Biopolymers and their Application-Oriented Composites into a Circular Economy Context


Biopolymers and their Application-Oriented Composites into a Circular Economy Context

Ruben Teijido, Leire Ruiz Rubio, Qi Zhang, Senentxu Lanceros, José Luis Vilas Vilela

Society is increasingly concerned about environmental problems derived from the inappropriate use of polymeric materials and their inefficient recycle. Furthermore, considering that petroleum is not an endless raw material, the search for new sustainable materials has been gaining great interest in recent years. These materials should not only be sustainable but also fulfil the requirements requested by the industry. In this context, biopolymers stand out for their natural origin and their potential to substitute some of the synthetic polymers. On the other hand, the design of new composites capable of adapting and responding to the increasingly sophisticated applications presented by this new era of additive manufacturing or the internet of things is crucial. Moreover, the new business horizons related to the implementation of industry 4.0 require the development of complex sustainable materials for their development but considering a Circular Economy and sustainability perspectives.

Biopolymers, Sustainability, Polysaccharides, Biodegradation

Published online 8/10/2023, 37 pages

Citation: Ruben Teijido, Leire Ruiz Rubio, Qi Zhang, Senentxu Lanceros, José Luis Vilas Vilela, Biopolymers and their Application-Oriented Composites into a Circular Economy Context, Materials Research Foundations, Vol. 149, pp 105-141, 2023


Part of the book on New Materials for a Circular Economy

[1] Information on
[2] A. Vinod, M.R. Sanjay, S. Suchart, P. Jyotishkumar, Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites, J. Clean. Prod. 258 (2020) 120978.
[3] A.G. Facca, M.T. Kortschot, N. Yan, Predicting the tensile strength of natural fibre reinforced thermoplastics, Compos. Sci. Technol. 67 (2007) 2454–2466.
[4] N.P. Sukumaran, S. Gopi, Overview of biopolymers, Elsevier Inc., 2021.
[5] S. Edebali, Methods of engineering of biopolymers and biocomposites, Elsevier Ltd., 2020.
[6] Q. Tarrés, F. Vilaseca, P.J. Herrera-Franco, F.X. Espinach, M. Delgado-Aguilar, P. Mutjé, Interface and micromechanical characterization of tensile strength of bio-based composites from polypropylene and henequen strands, Ind. Crops Prod. 132 (2019) 319–326.
[7] G.J. Tudryn, L.C. Smith, J. Freitag, R. Bucinell, L.S. Schadler, Processing and Morphology Impacts on Mechanical Properties of Fungal Based Biopolymer Composites, J. Polym. Environ. 26 (2018) 1473–1483.
[8] H. Ye, Y. Wang, Q. Yu, S. Ge, W. Fan, M. Zhang, Z. Huang, M. Manzo, L. Cai, L. Wang, C. Xia, Bio-based composites fabricated from wood fibers through self-bonding technology, Chemosphere. 287 (2022) 132436.
[9] R. Francis, S. Sasikumar, G.P. Gopalan, Synthesis, structure, and properties of biopolymers (natural and synthetic), Polym. Compos. Biocomposites. 3 (2013) 11–107.
[10] S. Lambert, M. Wagner, Environmental performance of bio-based and biodegradable plastics: The road ahead, Chem. Soc. Rev. 46 (2017) 6855–6871.
[11] F. Versino, O.V. López, M.A. García, Green Biocomposites for Packaging Applications, in: 2021: pp. 1–30.
[12] T. Lou, X. Wang, G. Song, G. Cui, Synthesis and flocculation performance of a chitosan-acrylamide-fulvic acid ternary copolymer, Carbohydr. Polym. 170 (2017) 182–189.
[13] R. Yang, H. Li, M. Huang, H. Yang, A. Li, A review on chitosan-based flocculants and their applications in water treatment, Water Res. 95 (2016) 59–89.
[14] A. Ahmad, Y. Gulraiz, S. Ilyas, S. Bashir, Polysaccharide based nano materials: Health implications, Food Hydrocoll. Heal. 2 (2022) 100075.
[15] J. Venkatesan, R. Nithya, P.N. Sudha, S.K. Kim, Role of alginate in bone tissue engineering, 1st ed., Elsevier Inc., 2014.
[16] V. Urtuvia, N. Maturana, F. Acevedo, C. Peña, A. Díaz-Barrera, Bacterial alginate production: an overview of its biosynthesis and potential industrial production, World J. Microbiol. Biotechnol. 33 (2017) 0.
[17] J. Minghou, W. Yujun, X. Zuhong, G. Yucai, Studies on the M:G ratios in alginate, Hydrobiologia. 116–117 (1984) 554–556.
[18] X. Zhang, X. Wang, W. Fan, Y. Liu, Q. Wang, L. Weng, Fabrication , Property and Application of Calcium Alginate Fiber : A Review, (2022) 1–18.
[19] A. Dodero, M. Alloisio, S. Vicini, M. Castellano, Preparation of composite alginate-based electrospun membranes loaded with ZnO nanoparticles, Carbohydr. Polym. 227 (2020) 115371.
[20] H. Hecht, S. Srebnik, Structural Characterization of Sodium Alginate and Calcium Alginate, Biomacromolecules. 17 (2016) 2160–2167.
[21] S. Sellimi, I. Younes, H. Ben Ayed, H. Maalej, V. Montero, M. Rinaudo, M. Dahia, T. Mechichi, M. Hajji, M. Nasri, Structural, physicochemical and antioxidant properties of sodium alginate isolated from a Tunisian brown seaweed, Int. J. Biol. Macromol. 72 (2015) 1358–1367.
[22] S. Saji, A. Hebden, P. Goswami, C. Du, A Brief Review on the Development of Alginate Extraction Process and Its Sustainability, Sustain. 14 (2022) 1–20.
[23] A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, S. Goswami, Commercial application of cellulose nano-composites – A review, Biotechnol. Reports. 21 (2019) e00316.
[24] B. Joseph, V.K. Sagarika, C. Sabu, N. Kalarikkal, S. Thomas, Cellulose nanocomposites: Fabrication and biomedical applications, J. Bioresour. Bioprod. 5 (2020) 223–237.
[25] T. Li, C. Chen, A.H. Brozena, J.Y. Zhu, L. Xu, C. Driemeier, J. Dai, O.J. Rojas, A. Isogai, L. Wågberg, L. Hu, Developing fibrillated cellulose as a sustainable technological material, Nature. 590 (2021) 47–56.
[26] L. Szcześniak, A. Rachocki, J. Tritt-Goc, Glass transition temperature and thermal decomposition of cellulose powder, Cellulose. 15 (2008) 445–451.
[27] B. Petter Jelle, Nano-based thermal insulation for energy-efficient buildings, Elsevier Ltd, 2016.
[28] K. Daicho, T. Saito, S. Fujisawa, A. Isogai, The Crystallinity of Nanocellulose: Dispersion-Induced Disordering of the Grain Boundary in Biologically Structured Cellulose, ACS Appl. Nano Mater. 1 (2018) 5774–5785.
[29] N.M. Park, S. Choi, J.E. Oh, D.Y. Hwang, Facile extraction of cellulose nanocrystals, Carbohydr. Polym. 223 (2019) 115114.
[30] A.Y. Melikoğlu, S.E. Bilek, S. Cesur, Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace, Carbohydr. Polym. 215 (2019) 330–337.
[31] M.P. Menon, R. Selvakumar, Derived From Biomass for Environmental, (2017) 42750–42773.
[32] Q. Lin, Y. Huang, W. Yu, Effects of extraction methods on morphology, structure and properties of bamboo cellulose, Ind. Crops Prod. 169 (2021) 113640.
[33] N. Berezina, Production and application of chitin, Phys. Sci. Rev. 1 (2016) 1–8.
[34] C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Prog. Polym. Sci. 34 (2009) 641–678.
[35] I. Younes, M. Rinaudo, Chitin and chitosan preparation from marine sources. Structure, properties and applications, Mar. Drugs. 13 (2015) 1133–1174.
[36] I. Tsigos, A. Martinou, D. Kafetzopoulos, V. Bouriotis, Chitin deacetylases : new , versatile tools in, TibTech. 18 (2000) 129–135.
[37] F. Luan, L. Wei, J. Zhang, W. Tan, Y. Chen, F. Dong, Q. Li, Z. Guo, Preparation and characterization of quaternized chitosan derivatives and assessment of their antioxidant activity, Molecules. 23 (2018).
[38] C.L. Ke, F.S. Deng, C.Y. Chuang, C.H. Lin, Antimicrobial actions and applications of Chitosan, Polymers (Basel). 13 (2021).
[39] S. Ahmed, M. Ahmad, S. Ikram, Advanced materials chitosan : A natural antimicrobial agent : A review, J. Appl. Chem. 2 (2014) 493–503.
[40] D. Liu, Z. Li, Y. Zhu, Z. Li, R. Kumar, Recycled chitosan nanofibril as an effective Cu(II), Pb(II) and Cd(II) ionic chelating agent: Adsorption and desorption performance, Carbohydr. Polym. 111 (2014) 469–476.
[41] A. del Carpio-Perochena, C.M. Bramante, M.A.H. Duarte, M.R. de Moura, F.A. Aouada, A. Kishen, Chelating and antibacterial properties of chitosan nanoparticles on dentin, Restor. Dent. Endod. 40 (2015) 195.
[42] H. El Knidri, R. Belaabed, A. Addaou, A. Laajeb, A. Lahsini, Extraction, chemical modification and characterization of chitin and chitosan, Int. J. Biol. Macromol. 120 (2018) 1181–1189.
[43] M. Pakizeh, A. Moradi, T. Ghassemi, Chemical extraction and modification of chitin and chitosan from shrimp shells, Eur. Polym. J. 159 (2021) 110709.
[44] K.K. Gadgey, K. Kumar Gadgey Head, A. Bahekar Head, A. Professor, K. Kumar Gadgey, A. Bahekar, Studies on Extraction Methods of Chitin from Crab Shell and Investigation of its Mechanical Properties, IJMET_08_02_027 Int. J. Mech. Eng. Technol. 8 (2017) 220–231.
[45] D. Zhao, W.C. Huang, N. Guo, S. Zhang, C. Xue, X. Mao, Two-step separation of chitin from shrimp shells using citric acid and deep eutectic solvents with the assistance of microwave, Polymers (Basel). 11 (2019).
[46] S. Kaur, G.S. Dhillon, Recent trends in biological extraction of chitin from marine shell wastes: A review, Crit. Rev. Biotechnol. 35 (2015) 44–61.
[47] V.L. Pachapur, K. Guemiza, T. Rouissi, S.J. Sarma, S.K. Brar, Novel biological and chemical methods of chitin extraction from crustacean waste using saline water, J. Chem. Technol. Biotechnol. 91 (2016) 2331–2339.
[48] P. Saranraj, M.A. Naidu, Hyaluronic Acid Production and its Applications-A Review, Int. J. Pharm. Biol. Arch. 4 (2013) 853–859.
[49] T.E. Hardingham, H. Muir, Hyaluronic acid in cartilage and proteoglycan aggregation, Biochem. J. 139 (1974) 565–581.
[50] P. Zhai, X. Peng, B. Li, Y. Liu, H. Sun, X. Li, The application of hyaluronic acid in bone regeneration, Int. J. Biol. Macromol. 151 (2020) 1224–1239.
[51] F. Zamboni, C. Okoroafor, M.P. Ryan, J.T. Pembroke, M. Strozyk, M. Culebras, M.N. Collins, On the bacteriostatic activity of hyaluronic acid composite films, Carbohydr. Polym. 260 (2021) 117803.
[52] K.M. Lopez, S. Ravula, R.L. Pérez, C.E. Ayala, J.N. Losso, M.E. Janes, I.M. Warner, Hyaluronic Acid-Cellulose Composites as Patches for Minimizing Bacterial Infections, ACS Omega. 5 (2020) 4125–4132.
[53] Y. Wang, G. Liu, L. Wu, H. Qu, D. Song, H. Huang, C. Wu, M. Xu, Rational design of porous starch/hyaluronic acid composites for hemostasis, Int. J. Biol. Macromol. 158 (2020) 1319–1329.
[54] S. Maiz-Fernández, L. Pérez-Álvarez, L. Ruiz-Rubio, J.L. Vilas-Vilela, S. Lanceros-Mendez, Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications, Polymers (Basel). 12 (2020) 2261.
[55] M. Dovedytis, Z.J. Liu, S. Bartlett, Hyaluronic acid and its biomedical applications: A review, Eng. Regen. 1 (2020) 102–113.
[56] J.F. Robyt, Starch: Structure, Properties, Chemistry, and Enzymology, in: B.O. Fraser-Reid, T. Kuniaki, J. Thiem (Eds.), Glycoscience, Springer International Publishing, Heidelberg, 2008, pp. 1438–1468.
[57] S. Pérez, P.M. Baldwin, D.J. Gallant, Structural Features of Starch Granules I, In J. B.Miller and R. Whistler, Starch. Chemistry and Technology, Third Edit, Elsevier Inc., Amsterdam, 2009.
[58] D.H. Kringel, S.L.M. El Halal, E. da Rosa, A.R. Guerra, Methods for the extraction of roots, tubers, pulses, pseudocereals, and other unconventional starches sources: A review, Methods Starch Extr. (2020).
[59] B.L. Tagliapietra, M.H.F. Felisberto, E.A. Sanches, P.H. Campelo, M.T.P.S. Clerici, Non-conventional starch sources, Curr. Opin. Food Sci. 39 (2021) 93–102.
[60] S.L.M. El Halal, D.H. Kringel, E. da R. Zavareze, A.R.G. Dias, Methods for Extracting Cereal Starches from Different Sources: A Review, Starch/Staerke. 71 (2019) 1–14.
[61] Z. Sui, X. Kong, Physical modifications of starch, Springer Nature, Singapore, 2018.
[62] T. Kuge, K. Takeo, Complexes of starchy materials with organic compounds, Agric. Biol. Chem. 32 (1968) 1232–1238.
[63] E. Basiak, A. Lenart, F. Debeaufort, Effect of starch type on the physico-chemical properties of edible films, Int. J. Biol. Macromol. 98 (2017) 348–356.
[64] O.P. Troncoso, F.G. Torres, Non‐conventional starch nanoparticles for drug delivery applications, Med. Devices Sensors. 3 (2020) 1–16.
[65] E.J. Bealer, S. Onissema-karimu, A. Rivera-galletti, M. Francis, J. Wilkowski, X. Hu, Protein – Polysaccharide Composite Materials :, Polymers (Basel). (2020) 1–28.
[66] Z. Zhang, O. Ortiz, R. Goyal, J. Kohn, Biodegradable Polymers, in K. Modjarrad, S. Ebnesajjad (Eds.), Handbook of polymer applications in medicine and medical devices, Elsevier Inc., Chadds Ford, 2014, pp. 303-335.
[67] L. Wang, X. Huang, New protein-based smart materials, In G. Wei, S. G. Kumbar, Artificial Protein and Peptide Nanofibers, Woodhead Publishing, Sawston, 2020, pp. 415-436.
[68] D. Lin, W. Lu, A.L. Kelly, L. Zhang, B. Zheng, S. Miao, Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry, Trends Food Sci. Technol. 68 (2017) 130–144.
[69] Information on
[70] Q. Chen, L. Chaihu, X. Yao, X. Cao, W. Bi, J. Lin, D.D.Y. Chen, Molecular Property-Tailored Soy Protein Extraction Process Using a Deep Eutectic Solvent, ACS Sustain. Chem. Eng. 9 (2021) 10083–10092.
[71] K.E. Preece, N. Hooshyar, A. Krijgsman, P.J. Fryer, N.J. Zuidam, Intensified soy protein extraction by ultrasound, Chem. Eng. Process. – Process Intensif. 113 (2017) 94–101.
[72] K.E. Preece, N. Hooshyar, N.J. Zuidam, Whole soybean protein extraction processes: A review, Innov. Food Sci. Emerg. Technol. 43 (2017) 163–172.
[73] M.M. Rahman, S. Dutta, B.P. Lamsal, High-power sonication-assisted extraction of soy protein from defatted soy meals: Influence of important process parameters, J. Food Process Eng. 44 (2021) 1–11.
[74] J.R. Kim, A.N. Netravali, Self-healing green composites based on soy protein and microfibrillated cellulose, Compos. Sci. Technol. 143 (2017) 22–30.
[75] L. Xu, S. Zhong, Y. Gao, X. Cui, Seeking brightness from natural resources: Soy protein isolate and its multifunctional applications, Dye. Pigment. 196 (2021) 109768.
[76] R. Mozafarpour, A. Koocheki, E. Milani, M. Varidi, Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property, Food Hydrocoll. 93 (2019) 361–373.
[77] D. Yuan, F. Zhou, P. Shen, Y. Zhang, L. Lin, M. Zhao, Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-Driven Encapsulation and Delivery of Hydrophobic Cargo Curcumin, Food Hydrocoll. 120 (2021) 106759.
[78] F. Song, D.L. Tang, X.L. Wang, Y.Z. Wang, Biodegradable soy protein isolate-based materials: A review, Biomacromolecules. 12 (2011) 3369–3380.
[79] R. Kumar, L. Wang, L. Zhang, Structure and Mechanical Properties of Soy Protein Materials Plasticized by Thiodiglycol, J. Appl. Polym. Sci. 111 (2008) 970–977.
[80] Z. Yue-Hong, Z. Wu-Quan, G. Zhen-Hua, G. Ji-You, Effects of crosslinking on the mechanical properties and biodegradability of soybean protein-based composites, J. Appl. Polym. Sci. 132 (2015) 1–9.
[81] F. Li, T. Liu, W. Gu, Q. Gao, J. Li, S.Q. Shi, Bioinspired super-tough and multifunctional soy protein-based material via a facile approach, Chem. Eng. J. 405 (2021) 126700.
[82] L. Day, Wheat gluten: production, properties and application, In G.O. Phillips, P.A. Williamsn(Eds.), Handbook of food proteins, Woodhead Publishing Limited, Sawston, 2011, pp. 267-288.
[83] Z. Wang, S. Ma, B. Sun, F. Wang, J. Huang, X. Wang, Q. Bao, Effects of thermal properties and behavior of wheat starch and gluten on their interaction: A review, Int. J. Biol. Macromol. 177 (2021) 474–484.
[84] J.R. Biesiekierski, What is gluten?, J. Gastroenterol. Hepatol. 32 (2017) 78–81.
[85] T. Sartori, G. Feltre, P.J. do Amaral Sobral, R. Lopes da Cunha, F.C. Menegalli, Properties of films produced from blends of pectin and gluten, Food Packag. Shelf Life. 18 (2018) 221–229.
[86] N.K. Kim, F.G. Bruna, O. Das, M.S. Hedenqvist, D. Bhattacharyya, Fire-retardancy and mechanical performance of protein-based natural fibre-biopolymer composites, Compos. Part C Open Access. 1 (2020) 100011.
[87] J. Alipal, N.A.S. Mohd Pu’ad, T.C. Lee, N.H.M. Nayan, N. Sahari, H. Basri, M.I. Idris, H.Z. Abdullah, A review of gelatin: Properties, sources, process, applications, and commercialisation, Mater. Today Proc. 42 (2019) 240–250.
[88] T.F. Da Silva, A.L.B. Penna, Colágeno: Características químicas e propriedades funcionais, Rev Inst Adolfo Lutz. 71 (2012) 530–539
[89] B. Gurumurthy, A. V. Janorkar, Improvements in mechanical properties of collagen-based scaffolds for tissue engineering, Curr. Opin. Biomed. Eng. 17 (2021) 100253.
[90] M. Meyer, Processing of collagen based biomaterials and the resulting materials properties, Biomed. Eng. Online. 18 (2019) 1–74.
[91] M.M. Schmidt, R.C.P. Dornelles, R.O. Mello, E.H. Kubota, M.A. Mazutti, A.P. Kempka, I.M. Demiate, Collagen extraction process, Int. Food Res. J. 23 (2016) 913–922.
[92] S. Cao, Y. Wang, L. Xing, W. Zhang, G. Zhou, Structure and physical properties of gelatin from bovine bone collagen influenced by acid pretreatment and pepsin, Food Bioprod. Process. 121 (2020) 213–223.
[93] C. Liu, Y. Xia, M. Hua, Z. Li, L. Zhang, S. Li, R. Gong, S. Liu, Z. Wang, Y. Sun, Functional properties and antioxidant activity of gelatine and hydrolysate from deer antler base, Food Sci. Nutr. 8 (2020) 3402–3412.
[94] L.S. Kumosa, V. Zetterberg, J. Schouenborg, Gelatin promotes rapid restoration of the blood brain barrier after acute brain injury, Acta Biomater. 65 (2018) 137–149.
[95] A. Shuttleworth, Extracellular Matrix, in: Encycl. Immunol., 2nd Editio, 1998: pp. 861–866.
[96] J.H. Kristensen, M.A. Karsdal, Chapter 30 – Elastin, In M. A. Karsdal Biochem. Collagens, Laminins Elastin Struct. Funct. Biomarkers, 2016, pp. 197–201.
[97] M. Nadalian, S.M. Yusop, W.A.W. Mustapha, M.A. Azman, A.S. Babji, Extraction and characterization of elastin from poultry skin, AIP Conf. Proc. 1571 (2013) 692–695.
[98] D. V. Bax, H.E. Smalley, R.W. Farndale, S.M. Best, R.E. Cameron, Cellular response to collagen-elastin composite materials, Acta Biomater. 86 (2019) 158–170.
[99] M.L. Del Prado-Audelo, N. Mendoza-Muñoz, L. Escutia-Guadarrama, D.M. Giraldo-Gomez, M. González-Torres, B. Florán, H. Cortes, G. Leyva-Gómez, Recent advances in elastin-based biomaterials, J. Pharm. Pharm. Sci. 23 (2020) 314–332.
[100] L.D. Muiznieks, F.W. Keeley, Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective, Biochim. Biophys. Acta – Mol. Basis Dis. 1832 (2013) 866–875.
[101] B. Bujoli, J.C. Scimeca, E. Verron, Fibrin as a multipurpose physiological platform for bone tissue engineering and targeted delivery of bioactive compounds, Pharmaceutics. 11 (2019) 1–15.
[102] N. Atiqah Maaruf, N. Jusoh, J. Bahru, Angiogenic and Osteogenic Properties of Fibrin in Bone Tissue Engineering, Malaysian J. Med. Heal. Sci. 18 (2022) 85–94.
[103] S.M. Alston, K.A. Solen, A.H. Broderick, S. Sukavaneshvar, S.F. Mohammad, New method to prepare autologous fibrin glue on demand, Transl. Res. 149 (2007) 187–195.
[104] K. Froelich, R.C. Pueschel, M. Birner, J. Kindermann, S. Hackenberg, N.H. Kleinsasser, R. Hagen, R. Staudenmaier, Optimization of fibrinogen isolation for manufacturing autologous fibrin glue for use as scaffold in tissue engineering, Artif. Cells, Blood Substitutes, Biotechnol. 38 (2010) 143–149.
[105] A. Reizabal, D.M. Correia, C.M. Costa, L. Perez-Alvarez, J.L. Vilas-Vilela, S. Lanceros-Méndez, Silk Fibroin Bending Actuators as an Approach Toward Natural Polymer Based Active Materials, ACS Appl. Mater. Interfaces. 11 (2019) 30197–30206.
[106] T. Asakura, S. Kametani, Y. Suzuki, Silk, In Encyclopedia of Polymer Science and Technology, (Ed.), Wiley, New York, 2018, pp. 1–19.
[107] A. Reizabal, C.M. Costa, P.G. Saiz, B. Gonzalez, L. Pérez-Álvarez, R. Fernández de Luis, A. Garcia, J.L. Vilas-Vilela, S. Lanceros-Méndez, Processing Strategies to Obtain Highly Porous Silk Fibroin Structures with Tailored Microstructure and Molecular Characteristics and Their Applicability in Water Remediation, J. Hazard. Mater. 403 (2021) 123675.
[108] N. V. Padaki, B. Das, A. Basu, Advances in understanding the properties of silk, Elsevier Ltd., 2015.
[109] R.R. McCarthy, M.W. Ullah, P. Booth, E. Pei, G. Yang, The use of bacterial polysaccharides in bioprinting, Biotechnol. Adv. 37 (2019) 107448.
[110] M.F. Moradali, B.H.A. Rehm, Bacterial biopolymers: from pathogenesis to advanced materials, Nat. Rev. Microbiol. 18 (2020) 195–210.
[111] D. Tan, Y. Wang, Y. Tong, G.Q. Chen, Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs), Trends Biotechnol. 39 (2021) 953–963.
[112] S. Ray, V.C. Kalia, Biomedical Applications of Polyhydroxyalkanoates, Indian J. Microbiol. 57 (2017) 261–269.
[113] D. Tan, J. Yin, G.Q. Chen, Production of Polyhydroxyalkanoates, Elsevier B.V., 2016.
[114] T.R. Ahammad, S. Z.; Gomes, J.; Sreekrishnan, Wastewater treatment forproductionofH2S-free biogas, J. Chem. Technol. Biotechnol. 83 (2008) 1163–1169.
[115] J. Możejko-Ciesielska, R. Kiewisz, Bacterial polyhydroxyalkanoates: Still fabulous?, Microbiol. Res. 192 (2016) 271–282.
[116] A.J. Emaimo, A.A. Olkhov, A.L. Iordanskii, A.A. Vetcher, Polyhydroxyalkanoates Composites and Blends: Improved Properties and New Applications, J. Compos. Sci. 6 (2022).
[117] Y. Zheng, J.C. Chen, Y.M. Ma, G.Q. Chen, Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction, Metab. Eng. 58 (2020) 82–93.
[118] J. Jo, H. Kim, S.Y. Jeong, C. Park, H.S. Hwang, B. Koo, Changes in mechanical properties of polyhydroxyalkanoate with double silanized cellulose nanocrystals using different organosiloxanes, Nanomaterials. 11 (2021).
[119] M. Liu, I.A. Kinloch, R.J. Young, D.G. Papageorgiou, Modelling mechanical percolation in graphene-reinforced elastomer nanocomposites, Compos. Part B Eng. 178 (2019) 1–28.
[120] P. Cataldi, P. Steiner, T. Raine, K. Lin, C. Kocabas, R.J. Young, M. Bissett, I.A. Kinloch, D.G. Papageorgiou, Multifunctional Biocomposites Based on Polyhydroxyalkanoate and Graphene/Carbon Nanofiber Hybrids for Electrical and Thermal Applications, ACS Appl. Polym. Mater. 2 (2020) 3525–3534.
[121] C.P. Kubicek, Synthetic biopolymers, In A. Glieder, C.P. Kubicek, D. Mattanovich, B. Wiltschi, M. Sauer (Eds.), Synthetic Biology, Springer, Cham, 2016, p. 307-335.
[122] M. Rahman, M.R. Hasan, Synthetic biopolynmers, In M.A.J. Mazumder, A. Al-Ahmed, H. Sheardown (Eds.), Funct. Biopolym., Springer Nature, Oxford, 2017, pp. 1–43.
[123] K.J. Jem, B. Tan, The development and challenges of poly (lactic acid) and poly (glycolic acid), Adv. Ind. Eng. Polym. Res. 3 (2020) 60–70.
[124] S.A. Benner, A.M. Sismour, Synthetic biology, Nat. Rev. Genet. 6 (2005) 533–543.
[125] P.A. Gunatillake, R. Adhikari, N. Gadegaard, Biodegradable synthetic polymers for tissue engineering, Eur. Cells Mater. 5 (2003) 1–16.
[126] S. Rezvantalab, N.I. Drude, M.K. Moraveji, N. Güvener, E.K. Koons, Y. Shi, T. Lammers, F. Kiessling, PLGA-based nanoparticles in cancer treatment, Front. Pharmacol. 9 (2018) 1–19.
[127] A. Stejskalová, B.D. Almquist, Using biomaterials to rewire the process of wound repair, Biomater. Sci. 5 (2017) 1421–1434.
[128] H. Wang, Z. Xu, Q. Li, J. Wu, Application of metal-based biomaterials in wound repair, Eng. Regen. 2 (2021) 137–153.
[129] S.-B. Park, E. Lih, K.-S. Park, Y.K. Joung, D.K. Han, Biopolymer-based functional composites for medical applications, Prog. Polym. Sci. 68 (2017) 77–105.
[130] S. Ahmadian, M. Ghorbani, F. Mahmoodzadeh, Silver sulfadiazine-loaded electrospun ethyl cellulose/polylactic acid/collagen nanofibrous mats with antibacterial properties for wound healing, Int. J. Biol. Macromol. 162 (2020) 1555–1565.
[131] R. Morsy, M. Hosny, F. Reicha, T. Elnimr, Developing a potential antibacterial long-term degradable electrospun gelatin-based composites mats for wound dressing applications, React. Funct. Polym. 114 (2017) 8–12.
[132] P.T.S. Kumar, S. Abhilash, K. Manzoor, S.V. Nair, H. Tamura, R. Jayakumar, Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications, Carbohydr. Polym. 80 (2010) 761–767.
[133] S. Sethi, Saruchi, Medha, S. Thakur, B.S. Kaith, N. Sharma, S. Ansar, S. Pandey, V. Kuma, Biopolymer starch-gelatin embedded with silver nanoparticle–based hydrogel composites for antibacterial application, Biomass Convers. Biorefinery, (2022) 1–22.
[134] S.Y. Seo, G.H. Lee, S.G. Lee, S.Y. Jung, J.O. Lim, J.H. Choi, Alginate-based composite sponge containing silver nanoparticles synthesized in situ, Carbohydr. Polym. 90 (2012) 109–115.
[135] B. Lee, E.-J. Choi, E.-J. Lee, S.-M. Han, D.-H. Hahm, H.-J. Lee, I. Shim, The Neuroprotective Effect of Methanol Extract of Gagamjungjihwan and Fructus Euodiae on Ischemia-Induced Neuronal and Cognitive Impairment in the Rat, Evidence-Based Complement. Altern. Med. 2011 (2011) 1–9.
[136] B. Seal, Polymeric biomaterials for tissue and organ regeneration, Mater. Sci. Eng. R Reports. 34 (2001) 147–230.
[137] M. Mousa, N.D. Evans, R.O.C. Oreffo, J.I. Dawson, Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity, Biomaterials. 159 (2018) 204–214.
[138] N. Ramesh, S.C. Moratti, G.J. Dias, Hydroxyapatite-polymer biocomposites for bone regeneration: A review of current trends, J. Biomed. Mater. Res. Part B Appl. Biomater. 106 (2018) 2046–2057.
[139] R. Yunus Basha, S.K. T.S., M. Doble, Design of biocomposite materials for bone tissue regeneration, Mater. Sci. Eng. C. 57 (2015) 452–463.
[140] S.K. Misra, S.P. Valappil, I. Roy, A.R. Boccaccini, Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications, Biomacromolecules. 7 (2006) 2249–2258.
[141] M. Saleem, S. Rasheed, C. Yougen, Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration, Sci. Technol. Adv. Mater. 21 (2020) 242–266.
[142] F. Sun, H. Zhou, J. Lee, Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration, Acta Biomater. 7 (2011) 3813–3828.
[143] X.-Y. Ma, D. Cui, Z. Wang, B. Liu, H.-L. Yu, H. Yuan, L.-B. Xiang, D.-P. Zhou, Silk Fibroin/Hydroxyapatite Coating Improved Osseointegration of Porous Titanium Implants under Diabetic Conditions via Activation of the PI3K/Akt Signaling Pathway, ACS Biomater. Sci. Eng. 8 (2022) 2908–2919.
[144] L. Wang, X. Zhao, B. Wei, Y. Liu, X. Ma, J. Wang, P. Cao, Y. Zhang, Y. Yan, W. Lei, Y. Feng, Insulin improves osteogenesis of titanium implants under diabetic conditions by inhibiting reactive oxygen species overproduction via the PI3K-Akt pathway, Biochimie. 108 (2015) 85–93.
[145] D. Qin, N. Wang, X.-G. You, A.-D. Zhang, X.-G. Chen, Y. Liu, Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives, Biomater. Sci. 10 (2022) 318–353.
[146] M.A. Bonifacio, S. Cometa, A. Cochis, A. Scalzone, P. Gentile, A.C. Scalia, L. Rimondini, P. Mastrorilli, E. De Giglio, A bioprintable gellan gum/lignin hydrogel: a smart and sustainable route for cartilage regeneration, Int. J. Biol. Macromol. 216 (2022) 336–346.
[147] Y. Shen, X. Yu, J. Cui, F. Yu, M. Liu, Y. Chen, J. Wu, B. Sun, X. Mo, Development of Biodegradable Polymeric Stents for the Treatment of Cardiovascular Diseases, Biomolecules. 12 (2022) 1245.
[148] J.A. Ormiston, P.W. Serruys, E. Regar, D. Dudek, L. Thuesen, M.W. Webster, Y. Onuma, H.M. Garcia-Garcia, R. McGreevy, S. Veldhof, A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial, Lancet. 371 (2008) 899–907.
[149] J. Zong, Q. He, Y. Liu, M. Qiu, J. Wu, B. Hu, Advances in the development of biodegradable coronary stents: A translational perspective, Mater. Today Bio. 16 (2022) 100368.
[150] Y. Shen, C. Tang, B. Sun, Y. Zhang, X. Sun, M. EL-Newehy, H. EL-Hamshary, Y. Morsi, H. Gu, W. Wang, X. Mo, 3D printed personalized, heparinized and biodegradable coronary artery stents for rabbit abdominal aorta implantation, Chem. Eng. J. 450 (2022) 138202.
[151] L. Yang, H. Wu, Y. Liu, Q. Xia, Y. Yang, N. Chen, M. Yang, R. Luo, G. Liu, Y. Wang, A robust mussel-inspired zwitterionic coating on biodegradable poly(L-lactide) stent with enhanced anticoagulant, anti-inflammatory, and anti-hyperplasia properties, Chem. Eng. J. 427 (2022) 130910.
[152] Y.-N. Zhao, P. Wu, Z.-Y. Zhao, F.-X. Chen, A. Xiao, Z.-Y. Yue, X.-W. Han, Y. Zheng, Y. Chen, Electrodeposition of chitosan/graphene oxide conduit to enhance peripheral nerve regeneration, Neural Regen. Res. 18 (2023) 207.
[153] M. Darder, P. Aranda, E. Ruiz-Hitzky, Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials, Adv. Mater. 19 (2007) 1309–1319.
[154] E. Colusso, A. Martucci, An overview of biopolymer-based nanocomposites for optics and electronics, J. Mater. Chem. C. 9 (2021) 5578–5593.
[155] M.C. Demirel, M. Vural, M. Terrones, Composites of Proteins and 2D Nanomaterials, Adv. Funct. Mater. 28 (2018) 1704990.
[156] M. Khazaei, A. Mishra, N.S. Venkataramanan, A.K. Singh, S. Yunoki, Recent advances in MXenes: From fundamentals to applications, Curr. Opin. Solid State Mater. Sci. 23 (2019) 164–178.
[157] Y. Xia, T.S. Mathis, M.Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes, Nature. 557 (2018) 409–412.
[158] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science (80-. ). 353 (2016) 1137–1140.
[159] M. Nogi, M. Karakawa, N. Komoda, H. Yagyu, T.T. Nge, Transparent Conductive Nanofiber Paper for Foldable Solar Cells, Sci. Rep. 5 (2015) 17254.
[160] Y. Liu, S. Yang, W. Niu, Simple, rapid and green one-step strategy to synthesis of graphene/carbon nanotubes/chitosan hybrid as solid-phase extraction for square-wave voltammetric detection of methyl parathion, Colloids Surfaces B Biointerfaces. 108 (2013) 266–270.
[161] A. Bouvree, J.-F. Feller, M. Castro, Y. Grohens, M. Rinaudo, Conductive Polymer nano-bioComposites (CPC): Chitosan-carbon nanoparticle a good candidate to design polar vapour sensors, Sensors Actuators B Chem. 138 (2009) 138–147.
[162] T. Ghosh, S.M. Bhasney, V. Katiyar, Blown films fabrication of poly lactic acid based biocomposites: Thermomechanical and migration studies, Mater. Today Commun. 22 (2020) 100737.
[163] S. Agustin-Salazar, P. Cerruti, L.Á. Medina-Juárez, G. Scarinzi, M. Malinconico, H. Soto-Valdez, N. Gamez-Meza, Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites, Int. J. Biol. Macromol. 115 (2018) 727–736.
[164] E. Fortunati, F. Luzi, D. Puglia, R. Petrucci, J.M. Kenny, L. Torre, Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: Innovative reuse of coastal plant, Ind. Crops Prod. 67 (2015) 439–447.
[165] E. Lizundia, L. Ruiz-Rubio, J.L. Vilas, L.M. León, Poly( L -lactide)/zno nanocomposites as efficient UV-shielding coatings for packaging applications, J. Appl. Polym. Sci. 133 (2016) n/a-n/a.
[166] B. Khan, M. Bilal Khan Niazi, G. Samin, Z. Jahan, Thermoplastic Starch: A Possible Biodegradable Food Packaging Material-A Review, J. Food Process Eng. 40 (2017) e12447.
[167] H. Wang, J. Qian, F. Ding, Emerging Chitosan-Based Films for Food Packaging Applications, J. Agric. Food Chem. 66 (2018) 395–413.
[168] F. Zhu, Polysaccharide based films and coatings for food packaging: Effect of added polyphenols, Food Chem. 359 (2021) 129871.