the supply of sustainable steel, the steelmaking industry must achieve net-zero CO2 emissions by 2050. Besides the replacement of coal-based energy carriers to lower the CO2 emissions, the substitution of primary raw materials with scrap is essential to promote energy and resource efficiency in the circular economy strategy. Steel production via the scrap-based electric arc furnace (EAF) route reduces the CO2 emissions by 80% with respect to the blast furnace-basic oxygen furnace (BF-BOF) route. Nowadays, most of the overall scrap steel is fabrication and post-consumer scrap. Scrap utilization at higher rates poses a challenge for the steel industry due to the increasing content of tramp elements (Cu, Sn, Cr, Ni and Mo) in steel since the 1990. Some steel qualities demand very strict composition requirements, as either the absences or the controlled content of tramp elements. Improving scrap processing and classification methods is essential to ensure better scrap quality for new steel.

Keywords
Decarbonization, Steelmaking Industry, Green Steel, Scrap Recycling, Metal Recovery, Electric Arc Furnace (EAF)

Published online 8/10/2023, 31 pages

Citation: Carola Celada-Casero, Félix A. López, Carlos Capdevila, Roberto Castelo, Santiago Oliver, Scrap for New Steel, Materials Research Foundations, Vol. 149, pp 202-232, 2023

DOI: https://doi.org/10.21741/9781644902639-7

Part of the book on New Materials for a Circular Economy

References
[1] Worldsteel. World Steel in Figures 2022: https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022/#steel-production-and-use-geographical-distribution-2021. 2022.
[2] EuropeanCommission. Paris Agreement 2015: https://ec.europa.eu/clima/eu-action/international-action-climate-change/climate-negotiations/paris-agreement_es. 2015.
[3] Worldsteel. Steel in the circular economy: A life cycle perspective: https://worldsteel.org/publications/bookshop/circular-economy-life-cycle-steel/ 2015.
[4] Statistica: Distribution of steel end-usage worldwide in 2019, by sector. https://www.statista.com/statistics/1107721/steel-usage-global-segment/#:~:text=In%202019%2C%20the%20building%20and,percent%20of%20total%20steel%20demand.
[5] Broadbent C. Steel – the surprising recycling champion: https://worldsteel.org/media-centre/blog/2018/steel-surprising-recycling-champion/. In: Association W, editor, 2018.
[6] Bowyer J, Bratkovich S, Fernholz K, Groot H, Howe J, Pepke E. Dovetail Partners Outlook 2015.
[7] AcerlorMittal. By-products, scrap and the circular economy: https://corporate.arcelormittal.com/sustainability/by-products-scrap-and-the-circular-economy. vol. 2021.
[8] NL TS. Sustainability in packaging. https://www.tatasteeleurope.com/packaging/sustainability. 2019.
[9] Ecoacero. Ecoacero: Ecología para el reciclado de la hojalata. https://ecoacero.com/informes/reciclado-de-acero-datos-2016/. 2016.
[10] Company M. The future of the European steel indutry: a roadmap toward economic and environmental sustainability. 2021.
[11] EUROFER. The European Steel Association. European Steel in Figures (2011-2020): https://www.eurofer.eu/assets/Uploads/European-Steel-in-Figures-2020.pdf. 2020.
[12] Worldsteel. Raw materials: Maximising scrap use helps reduce CO2 emissions. https://worldsteel.org/steel-topics/raw-materials/. 2017.
[13] Worldsteel. https://www.worldsteel.org/publications/position-papers/climate-change-policy-paper.html. 2020.
[14] EuropeanCommission. Delivering the European Green Deal: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en. 2021.
[15] Fischedick M, Marzinkowski J, Winzer P, Weigel M. Journal of Cleaner Production 2014;84:563. https://doi.org/10.1016/j.jclepro.2014.05.063
[16] Bhaskar A, Assadi M, Somehsaraei HN. Energy Conversion and Management: X 2021;10:100079. https://doi.org/10.1016/j.ecmx.2021.100079
[17] EUROFER. Stop waste and scrap export to countries not meeting EU environmental and social standards, asks EUROFER. 2022.
[18] Fellner J, Laner, D., Warrings, R., Schustereder, K., Lederer, J. Detritus 2018;2:16. https://doi.org/10.31025/2611-4135/2018.13666
[19] Worldsteel. About steel: https://worldsteel.org/about-steel/about-steel/.
