Lignocellulose-Based Materials for Food Packaging: A Biorefinery Perspective


Lignocellulose-Based Materials for Food Packaging: A Biorefinery Perspective

Miguel Ladero, Juan M. Bolivar, Victoria E. Santos, Nuria Gomez, Juan C. Villar, Priscilla Vergara, Pedro Yustos, Maria Isabel Guijarro, Jose M. Carbajo, Ursulla Fillat, Itziar A. Escanciano, Victor Martin Dominguez, Jorge Garcia Montalvo, Celia Alvarez Gonzalez

To date, food plastic packaging has become widespread because it dramatically increases the shelf life of foods. However, social awareness of the negative effects of such a practice (emission of greenhouse gases, ubiquitous presence of nano- and microplastics, effects on the food chain, etc.) is growing. At the same time, cellulose-based materials like paper and cardboard have the notable advantage of their recyclability and the nature of their source. Other chemical compounds contained in plants and other living beings have great potential as components of cellulose-based packaging, making it possible to improve the mechanical, thermal and barrier properties of this key material in second-generation biorefineries. As the integrated biorefinery concept is a holistic view of the total conversion of biomass into energy, chemicals, materials, food and feed. Successful bio-based food packaging is able to replace the best plastic packaging and can be envisaged as a key factor for the expansion of the bioeconomy and the circular economy beyond the food sector, further integrating human activities in the geochemical cycles and, thus, boosting their sustainability.

Packaging, Food, Biorefinery, Renewable, Sustainable, Compostable, Cellulose-Based, Barrier, Functional Material, Active Ingredients

Published online 8/10/2023, 46 pages

Citation: Miguel Ladero, Juan M. Bolivar, Victoria E. Santos, Nuria Gomez, Juan C. Villar, Priscilla Vergara, Pedro Yustos, Maria Isabel Guijarro, Jose M. Carbajo, Ursulla Fillat, Itziar A. Escanciano, Victor Martin Dominguez, Jorge Garcia Montalvo, Celia Alvarez Gonzalez, Lignocellulose-Based Materials for Food Packaging: A Biorefinery Perspective, Materials Research Foundations, Vol. 149, pp 24-69, 2023


Part of the book on New Materials for a Circular Economy

[1] Energy Outlook 2022. Information on energy-economics/energy-outlook.html
[2] United Nations Development (UNDP). Sustainable Developments Goals. Information on
[3] X.G. Zhu, S.P. Long, D.R. Long, What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Op. Biotecnol. 19(2) (2008) 153-159.
[4] P.R. Yaashikaa, P.S. Kumar, S. Varjani, Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review, Bioresour. Technol. 343 (2022) 126126.
[5] F. Garcia-Ochoa, P. Vergara, M. Wojtusik, S. Gutierrez, V.E. Santos, M. Ladero, J.C. Villar, Multi-feedstock lignocellulosic biorefineries based on biological processes: An overview, Ind. Crops Prod. 172 (2021) 114062.
[6] T. Raj, K. Chandrasekhar, A.N. Kumar, S.H. Kim, Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach, Renew. Sustain. Energy Rev. 158 (2022) 112130.
[7] J. Paini, V. Benedetti, S.S. Ail, M.J. Castaldi, M. Baratieri, F. Patuzzi, Valorization of wastes from the food production industry: A review towards an integrated agri-food processing biorefinery, Waste Biomass Valoriz. 13 (2021) 31-50.
[8] M.K. Awasthi, J.A. Ferreira, R. Sirohi, S. Sarsaiya, B. Khoshnevisan, S. Baladi, … M.J. Taherzadeh, A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste, Renew. Sustain. Energy Rev. 143 (2021) 110972.
[9] M. del Mar Contreras, I. Romero, M. Moya, E. Castro, Olive-derived biomass as a renewable source of value-added products, Proc. Biochem. 97 (2020) 43-56.
[10] V. Yadav, A. Sarker, A. Yadav, A.O. Miftah, H.M. Iqbal, Integrated biorefinery approach to valorize citrus waste: A sustainable solution for resource recovery and environmental management, Chemosphere 293 (2022) 133459.
[11] M. del Mar Contreras, J.M. Romero-García, J.C. López-Linares, I. Romero, E. Castro, Residues from grapevine and wine production as feedstock for a biorefinery, Food Bioprod. Proc. 134 (2022) 56-79.
[12] Information in the Global Timber Outlook 2020 – Gresham House. Webpage: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/
[13] E.T. Kostas, J.M. Adams, H.A. Ruiz, G. Durán-Jiménez, G.J. Lye, Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives, Renew. Sustain. Energy Rev. 151 (2021) 111553.
[14] J. Ullmann, D. Grimm, D., Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry, Organic Agric. 11(2) (2021) 261-267.
[15] F. Licciardello, F., Packaging, blessing in disguise. Review on its diverse contribution to food sustainability, Trends Food Sci. Technol. 65 (2017) 32-39.
[16] Information in Eurostat: Packaging Waste Statistics. index. php/ Packaging_waste_statistics
[17] Y. Su, B. Yang, J. Liu, B. Sun, C. Cao, X. Zou, … Z. He, Prospects for replacement of some plastics in packaging with lignocellulose materials: A brief review, BioRes. 13(2) (2018) 4550-4576.
[18] N.M. Stark, L.M. Matuana, L. M., Trends in sustainable biobased packaging materials: A mini review, Mat. Today Sustain. 15 (2021) 100084.
[19] T. Efferth, N.W. Paul, Threats to human health by great ocean garbage patches, The Lancet Planetary Health.1 (8) (2017) 301-303.
[20] M. Beltran, B. Tjahjono, A. Bogush, J. Julião, E.L.S. Teixeira. Food plastic packaging transition towards circular bioeconomy: A Systematic review of literature, Sustainability 13 (2021) 3896.
[21] M. Smith, D.C. Love, C.M. Rochman, R.A. Neff, Microplastics in seafood and the implications for human health, Curr. Environ Health Rep 5 (2018) 375-386.
[22] Eurostat: Packaging Waste Statistics. Information on:
[23] C. Matthews, F. Moran, A. K. Jaiswa, A review on European Union’s strategy for plastics in a circular economy and its impact on food safety, J. Cleaner Prod. 283 (10) (2021) 125263.
[24] R. Rodrigues Fioritti. E. Revilla, J.C. Villar, M.L. D’ Almeida, N. Gómez, Improving the strength of recycled liner for corrugated packaging by adding virgin fibres: Effect of refrigerated storage on paper properties, Packag. Technol, Sci. 34 (2021) 263-272.
[25] W. Abdelmoez, I. Dahab, E.M. Ragab, O.A. Abdelsalam, A. Mustafa, A, Bio‐and oxo‐degradable plastics: Insights on facts and challenges, Polym. Adv. Technol. 32(5) (2021) 1981-1996.
[26] K. Helanto, L. Matikainen, R. Talja, O.J. Rojas, Bio-based polymers for sustainable packaging and biobarriers: A critical review, BioRes. 14(2) (2019) 4902-4951.
[27] Y. Liu, S. Ahmed, D.E. Sameen, Y. Wang, R. Lu, J. Dai, S. Li, W. Qin, A review of cellulose and its derivatives in biopolymer-based for food packaging application, Trends Food Sci. Technol. 112 (2021) 532-546.
[28] S. Sid, R.S. Mor, A. Kishore, V.S. Sharanagat, Bio-sourced polymers as alternatives to conventional food packaging materials: A review, Trends Food Sci. Technol. 115 (2021) 87-104.
[29] J. Liu, L. Zhang, W. Shun, J. Dai, J., Y. Peng, X. Liu, Recent development on bio‐based thermosetting resins. J. Polym. Sci. 59(14) (2021) 1474-1490.
[30] E. Drago, R. Campardelli, M. Pettinato, P. Pereg, Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods. 9 (2020) 1628.
[31] A. L. Woiciechowski, C. J. D. Neto, L. P. de Souza Vandenberghe, D. P. de Carvalho Neto, A. C. N. Sidney, L. A. J. Letti, S.G. Karp, L. A. Z. Torres, C. R. Soccol, Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances, Bioresour. Technol. 304 (2020) 122848.
[32] C. G. Yoo, X. Meng, Y. Pu, A.J. Ragauskas, The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review, Bioresour. Technol. 301 (2020) 122784.
[33] D. Sidiras, D. Politi, G. Giakoumakis, I. Salapa, Simulation and optimization of organosolv based lignocellulosic biomass refinery: A review, Bioresour. Technol. 343 (2022) 126158.
[34] R. Roy, M.S. Rahman, D.E. Raynie, Recent advances of greener pretreatment technologies of lignocellulose, Curr. Res. Green Sustain. Chem. 3 (2020) 100035.
[35] A.R. Mankar, A. Pandey, A. Modak, K.K. Pant, Pretreatment of lignocellulosic biomass: A review on recent advances, Bioresour. Technol. 334 (2021) 125235.
[36] L.V. Daza Serna, C.E. Orrego Alzate, C.A. Cardona Alzate, Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass, Bioresour. Technol. 199, (2016) 113-120.
[37] W. Den, V. K. Sharma, M. Lee, G. Nadadur, R. S. Varma, Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals, Front. Chem., 6 (2018) 141.
[38] A. Satlewal, R. Agrawal, S. Bhagia, J. Sangoro, A. J. Ragauskas, Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities, Biotechnol. Adv. 36 (2018) 2032-2050.
[39] Y.Liu, W. Chen, Q. Xia, B. Guo, Q.Wang, S.Liu, Y. Liu, J. Li, H. Yu, Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. ChemSusChem, 10 (2017) 1692-1700.
[40] O.R. Alara, N.H. Abdurahman, C.I. Ukaegbu, Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 4 (2021) 200-214.
[41] S. Perino, F. Chemat, Green process intensification techniques for bio-refinery. Curr. Opin. Food Sci. 25 (2019) 8-13.
[42] G. Grillo, L. Boffa, S. Talarico, R. Solarino, A. Binello, G. Cavaglià, S. Bensaid, G. Telysheva, G. Cravotto, Batch and flow ultrasound‐assisted extraction of grape stalks: Process intensification design up to a multi‐kilo scale. Antioxidants. 9 (2020) 1-30.
[43] M. González-Miquel, I. Díaz, Green solvent screening using modeling and simulation. Curr. Opin. Green Sustain. Chem. 29 (2021) 100469.
[44] D.P. Makris, S. Lalas, Glycerol and glycerol-based deep eutectic mixtures as emerging green solvents for polyphenol extraction: The evidence so far. Molecules. 25 (2020) 5842.
[45] L.S. Torres-Valenzuela, A. Ballesteros-Gómez, S. Rubio, Green Solvents for the Extraction of High Added-Value Compounds from Agri-food Waste. Food Eng. Rev., 12 (2020) 83-100.
[46] M. Ruesgas-Ramón, M.C. Figueroa-Espinoza, E. Durand, Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 65 (2017) 3591-3601.
[47] R. Cai, Y. Yuan, L. Cui, Z. Wang, T. Yue, Cyclodextrin-assisted extraction of phenolic compounds: Current research and future prospects. Trends Food Sci. Technol. 79 (2018) 19-27.
[48] O. Gligor, A. Mocan, C. Moldovan, M. Locatelli, G. Crișan, I.C.F.R. Ferreira, Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends Food Sci. Technol. 88 (2019) 302-315.
[49] I. Drevelegka, A.M. Goula, Recovery of grape pomace phenolic compounds through optimized extraction and adsorption processes. Chem. Eng. Process. – Process Intensif. 149 (2020) 107845.
[50] A. Sridhar, M. Ponnuchamy, P.S. Kumar, A. Kapoor, D.V.N. Vo, S. Prabhakar, Techniques and modeling of polyphenol extraction from food: a review; Springer International Publishing, Vol. 19 (2021) ISBN 0123456789.
[51] N.P. Kelly, A.L. Kelly, J.A. O’Mahony, Strategies for enrichment and purification of polyphenols from fruit-based materials. Trends Food Sci. Technol. 83 (2019) 248-258.
[52] S. Nanda, R. Azargohar, A.K. Dalai, J.A. Kozinski, An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew. Sustain. Energy Rev. 50 (2015) 925-941.
[53] R. Birner, Bioeconomy Concepts, in Bioeconomy, I. Lewandowski (Ed.), Springer International Publishing (2018) 17-38.
[54] Z.H. Liu, N. Hao, Y.Y. Wang, C. Dou, F. Lin, R. Shen,… J.S. Yuan, Transforming biorefinery designs with ‘Plug-In Processes of Lignin’to enable economic waste valorization, Nature Comm. 12(1) (2021) 1-13.
[55] M. Galkin (2021), From stabilization strategies to tailor-made lignin macromolecules and oligomers for materials. Curr. Op. Green Sustain. Chem. 28 (2021) 100438.
[56] R.J. Kahn, C.Y. Lau, J. Guan, C.H. Lam, J. Zhao, Y. Ji,… S.Y. Leu, Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products. Bioresour. Technol. 346 (2022) 126419.
[57] J.A. Poveda-Giraldo, J.C. Solarte-Toro, C.A.C. Alzate, The potential use of lignin as a platform product in biorefineries: A review, Ren. Sustain. Energy Rev. 138 (2021) 110688.
[58] M.V. Galkin, J.S. Samec, Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem, 9(13) (2016) 1544-1558.
[59] C.G. Yoo, X. Meng, Y. Pu, A.J. Ragauskas, The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review, Bioresour. Technol. 301 (2020) 122784.
[60] M.M. Abu-Omar, K. Barta, G.T. Beckham, J.S. Luterbacher, J. Ralph, R. Rinaldi, …F. Wang. Guidelines for performing lignin-first biorefining. Energy Environ. Sci. 14(1) (2012) 262-292.
[61] W. Schutyser, T. Renders, S. Van den Bosch, S.-F. Koelewijn, G.T. Beckham, B.F. Sels, Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading, Chem. Soc. Rev. 47 (2018) 852-908.
[62] R. Ma, Y. Xu, X. Zhang, Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production, ChemSusChem. 8 (2015) 24-51.
[63] J. Becker, C. Wittmann, A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products, Biotechnol. Adv. 37 (2019) 107360.
[64] S. Roth, A.C. Spiess, Laccases for biorefinery applications: a critical review on challenges and perspectives, Bioprocess Biosyst. Eng. 38 (2015) 2285-2313.
[65] L. Munk, A.K. Sitarz, D.C. Kalyani, J.D. Mikkelsen, A.S. Meyer, Can laccases catalyze bond cleavage in lignin?, Biotechnol. Adv. 33 (2015) 13-24.
[66] A. Zerva, S. Simić, E. Topakas, J. Nikodinovic-Runic, Applications of microbial laccases: Patent review of the past decade (2009-2019), Catalysts. 9 (2019) 1023.
[67] R.R. Singhania, A.K. Patel, T. Raj, C.-W. Chen, V.K. Ponnusamy, N. Tahir, S.-H. Kim, C.-D. Dong, Lignin valorisation via enzymes: A sustainable approach, Fuel. 311 (2022) 122608.
[68] L. Martínková, B. Křístková, V. Křen, Laccases and tyrosinases in organic synthesis, Int. J. Mol. Sci. 23 (2022) 3462.
[69] M. Singhvi, B.S. Kim, Lignin valorization using biological approach, Biotechnol. Appl. Biochem. 68 (2021) 459-468.
[70] Y. Liu, G. Luo, H.H. Ngo, W. Guo, S. Zhang, Advances in thermostable laccase and its current application in lignin-first biorefinery: A review, Bioresour. Technol. 298 (2020) 122511.
[71] M.B. Agustin, D.M. Carvalho, M.H. Lahtinen, K. Hilden, T. Lundell, K.S. Mikkonen, Laccase as a tool in building advanced lignin‐based materials, ChemSusChem. 14 (2021) 4615-4635.
[72] Y. Gu, L. Yuan, L. Jia, P. Xue, H. Yao, Recent developments of a co-immobilized laccase-mediator system: a review, RSC Adv. 11 (2021) 29498-29506.
[73] A. Dong, K.M. Teklu, W. Wang, X. Fan, Q. Wang, M. Ardanuy, Z. Dong, New strategy for grafting hydrophobization of lignocellulosic fiber materials with octadecylamine using a laccase/TEMPO system, Int. J. Biol. Macromol. 160 (2020) 192-200.
[74] R. Weiss, G.M. Guebitz, A. Pellis, G.S. Nyanhongo, Harnessing the power of enzymes for tailoring and valorizing lignin, Trends Biotechnol. 38 (2020) 1215-1231.
[75] M.M. Cajnko, J. Oblak, M. Grilc, B. Likozar, Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics, Bioresour. Technol. 340 (2021) 125655.
[76] R. Hellmayr, S. Bischof, J. Wühl, G.M. Guebitz, G.S. Nyanhongo, N. Schwaiger, F. Liebner, R. Wimmer, Enzymatic conversion of lignosulfonate into wood adhesives: A next step towards fully biobased composite materials, Polymers. 14 (2022) 259.
[77] D. Huber, A. Ortner, A. Daxbacher, G.S. Nyanhongo, W. Bauer, G.M. Guebitz, Influence of oxygen and mediators on laccase-catalyzed polymerization of lignosulfonate, ACS Sustain. Chem. Eng. 4 (2016) 5303-5310.
[78] S. Slagman, H. Zuilhof, M.C.R. Franssen, Laccase-mediated grafting on biopolymers and synthetic polymers: A critical review, ChemBioChem. 19 (2018) 288-311.
[79] P. Tang, T. Zheng, C. Yang, G. Li, Enhanced physicochemical and functional properties of collagen films cross-linked with laccase oxidized phenolic acids for active edible food packaging, Food Chem. 393 (2022) 133353.
[80] M. Jimenez Bartolome, S. Bischof, A. Pellis, J. Konnerth, R. Wimmer, H. Weber, N. Schwaiger, G.M. Guebitz, G.S. Nyanhongo, Enzymatic synthesis and tailoring lignin properties: A systematic study on the effects of plasticizers, Polymer. 202 (2020) 122725.
[81] S. Winestrand, L. Järnström, L.J. Jönsson, Fractionated lignosulfonates for laccase-catalyzed oxygen-scavenging films and coatings, Molecules. 26 (2021) 6322.
[82] R.D. Di Lorenzo, I. Serra, D. Porro, P. Braunduardi. State of the art on the microbial production of industrially relevant organic acids. Catalysts 12 (2022) 234-247.
[83] Y. Wan, J.M. Lee. Toward value-added dicarboxylic acids from biomass derivatives via thermocatalytic conversion, ACS Catal. 11(5) (2021) 2524-2560.
[84] T. Werpy, G. Petersen, Top Value-Added Chemicals from Biomass Volume I-Results of screening for potential candidates from sugars and synthesis gas energy efficiency and renewable energy, National Renewable Energy Lab., Golden, CO (US) (2004).
[85] T.J. Farmer, R.L. Castle, J.H. Clark, D.J. Macquarrie, Synthesis of unsaturated polyester resins from various bio-derived platform molecules. Int J Mol Sci. 16(7) (2015) 14912-32.
[86] A.M. Diez-Pascual, Tissue engineering bionanocomposites based on poly(propylene fumarate). Polymers 9(7) (2017) 1-19.
[87] V. Martin-Dominguez, J. Estevez, F. De Borja Ojembarrena, V.E. Santos, M. Ladero, Fumaric acid production: A biorefinery perspective. Fermentation 4(2) (2018).
[88] M. Sano, T. Tanaka, H. Ohara, Y. Aso, Itaconic acid derivatives: structure, function, biosynthesis, and perspectives. Appl Microbiol Biotechnol. 104(21) (2020) 9041-51.
[89] R.K. Das, S.K. Brar, M. Verma, Fumaric Acid. Platform Chemical Biorefinery. Elsevier Inc. (2016) 133-157.
[90] A. Jiménez-Quero, E. Pollet, M. Zhao, E. Marchioni, L. Avérous, V. Phalip, Itaconic and fumaric acid production from biomass hydrolysates by Aspergillus strains. J Microbiol Biotechnol. 26(9) (2016) 1557-65.
[91] A. Kuenz, S. Krull, Biotechnological production of itaconic acid-things you have to know. Appl Microbiol Biotechnol. 102(9) (2018) 3901-14.
[92] Fumaric Acid Market | 2022 – 27 | Industry Share, Size, Growth – Mordor Intelligence. Information on:
[93] Q. Xu, S. Li, H. Huang, J. Wen, Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol. Adv. 30(6) (2012) 1685-96.
[94] V. Martin-Dominguez, P.I. Aleman-Cabrera, L. Eidt, U. Pruesse, A. Kuenz, M. Ladero, V.E. Santos, Production of Fumaric Acid by Rhizopus arrhizus NRRL 1526: A Simple Production Medium and the Kinetic Modelling of the Bioprocess. Fermentation 8 (2022)
[95] Z. Zhou, G. Du, Z. Hua, J. Zhou, J. Chen, Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresour. Technol. 102(20) (2011) 9345-9.
[96] B.E. Teleky, D.C. Vodnar, Biomass-derived production of itaconic acid as a building block in specialty polymers. Polymers 11(6) (2019).
[97] M. Okabe, D. Lies, S. Kanamasa, E.Y. Park, Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol. 84(4) (2009) 597-606.
[98] H. Hosseinpour Tehrani, J. Becker, I. Bator, K. Saur, S. Meyer, A.C. Rodrigues Lóia, Integrated strain- And process design enable production of 220 g·L-1 itaconic acid with Ustilago maydis. Biotechnol Biofuels. 12(1) (2019) 1-11.
[99] D. Gopaliya, V. Kumar, S.K. Khare, Recent advances in itaconic acid production from microbial cell factories. Biocatal. Agric. Biotechnol. 36 (2021)
[100] J.R. Elmore, G.N. Dexter, D. Salvachúa, J. Martinez-Baird, E.A. Hatmaker, J.D. Huenemann, Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion. Nat. Commun. 12(1) (2021)
[101] A. Jiménez-Quero, E. Pollet, M. Zhao, E. Marchioni, L. Avérous, V. Phalip, Fungal fermentation of lignocellulosic biomass for itaconic and fumaric acid production. J Microbiol. Biotechnol. 27(1) (2017) 1-8.
[102] L. Shen, H. Xu, L. Kong, Y.Yang, Non-toxic crosslinking of starch using polycarboxylic acids: kinetic study and quantitative correlation of mechanical properties and crosslinking degrees, J. Pol. Environ. 23(4) (2015) 588-594.
[103] J. Lu, J.Li, H.Gao, D. Zhou, H. Xu, Y. Cong, W. Zhang, F. Xin, M. Jiang, Recent progress on bio-succinic acid production from lignocellulosic biomass, World J. Microbiol. Biotechnol. 37(1) (2021) 1-8.
[104] G. Priya, U. Narendrakumar, I. Manjubala, Thermal behavior of carboxymethyl cellulose in the presence of polycarboxylic acid crosslinkers, J. Thermal Anal. Calor. 138(1) (2019) 89-95.
[105] C.J. Chiang, R.C. Hu, Z.C. Huang, Y.P. Chao, Production of Succinic Acid from Amino Acids in Escherichia coli, J. Agric. Food Chem. 69(29) (2021) 8172-8178.
[106] M. Ladero, J. Esteban, J.M. Bolívar, V.E. Santos, V. Martín-Domínguez, A. García-Martín, A. Lorente, I.A. Escanciano, Food waste biorefinery for bioenergy and value-added products, in: A. Sinharoy, P.N.L. Lens (Eds.), Renewable Energy Technologies for Energy Efficient Sustainable Development, Springer Chan, New York, 2022, pp. 185-224.
[107] R. Dickson, E. Mancini, N. Garg, J.M. Woodley, K.V. Gernaey, M. Pinelo, J. Liu, S.S. Mansouri, Sustainable bio-succinic acid production: Superstructure optimization, techno-economic, and lifecycle assessment, Energy Environ. Sci. 14(6) (2021) 3542-3558.
[108] E.O. Jokodola, V. Narisetty, E. Castro, S. Durgapal, F. Coulon, R. Sindhu, P. Binod, J.R. Banu, G. Kumar, V. Kumar, Process optimisation for production and recovery of succinic acid using xylose-rich hydrolysates by Actinobacillus succinogenes, Bioresour. Technol. 344 (2022) 126224.
[109] M. Ferone, A. Ercole, F. Raganati, G. Olivieri, P. Salatino, A. Marzocchella, Efficient succinic acid production from high‐sugar‐content beverages by Actinobacillus succinogenes, Biotechnol. Prog. 35(5) (2019) e2863.
[110] K. Filippi, N. Georgaka, M. Alexandri, H. Papapostolou, A. Koutinas, Valorisation of grape stalks and pomace for the production of bio-based succinic acid by Actinobacillus succinogenes, Ind. Crops Prod. 168 (2021) 113578.
[111] I.A. Escanciano, M. Ladero, V.E. Santos, On the succinic acid production from xylose by growing and resting cells of Actinobacillus succinogenes: a comparison, Biomass Conv. Bioref. (2022) 1-14.
[112] S. Mores, L.P. de Souza Vandenberghe, A.I.M. Júnior, J.C. de Carvalho, A.F.M. de Mello, A. Pandey, C.R. Soccol, Citric acid bioproduction and downstream processing: Status, opportunities, and challenges, Bioresour. Technol. 320 (2021) 124426.
[113] S. Chavan, B. Yadav, A. Atmakuri, R.D. Tyagi, J.W.C. Wong, P. Drogui, Bioconversion of organic wastes into value-added products: A review, Bioresour. Technol. 344 (2022) 126398.
[114] O. Sawant, S. Mahale, V. Ramchandran, G. Nagaraj, A. Bankar, Fungal citric acid production using waste materials: a mini-review, J. Microbiol. Biotechnol. Food Sci. (2021) 821-828.
[115] L. Wen, Y. Liang, Z. Lin, D. Xie, Z. Zheng, C. Xu, B. Lin, Design of multifunctional food packaging films based on carboxymethyl chitosan/polyvinyl alcohol crosslinked network by using citric acid as crosslinker, Polymer 230 (2021) 124048.
[116] M.M. Hassan, N. Tucker, M.J. Le Guen, Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams, Carbohyd. Polym. 230 (2020) 115675.
[117] P.G. Ponnusamy, J. Sundaram, S. Mani, Preparation and characterization of citric acid crosslinked chitosan‐cellulose nanofibrils composite films for packaging applications, J. Appl. Pol. Sci. 139(17) (2022) 52017.
[118] K.A. Uyanga, O.P. Okpozo, O.S. Onyekwere, W.A. Daoud,). Citric acid crosslinked natural bi-polymer-based composite hydrogels: effect of polymer ratio and betacyclodextrin on hydrogel microstructure. React. Funct. Polym. 154 (2020) 104682.
[119] J. Shang, Z. Shao, X. Chen, Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/Carboxymethylcellulose hydrogel. Biomacromolecules 9 (2008) 1208-1213.
[120] L. Bao, X. Chen, B. Yang, Y. Tao, Y. Kong, Construction of electrochemical chiral interfaces with integrated polysaccharides via Amidation. ACS Appl. Mater. Interfaces 8 (2016) 21710-21720.
[121] P. Chen, F. Xie, F. Tang, T. McNally, Glycerol plasticisation of chitosan/carboxymethyl cellulose composites: role of interactions in determining structure and properties. Int. J. Biol. Macromol. 163 (2020) 683-693.
[122] J.C. Roy, A. Ferri, S. Giraud, G. Jinping, F. Salauen, Chitosan-carboxymethylcellulosebased polyelectrolyte complexation and microcapsule shell formulation. Int. J. Mol. Sci. 19 (2018) 2521/2521-2521/2519.
[123] L. Wang, X. Yang, W.A. Daoud, High power-output mechanical energy harvester based on flexible and transparent Au nanoparticle-embedded polymer matrix. Nano Energy, 55 (2019) 433-440.
[124] E. Akar, A. Altınışık, Y. Seki, Preparation of pH- and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr. Polym. 90 (2012) 1634-1641.
[125] M. Dilaver, K. Yurdakoc, Fumaric acid cross-linked carboxymethylcellulose/ poly(vinyl alcohol) hydrogels. Polym. Bull. 73 (2016) 2661-2675.
[126] K.A. Uyanga, W.A. Daoud, Green and sustainable carboxymethyl cellulose-chitosan composite hydrogels: Effect of crosslinker on microstructure. Cellulose 28 (2021) 5493-5512.
[127] Y. Zhanga, S. Zhoua, X. Fangb, X. Zhoua, J. Wanga, F. Baib, S. Pengb, Renewable and flexible UV-blocking film from poly(butylene succinate) and lignin, Eur. Pol. J. 116 (2019) 265-274.
[128] Mazière, P. Prinsen and A. García, R. Luque , C. Len, A review of progress in (bio)catalytic routes from/to renewable succinic acid, Biofuels, Bioprod. Bioref. 11 (2017) 908-931.
[129] M.B. Coltelli, I. Della Maggiore, M. Bertold, F. Signori, S. Bronco, F. Ciardelli, Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization, J. Appl. Pol. Sci. (2008) 110, 1250-1262.
[130] A. Pellis, J.W. Comerforda, A.J. Maneffaa, M.H. Sipponen, J. H. Clark, T. J. Farmer, Elucidating enzymatic polymerisations: Chain-length selectivity of Candida antarctica lipase B towards various aliphatic diols and dicarboxylic acid diesters, Eur. Pol. J. 106 (2018) 79-84.
[131] L. Daviot, T. Len, C. Sze Ki Lin and C. Len, Microwave-assisted homogeneous acid catalysis and chemoenzymatic synthesis of dialkyl succinate in a flow reactor, Catalysts 9 (2019) 272.
[132] F. L. Aguzín, M.L. Martínez, A.R. Beltramone, C.L. Padró, N.B. Okulik, Esterification of succinic acid using sulfated zirconia supported on SBA-15, Chem. Eng. Technol. 44 (2021), 1185-1194.
[133] D. Pithadia , A. Patel, Conversion of bioplatform molecule, succinic acid to value-added products via esterification over 12-tungstosilicic acid anchored to MCM-22, Biomass Bioen. 151 (2021) 106178.
[134] V.R. Umrigar, M. Chakraborty,P.A. Parikh, Optimization of microwave assisted esterification of succinic acid using Box-Behnken design approach. Information on:
[135] S. Dinh Le, S. Nishimura, K. Ebitani, Direct esterification of succinic acid with phenol using zeolite beta catalyst, Catal. Comm. 122 (2019) 20-23.
[136] K. Sonker, N. Tiwari,1 R. K. Nagarale, V. Verma, Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties, J. Pol. Sci. part A: Pol. Chem. 54 (2016), 2515-2525.
[137] M. Asghera, S. A. Qamara, M. Bilalb, H. M.N. Iqbalc, Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 137 (2020) 109625.
[138] A. Cimini, M. Moresi, Carbon footprint of a pale lager packed in different formats: Assessment and sensitivity analysis based on transparent data. J. Cleaner Prod. 112 (2016) 4196-4213.
[139] P. Nechita. Review on polysaccharides used in coatings for food packaging papers. Coatings 10(6) (2020) 566.
[140] T. M. Brouwer, E. U. Thoden van Velzen, K. Ragaert, R. Klooster. Technical limits in circularity for plastic packages. Sustainability 12(23) (2020) 10021.
[141] M. Hoque, S. Gupta, R. Santhosh, I. Syed, P. Sarkar. Chapter 3. