Recent Advances in Polymeric Systems for CO2 Capture: A Small Catalogue


Recent Advances in Polymeric Systems for CO2 Capture: A Small Catalogue

Raquel López-Gallego, Gaurav Sharma, Amit Kumar, María Moral-Zamorano, Alberto García-Peñas

The advances in terms of new materials used for CO2 collectors are growing due to the necessity to reduce the greenhouse gases emission and to respond to the environmental regulations. There are multiple systems which have shown remarkable properties for removal of specific pollutants. Nevertheless, the necessity of developing devices more effective, specific and with higher yield is necessary to reach net zero emissions by 2050. The use of polymeric matrices for CO2 capture purpose is growing due to the versatility of these materials together with their low cost, regarding in comparison to other systems. There are multiple advances in terms of CO2 collectors, and specifically for membranes due to the possibility to modulate these polymers and their properties, but also because these can be combined with other materials thus increasing the possibilities of their applications. This chapter shows some of these recent advances attending to the permeability of these materials, as one of the most important materials with unique characteristics studied for CO2 capture.

CO2 Capture, Polymers, Permeability, Green Chemistry, Circular Economy

Published online 8/10/2023, 31 pages

Citation: Raquel López-Gallego, Gaurav Sharma, Amit Kumar, María Moral-Zamorano, Alberto García-Peñas, Recent Advances in Polymeric Systems for CO2 Capture: A Small Catalogue, Materials Research Foundations, Vol. 149, pp 142-172, 2023


Part of the book on New Materials for a Circular Economy

[1] S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, M.D. Guiver, Advances in high permeability polymer-based membrane materials for CO2 separations, Energy Environ. Sci. 9 (2016) 1863-1890.
[2] Z. Liu, Z. Deng, S.J. Davis, C. Giron, P. Ciais, Monitoring global carbon emissions in 2021, Nat. Rev. Earth Environ. 3 (2022) 217-219.
[3] Z. Liu, P. Ciais, Z. Deng, R. Lei, S.J. Davis, S. Feng, B. Zheng, D. Cui, X. Dou, B. Zhu, R. Guo, P. Ke, T. Sun, C. Lu, P. He, Y. Wang, X. Yue, Y. Wang, Y. Lei, H. Zhou, Z. Cai, Y. Wu, R. Guo, T. Han, J. Xue, O. Boucher, E. Boucher, F. Chevallier, K. Tanaka, Y. Wei, H. Zhong, C. Kang, N. Zhang, B. Chen, F. Xi, M. Liu, F.M. Breon, Y. Lu, Q. Zhang, D. Guan, P. Gong, D.M. Kammen, K. He, H.J. Schellnhuber, Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic, Nat Commun. 11 (2020) 5172.
[4] Z. Liu, P. Ciais, Z. Deng, S.J. Davis, B. Zheng, Y. Wang, D. Cui, B. Zhu, X. Dou, P. Ke, T. Sun, R. Guo, H. Zhong, O. Boucher, F.M. Breon, C. Lu, R. Guo, J. Xue, E. Boucher, K. Tanaka, F. Chevallier, Carbon Monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production, Sci. Data 7 (2020) 392.
[5] S. Mane, Z.-Y. Gao, Y.-X. Li, D.-M. Xue, X.-Q. Liu, L.-B. Sun, Fabrication of microporous polymers for selective CO2 capture: the significant role of crosslinking and crosslinker length, J. Mater. Chem. A 5 (2017) 23310-23318.
[6] P. Styring, Carbon Dioxide Capture Agents and Processes, in: P. Styring, E. A. Quadrelli, K. Armstrong, editors. Carbon Dioxide Utilisation: Elsevier; 2015, pp. 19-32.
[7] T. Nagy, K. Koczka, E. Haáz, A.J. Tóth, L. Rácz, P. Mizsey, Efficiency Improvement of CO2 Capture, Period. Polytech. Chem. Eng. (2016).
[8] Information on
[9] L. Pires da Mata Costa, D. Micheline Vaz de Miranda, A.C. Couto de Oliveira, L. Falcon, M. Stella Silva Pimenta, I. Guilherme Bessa, S. Juarez Wouters, M.H.S. Andrade, J.C. Pinto, Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review, Processes 9 (2021).
[10] W. Wang, M. Zhou, D. Yuan, Carbon dioxide capture in amorphous porous organic polymers, J. Mater. Chem. A 5 (2017) 1334-1347.
[11] H. Gao, Q. Li, S. Ren, Progress on CO2 capture by porous organic polymers, Curr. Opin. Green Sustain. Chem. 16 (2019) 33-38.
[12] N. Huang, G. Day, X. Yang, H. Drake, H.-C. Zhou, Engineering porous organic polymers for carbon dioxide capture, Sci. China Chem. 60 (2017) 1007-1014.
[13] Y. Han, W.S.W. Ho, Mitigated carrier saturation of facilitated transport membranes for decarbonizing dilute CO2 sources: An experimental and techno-economic study, JMS Letters 2 (2022).
[14] Y. Han, W.S.W. Ho, Polymeric membranes for CO2 separation and capture, J. Membr. Sci. 628 (2021).
[15] B. Xue, X. Li, L. Gao, M. Gao, Y. Wang, L. Jiang, CO2-selective free-standing membrane by self-assembly of a UV-crosslinkable diblock copolymer, J. Mater. Chem. 22 (2012).
[16] M. Sandru, S.H. Haukebø, M.-B. Hägg, Composite hollow fiber membranes for CO2 capture, J. Membr. Sci. 346 (2010) 172-186.
[17] S. Yuan, Z. Wang, Z. Qiao, M. Wang, J. Wang, S. Wang, Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine, J. Membr. Sci. 378 (2011) 425-437.
[18] Z. Ma, Z. Qiao, Z. Wang, X. Cao, Y. He, J. Wang, S. Wang, CO2 separation enhancement of the membrane by modifying the polymer with a small molecule containing amine and ester groups, RSC Adv. 4 (2014).
[19] Z. Qiao, Z. Wang, S. Yuan, J. Wang, S. Wang, Preparation and characterization of small molecular amine modified PVAm membranes for CO2/H2 separation, J. Membr. Sci. 475 (2015) 290-302.
[20] B.S. Ghanem, R. Swaidan, E. Litwiller, I. Pinnau, Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation, Adv. Mater. 26 (2014) 3688-3692.
[21] W. Zheng, Z. Liu, R. Ding, Y. Dai, X. Li, X. Ruan, G. He, Constructing continuous and fast transport pathway by highly permeable polymer electrospun fibers in composite membrane to improve CO2 capture, Sep. Purif. Technol. 285 (2022).
[22] S.H. Ahn, S.J. Kim, D.K. Roh, H.-K. Lee, B. Jung, J.H. Kim, Controlling gas permeability of a graft copolymer membrane using solvent vapor treatment, Macromol. Res. 22 (2013) 160-164.
[23] I. Taniguchi, T. Kai, S. Duan, S. Kazama, H. Jinnai, A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes, J. Membr. Sci. 475 (2015) 175-183.
[24] Y. Zhao, W.S. Winston Ho, Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport, J. Membr. Sci. 415-416 (2012) 132-138.
[25] S.C. Li, Z. Wang, C.X. Zhang, M.M. Wang, F. Yuan, J.X. Wang, S.C. Wang, Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation, J. Membr. Sci. 436 (2013) 121-131.
[26] D.F. Sanders, R. Guo, Z.P. Smith, K.A. Stevens, Q. Liu, J.E. McGrath, D.R. Paul, B.D. Freeman, Influence of polyimide precursor synthesis route and ortho-position functional group on thermally rearranged (TR) polymer properties: Pure gas permeability and selectivity, J. Membr. Sci. 463 (2014) 73-81.
[27] T. Sakaguchi, F. Katsura, A. Iwase, T. Hashimoto, CO2-permselective membranes of crosslinked poly(vinyl ether)s bearing oxyethylene chains, Polymer 55 (2014) 1459-1466.
[28] H. Lin, E. Wagner, J. Swinnea, B. Freeman, S. Pas, A. Hill, S. Kalakkunnath, D. Kalika, Transport and structural characteristics of crosslinked poly(ethylene oxide) rubbers, J. Membr. Sci. 276 (2006) 145-161.
[29] S. Li, H.J. Jo, S.H. Han, C.H. Park, S. Kim, P.M. Budd, Y.M. Lee, Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation, J. Membr. Sci. 434 (2013) 137-147.
[30] Y. Weng, W. Ji, C. Ye, H. Dong, Z. Gao, J. Li, C. Luo, X. Ma, Simultaneously enhanced CO2 permeability and CO2/N2 selectivity at sub-ambient temperature from two novel functionalized intrinsic microporous polymers, J. Membr. Sci. 644 (2022).
[31] J. Xia, S. Liu, C.H. Lau, T.-S. Chung, Liquidlike poly(ethylene glycol) supported in the organic-inorganic matrix for CO2 removal, Macromolecules 44 (2011) 5268-5280.
[32] Y. Sun, M. Gou, Highly efficient of CO2/CH4 separation performance via the pebax membranes with multi-functional polymer nanotubes, Microporous Mesoporous Mater. 342 (2022).
[33] V.A. Kusuma, B.D. Freeman, S.L. Smith, A.L. Heilman, D.S. Kalika, Influence of TRIS-based co-monomer on structure and gas transport properties of cross-linked poly(ethylene oxide), J. Membr. Sci. 359 (2010) 25-36.
[34] W. Yave, A. Car, S.S. Funari, S.P. Nunes, K.-V. Peinemann, CO2-philic polymer membrane with extremely high separation performance, Macromolecules 43 (2009) 326-333.
[35] Y. Zhang, L. Ma, Y. Lv, T. Tan, Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation, Chem. Eng. J. 430 (2022).
[36] P. Li, Z. Wang, Y. Liu, S. Zhao, J. Wang, S. Wang, A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances, J. Membr. Sci. 476 (2015) 243-255.
[37] J.M.P. Scofield, P.A. Gurr, J. Kim, Q. Fu, S.E. Kentish, G.G. Qiao, Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes, J. Membr. Sci. 499 (2016) 191-200.
[38] R. Swaidan, B.S. Ghanem, E. Litwiller, I. Pinnau, Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1, J. Membr. Sci. 457 (2014) 95-102.
[39] Z. Wang, D. Wang, J. Jin, Microporous polyimides with rationally designed chain structure achieving high performance for gas separation, Macromolecules 47 (2014) 7477-7483.
[40] F. Yuan, Z. Wang, S. Li, J. Wang, S. Wang, Formation-structure-performance correlation of thin film composite membranes prepared by interfacial polymerization for gas separation, J. Membr. Sci. 421-422 (2012) 327-341.
[41] X. Ma, O. Salinas, E. Litwiller, I. Pinnau, Novel spirobifluorene- and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications, Macromolecules 46 (2013) 9618-9624.
[42] J. Liu, S. Zhang, D.-e. Jiang, C.M. Doherty, A.J. Hill, C. Cheng, H.B. Park, H. Lin, Highly polar but amorphous polymers with robust membrane CO2/N2 separation performance, Joule 3 (2019) 1881-1894.
[43] J. Shen, J. Qiu, L. Wu, C. Gao, Facilitated transport of carbon dioxide through poly(2-N,N-dimethyl aminoethyl methacrylate-co-acrylic acid sodium) membrane, Sep. Purif. Technol. 51 (2006) 345-351.
[44] Y.F. Yeong, H. Wang, K. Pallathadka Pramoda, T.-S. Chung, Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties, J. Membr. Sci. 397-398 (2012) 51-65.
[45] J.L. Santiago-García, C. Álvarez, F. Sánchez, J.G. de la Campa, Gas transport properties of new aromatic polyimides based on 3,8-diphenylpyrene-1,2,6,7-tetracarboxylic dianhydride, J. Membr. Sci. 476 (2015) 442-448.
[46] A. Husna, I. Hossain, O. Choi, S.M. Lee, T.H. Kim, Efficient CO2 separation using a PIM‐PI‐functionalized UiO‐66 MOF incorporated mixed matrix membrane in a PIM‐PI‐1 polymer, Macromol. Mater. Eng. 306 (2021).
[47] S. Kim, S.H. Han, Y.M. Lee, Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture, J. Membr. Sci. 403-404 (2012) 169-178.
[48] N. Du, M.M. Dal-Cin, G.P. Robertson, M.D. Guiver, Decarboxylation-induced cross-linking of polymers of intrinsic microporosity (PIMs) for membrane gas separation, Macromolecules 45 (2012) 5134-5139.
[49] C. Makhloufi, D. Roizard, E. Favre, Reverse selective NH3/CO2 permeation in fluorinated polymers using membrane gas separation, J. Membr. Sci. 441 (2013) 63-72.
[50] Y. Liu, S. Yu, H. Wu, Y. Li, S. Wang, Z. Tian, Z. Jiang, High permeability hydrogel membranes of chitosan/poly ether-block-amide blends for CO2 separation, J. Membr. Sci. 469 (2014) 198-208.
[51] Y. Lee, C.Y. Chuah, J. Lee, T.-H. Bae, Effective functionalization of porous polymer fillers to enhance CO2/N2 separation performance of mixed-matrix membranes, J. Membr. Sci. 647 (2022).
[52] E. Akbarzadeh, A. Shockravi, V. Vatanpour, High performance compatible thiazole-based polymeric blend cellulose acetate membrane as selective CO2 absorbent and molecular sieve, Carbohydr. Polym. 252 (2021) 117215.
[53] R. Swaidan, M. Al-Saeedi, B. Ghanem, E. Litwiller, I. Pinnau, Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes, Macromolecules 47 (2014) 5104-5114.
[54] Y. Wu, N. Xing, S. Li, L. Yang, Y. Ren, Y. Liu, X. Liang, Z. Guo, H. Wang, H. Wu, Z. Jiang, In situ knitted microporous polymer membranes for efficient CO2 capture, J. Mater. Chem. A 9 (2021) 2126-2134.
[55] X. Ma, I. Pinnau, A novel intrinsically microporous ladder polymer and copolymers derived from 1,1′,2,2′-tetrahydroxy-tetraphenylethylene for membrane-based gas separation, Polym. Chem. 7 (2016) 1244-1248.
[56] Y. Zhao, W.S.W. Ho, CO2-selective membranes containing sterically hindered amines for CO2/H2 separation, Ind. Eng. Chem. Res. 52 (2012) 8774-8782.
[57] M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, An efficient polymer molecular sieve for membrane gas separations, Science 339 (2013) 303-307.
[58] W. Han, C. Zhang, M. Zhao, F. Yang, Y. Yang, Y. Weng, Post-modification of PIM-1 and simultaneously in situ synthesis of porous polymer networks into PIM-1 matrix to enhance CO2 separation performance, J. Membr. Sci. 636 (2021).
[59] Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang, S. Wang, PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation, AIChE J. 59 (2013) 215-228.
[60] Y. Wu, D. Zhao, S. Chen, J. Ren, K. Hua, H. Li, M. Deng, The effect of structure change from polymeric membrane to gel membrane on CO2 separation performance, Sep. Purif. Technol. 261 (2021).
[61] C.H. Lau, K. Konstas, C.M. Doherty, S. Kanehashi, B. Ozcelik, S.E. Kentish, A.J. Hill, M.R. Hill, Tailoring physical aging in super glassy polymers with functionalized porous aromatic frameworks for CO2 capture, Chem. Mater. 27 (2015) 4756-4762.
[62] J. Liao, Z. Wang, C. Gao, S. Li, Z. Qiao, M. Wang, S. Zhao, X. Xie, J. Wang, S. Wang, Fabrication of high-performance facilitated transport membranes for CO2 separation, Chem. Sci. 5 (2014) 2843-2849.
[63] L. Shao, J. Samseth, M.-B. Hägg, Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations, J. Membr. Sci. 326 (2009) 285-292.
[64] Q. Xin, T. Liu, Z. Li, S. Wang, Y. Li, Z. Li, J. Ouyang, Z. Jiang, H. Wu, Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal-organic framework for gas separation, J. Membr. Sci. 488 (2015) 67-78.
[65] Y. Shi, J. Liang, B. Babu Shrestha, Z. Wang, Y. Zhang, J. Jin, Enhancing the CO2 plasticization resistance of thin polymeric membranes by designing Metal-polymer complexes, Sep. Purif. Technol. 289 (2022).
[66] Z. Wang, H. Chen, Y. Wang, J. Chen, M.A. Arnould, B. Hu, I. Popovs, S.M. Mahurin, S. Dai, Polymer-grafted porous silica nanoparticles with enhanced CO2 permeability and mechanical performance, ACS Appl. Mater. Interfaces 13 (2021) 27411-27418.
[67] M.L. Sforça, I.V.P. Yoshida, S.P. Nunes, Organic-inorganic membranes prepared from polyether diamine and epoxy silane, J. Membr. Sci. 159 (1999) 197-207.
[68] H. Kim, C. Lim, S.-I. Hong, Gas permeation properties of organic-inorganic hybrid membranes prepared from hydroxyl-terminated polyether and 3-isocyanatopropyltriethoxysilane, J. Sol-Gel Sci. Technol. 36 (2005) 213-221.
[69] X. Li, M. Wang, S. Wang, Y. Li, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang, B. Wang, Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture, J. Membr. Sci. 474 (2015) 156-166.
[70] N. Habib, O. Durak, M. Zeeshan, A. Uzun, S. Keskin, A novel IL/MOF/polymer mixed matrix membrane having superior CO2/N2 selectivity, J. Membr. Sci. 658 (2022).
[71] M.L. Chua, L. Shao, B.T. Low, Y. Xiao, T.-S. Chung, Polyetheramine-polyhedral oligomeric silsesquioxane organic-inorganic hybrid membranes for CO2/H2 and CO2/N2 separation, J. Membr. Sci. 385-386 (2011) 40-48.
[72] Z. Qiao, S. Zhao, M. Sheng, J. Wang, S. Wang, Z. Wang, C. Zhong, M.D. Guiver, Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes, Nat. Mater. 18 (2019) 163-168.
[73] H. Cong, X. Hu, M. Radosz, Y. Shen, Brominated poly(2,6-diphenyl-1,4-phenylene oxide) and its silica nanocomposite membranes for gas separation, Ind. Eng. Chem. Res. 46 (2007) 2567-2575.
[74] A.S.L. Gouveia, E. Bumenn, K. Rohtlaid, A. Michaud, T.M. Vieira, V.D. Alves, L.C. Tomé, C. Plesse, I.M. Marrucho, Ionic liquid-based semi-interpenetrating polymer network (sIPN) membranes for CO2 separation, Sep. Purif. Technol. 274 (2021).
[75] S. Matteucci, R.D. Raharjo, V.A. Kusuma, S. Swinnea, B.D. Freeman, Gas permeability, solubility, and diffusion coefficients in 1,2-polybutadiene containing magnesium oxide, Macromolecules 41 (2008) 2144-2156.
[76] H. Bai, W.S.W. Ho, Carbon dioxide-selective membranes for high-pressure synthesis gas purification, Ind. Eng. Chem. Res. 50 (2011) 12152-12161.
[77] S.-T. Fan, M. Tan, W.-T. Liu, B.-J. Li, S. Zhang, MOF-layer composite polyurethane membrane increasing both selectivity and permeability: Pushing commercial rubbery polymer membranes to be attractive for CO2 separation, Sep. Purif. Technol. 297 (2022).
[78] L. Hao, P. Li, T. Yang, T.-S. Chung, Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture, J. Membr. Sci. 436 (2013) 221-231.
[79] W.S. Chi, S.J. Kim, S.J. Lee, Y.S. Bae, J.H. Kim, Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach, ChemSusChem 8 (2015) 650-658.
[80] N. Du, G.P. Robertson, M.M. Dal-Cin, L. Scoles, M.D. Guiver, Polymers of intrinsic microporosity (PIMs) substituted with methyl tetrazole, Polymer 53 (2012) 4367-4372.
[81] Y. Han, W. Salim, K.K. Chen, D. Wu, W.S.W. Ho, Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas, J. Membr. Sci. 575 (2019) 242-251.
[82] H. Wu, X. Li, Y. Li, S. Wang, R. Guo, Z. Jiang, C. Wu, Q. Xin, X. Lu, Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties, J. Membr. Sci. 465 (2014) 78-90.
[83] J. Xia, S. Liu, T.-S. Chung, Effect of end groups and grafting on the CO2 separation performance of poly(ethylene glycol) based membranes, Macromolecules 44 (2011) 7727-7736.
[84] C.H. Lau, D.R. Paul, T.S. Chung, Molecular design of nanohybrid gas separation membranes for optimal CO2 separation, Polymer 53 (2012) 454-465.
[85] H. Bai, W.S.W. Ho, New carbon dioxide-selective membranes based on sulfonated polybenzimidazole (SPBI) copolymer matrix for fuel cell applications, Ind. Eng. Chem. Res. 48 (2008) 2344-2354.
[86] R. Xing, W.S.W. Ho, Crosslinked polyvinylalcohol-polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation, J. Membr. Sci. 367 (2011) 91-102.
[87] Y. Zhao, B.T. Jung, L. Ansaloni, W.S.W. Ho, Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation, J. Membr. Sci. 459 (2014) 233-243.
[88] G. Golemme, A. Bruno, R. Manes, D. Muoio, Preparation and properties of superglassy polymers – zeolite mixed matrix membranes, Desalination 200 (2006) 440-442.
[89] A.S. Kovvali, H. Chen, K.K. Sirkar, Dendrimer membranes:  A CO2-selective molecular gate, J. Am. Chem. Soc. 122 (2000) 7594-7595.
[90] Ş.B. Tantekin-Ersolmaz, Ç. Atalay-Oral, M. Tatlıer, A. Erdem-Şenatalar, B. Schoeman, J. Sterte, Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes, J. Membr. Sci. 175 (2000) 285-288.
[91] S. Kasahara, E. Kamio, T. Ishigami, H. Matsuyama, Amino acid ionic liquid-based facilitated transport membranes for CO2 separation, Chem. Commun. (Camb) 48 (2012) 6903-6905.
[92] J. Zou, W.S.W. Ho, CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol), J. Membr. Sci. 286 (2006) 310-321.
[93] S. Kasahara, E. Kamio, H. Matsuyama, Improvements in the CO2 permeation selectivities of amino acid ionic liquid-based facilitated transport membranes by controlling their gas absorption properties, J. Membr. Sci. 454 (2014) 155-162.
[94] C.G. Bezzu, M. Carta, A. Tonkins, J.C. Jansen, P. Bernardo, F. Bazzarelli, N.B. McKeown, A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation, Adv. Mater. 24 (2012) 5930-5933.
[95] M.M. Khan, V. Filiz, G. Bengtson, S. Shishatskiy, M.M. Rahman, J. Lillepaerg, V. Abetz, Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM), J. Membr. Sci. 436 (2013) 109-120.
[96] A.L. Ahmad, Z.A. Jawad, S.C. Low, S.H.S. Zein, A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation, J. Membr. Sci. 451 (2014) 55-66.
[97] M. Wang, Z. Wang, S. Li, C. Zhang, J. Wang, S. Wang, A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO2 separation from flue gas, Energy Environ. Sci. 6 (2013) 539-551.