[20] Daigo I, Tajima K, Hayashi H, Panasiuk D, Takeyama K, Ono H, Kobayashi Y, Nakajima K, Hoshino T. ISIJ International 2020;advpub.
[21] Ohno H, Matsubae K, Nakajima K, Nakamura S, Nagasaka T. Journal of Industrial Ecology 2014;18:242. https://doi.org/10.1111/jiec.12095
[22] Ohno H, Matsubae K, Nakajima K, Kondo Y, Nakamura S, Nagasaka T. Resources, Conservation and Recycling 2015;100:11. https://doi.org/10.1016/j.resconrec.2015.04.001
[23] Olatunde I. Sekunowo, Stephen I. Durowaye, Gbenebor OP. World Academy of Science, Engineering and Technology (WASET)
International Journal of Structural and Construction Engineering 2014;8.
[24] Yin L, Sridhar S. Metallurgical and Materials Transactions B 2011;42:1031. https://doi.org/10.1007/s11663-011-9528-z
[25] Haupt M, Vadenbo C, Zeltner C, Hellweg S. Journal of Industrial Ecology 2017;21:391. https://doi.org/10.1111/jiec.12439
[26] EuRIC. EU-27 Steel Scrap Specification. 2007.
[27] UNE 36199:2013: Clasificación de chatarras férricas no aleadas para uso general. https://www.en-standard.eu/une-36199-2013-clasificacion-de-chatarras-ferricas-no-aleadas-para-uso-general/. 2013.
[28] Mombelli D, Buonincontri M, Mapelli C, Gruttadauria A, Barella S, Fusari F, Rinaldini D. Journal of Materials Research and Technology 2022;19:1217. https://doi.org/10.1016/j.jmrt.2022.05.114
[29] Passarini F, Ciacci L, Nuss P, Manfredi S. Material Flow Analysis of Aluminium, Copper, and Iron in the EU-28. EUR 29220 EN. Joint Research Centre, Luxembourg, 2018.
[30] Gauffin A, Pistorius PC. Metals 2018;8:338. https://doi.org/10.3390/met8050338
[31] Wang T, Müller DB, Graedel TE. Environmental Science & Technology 2007;41:5120. https://doi.org/10.1021/es062761t
[32] Shamsuddin M. Secondary Steelmaking. In: Shamsuddin M, editor. Physical Chemistry of Metallurgical Processes, Second Edition. Cham: Springer International Publishing, 2021. p.293. https://doi.org/10.1007/978-3-030-58069-8_8
[33] Joint Research Centre IfPTS, Remus, R., Roudier, S., Delgado Sancho, L., et al.
[34] Kirschen M, Badr K, Pfeifer H. Energy 2011;36:6146. https://doi.org/10.1016/j.energy.2011.07.050
[35] Cavaliere P. Basic Oxygen Furnace: Most Efficient Technologies for Greenhouse Emissions Abatement. In: Cavaliere P, editor. Clean Ironmaking and Steelmaking Processes: Efficient Technologies for Greenhouse Emissions Abatement. Cham: Springer International Publishing, 2019. p.275. https://doi.org/10.1007/978-3-030-21209-4
[36] (IEA) IEA. Iron and Steel Technology Roadmap. 2020.
[37] Worldsteel. Energy use in the steel industry: https://www.steel.org.au/resources/elibrary/resource-items/worldsteel-fact-sheet-steel-and-energy/download-pdf.pdf/. 2019.
[38] Hasanbeigi A. Steel Climate Impact. An International Benchmarking of Energy and CO2 Intensities. Global Efficiency Inteligence, 2022.
[39] Babich AI, Gudenau HW, Mavrommatis KT, Froehling C, Formoso A, Cores A, García L. Rev. Metal. Madrid 2002;38:285. https://doi.org/10.3989/revmetalm.2002.v38.i4.411
[40] Yilmaz C, Wendelstorf J, Turek T. Journal of Cleaner Production 2017;154:488. https://doi.org/10.1016/j.jclepro.2017.03.162
[41] Cavaliere P. Clean Ironmaking and Steelmaking Processes: Efficient Technologies for Greenhouse Emissions Abatement. Springer Nature Switzerland AG 2019: Springer Cham, 2019. https://doi.org/10.1007/978-3-030-21209-4
[42] ULCOS: Ultra-Low CO2 steelmaking. https://cordis.europa.eu/project/id/515960/es
[43] (EESC) EEaSC. Role of carbon removal technologies in decarbonising the European industry. https://www.eesc.europa.eu/en/our-work/opinions-information-reports/opinions/role-carbon-removal-technologies-decarbonising-european-industry. 2022.
[44] Ajayi T, Gomes JS, Bera A. Petroleum Science 2019;16:1028. https://doi.org/10.1007/s12182-019-0340-8
[45] Cuéllar-Franca RM, Azapagic A. Journal of CO2 Utilization 2015;9:82. https://doi.org/10.1016/j.jcou.2014.12.001
[46] Europea C, Innovación DGdIe, Feiterna A, Zagaria A, Feilmayr C, Ansseau O, Hirsch A, Sert D, Boden A, Zeilstra C, Simoes J, Pettersson M, Babich A, Grant M, Stel J, Lin A, Sundqvist L, Lövgren J, Born S, Sköld B, Schott R, Küttner W, Bürgler T, Edberg N, Louwerse G, Delebecque A, Adam J, Diez-Brea P, Kerkkonen O, Janhsen U, Hattink M, Sihvonen M, Eklund N. ULCOS top gas recycling blast furnace process (ULCOS TGRBF) : final report: Publications Office, 2014.
[47] FINEX®: https://newsroom.posco.com/en/discover-the-tech-making-steel-more-sustainable-finex/
[48] SIEMENS VAI. “SIMETAL Corex technology”: https://silo.tips/download/simetal-corex-technology
[49] Productivity TIfI. HIsmelt: http://www.iipinetwork.org/wp-content/Ietd/content/hismelt.html.
[50] HISARNA: Building a sustainable steel industry (2020). https://www.tatasteeleurope.com/sites/default/files/TS%20Factsheet%20Hisarna%20ENG%20jan2020%20Vfinal03%204%20pag%20digital.pdf
[51] Steel T. Sustainable in every sense: Tata Steel; 2018. Available from: https://www.tatasteeleurope.com/en/sustainability/hisarna. 2018.
[52] Abdul Quader M, Ahmed S, Dawal SZ, Nukman Y. Renewable and Sustainable Energy Reviews 2016;55:537. https://doi.org/10.1016/j.rser.2015.10.101
[53] MIDREX®: https://www.midrex.com/.
[54] TENOVA®: https://www.tenova.com/product/iron-reduction-technologies/
[55] Ariyama T, Takahashi K, Kawashiri Y, Nouchi T. Journal of Sustainable Metallurgy 2019;5:276. https://doi.org/10.1007/s40831-019-00219-9
[56] SSAB, LKAB, Vattenfall. HYBRIT Fossil-free steel, Sumary of findings from HYBRIT pre-feasibility study 2016-2017. 2017.
[57] Otto A, Robinius M, Grube T, Schiebahn S, Praktiknjo A, Stolten D. Energies 2017;10:451. https://doi.org/10.3390/en10040451
[58] Naseri Seftejani M, Schenk J, Zarl MA. Materials 2019;12:1608. https://doi.org/10.3390/ma12101608
[59] Vogl V, Åhman M, Nilsson LJ. Journal of Cleaner Production 2018;203:736. https://doi.org/10.1016/j.jclepro.2018.08.279
[60] Souza Filho IR, Ma Y, Kulse M, Ponge D, Gault B, Springer H, Raabe D. Acta Materialia 2021;213:116971. https://doi.org/10.1016/j.actamat.2021.116971
[61] Spreitzer D, Schenk J. steel research international 2019;90:1900108. https://doi.org/10.1002/srin.201900108
[62] Naseri Seftejani M, Schenk J. Metals 2018;8:1051. https://doi.org/10.3390/met8121051
[63] Naseri Seftejani M, Schenk J. Metallurgia Italiana 2018;n. 7/8 2018:5. https://doi.org/10.3390/met8121051
[64] Patisson F, Mirgaux O. Metals 2020;10:922. https://doi.org/10.3390/met10070922
[65] Souza Filho IR, Springer H, Ma Y, Mahajan A, da Silva CC, Kulse M, Raabe D. Journal of Cleaner Production 2022;340:130805. https://doi.org/10.1016/j.jclepro.2022.130805
[66] López FA, López-Delgado A. Journal of Environmental Engineering 2002;128:1169. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:12(1169)
[67] Dankwah JR, Koshy P, Saha-Chaudhury NM, O’Kane P, Skidmore C, Knights D, Sahajwalla V. ISIJ International 2011;51:498. https://doi.org/10.2355/isijinternational.51.498
[68] Martín MI, López FA, Torralba JM. Ironmaking & Steelmaking 2012;39:155. https://doi.org/10.1179/1743281211Y.0000000078
[69] Mensah M, Das A. Environmental technology 2021:1.
[70] López FA, Balcázar N, Formoso A, Pinto M, Rodríguez M. Waste Management & Research 1995;13:555. https://doi.org/10.1016/S0734-242X(05)80034-5
[71] Gómez FAL, Hernández MIM, Pérez C, López-Delgado A, Alguacil FJ. Adsorción de metales pesados sobre cascarilla de laminación. CSIC – Centro Nacional de Investigaciones Metalúrgicas (CENIM), 2003.
[72] Martín MI, Gómez FAL, Alguacil FJ. Posibilidad de usar subproductos de la industria del acero para eliminar. CSIC – Centro Nacional de Investigaciones Metalúrgicas (CENIM), 2008.
[73] Lin X, Peng Z, Yan J, Li Z, Hwang J-Y, Zhang Y, Li G, Jiang T. Journal of Cleaner Production 2017;149:1079. https://doi.org/10.1016/j.jclepro.2017.02.128
[74] EUROFER. The European Steel Association. A steel roadmap for a low-carbon europe 2050: https://www.eurofer.eu/assets/publications/archive/archive-of-older-eurofer-documents/2013-Roadmap.pdf. 2013.
[75] Björkman B, Samuelsson C. Chapter 6 – Recycling of Steel. In: Worrell E, Reuter MA, editors. Handbook of Recycling. Boston: Elsevier, 2014. p.65. https://doi.org/10.1016/B978-0-12-396459-5.00006-4
[76] Kashiwakura S, Wagatsuma K. ISIJ International 2015;55:2391. https://doi.org/10.2355/isijinternational.ISIJINT-2015-316
[77] Cullen JM, Allwood JM, Bambach MD. Environmental Science & Technology 2012;46:13048. https://doi.org/10.1021/es302433p
[78] Zhu Y, Syndergaard K, Cooper DR. Environmental Science & Technology 2019;53:11260. https://doi.org/10.1021/acs.est.9b01016
[79] Nakamura S, Kondo Y, Nakajima K, Ohno H, Pauliuk S. Environmental Science & Technology 2017;51:9469. https://doi.org/10.1021/acs.est.7b01683
[80] Ohno H, Matsubae K, Nakajima K, Kondo Y, Nakamura S, Fukushima Y, Nagasaka T. Environmental Science & Technology 2017;51:13086. https://doi.org/10.1021/acs.est.7b04477
[81] Linley BD. Resource Recovery and Conservation 1977;2:225. https://doi.org/10.1016/0304-3967(77)90013-0
[82] Mustafa S, Luo L, Zheng B-T, Wei C-X, Christophe N. Metals 2021;11:407. https://doi.org/10.3390/met11030407
[83] Dworak S, Fellner J. Resources, Conservation and Recycling 2021;173:105692. https://doi.org/10.1016/j.resconrec.2021.105692
[84] Commission E. End-of-Life Vehicles. EU rules aim to make the dismantling and recycling of end-of-life vehicles more environmentally friendly., 2022.
[85] Sohn I, Jung SM. steel research international 2011;82:1345. https://doi.org/10.1002/srin.201100144
[86] Huaiwei Z, Xin H. Resources, Conservation and Recycling 2011;55:745. https://doi.org/10.1016/j.resconrec.2011.03.005
[87] Shen H, Forssberg E. Waste Management 2003;23:933. https://doi.org/10.1016/S0956-053X(02)00164-2
[88] (EEA) EEA. Waste recycling in Europe. https://www.eea.europa.eu/ims/waste-recycling-in-europe. 2021.
[89] Kallanish Commodities: https://www.kallanish.com/en/prices/list/ferrous/product-type/raw-materials/.
[90] Commission E, Agency ERE, Vu H, Cecchin F, Iacob N. Climate-neutral steelmaking in Europe: decarbonisation pathways, investment needs, policy conditions, recommendations, 2022.
[91] Celada-Casero C, Vercruysse F, Linke B, Smith A, Kok P, Sietsma J, Santofimia MJ. Mater. Sci. Eng. A 2022;846:143301. https://doi.org/10.1016/j.msea.2022.143301
[92] Vivas J, Celada-Casero C, San Martín D, Serrano M, Urones-Garrote E, Adeva P, Aranda MM, Capdevila C. Metall. Mater. Trans. A 2016;47:5344. https://doi.org/10.1007/s11661-016-3596-2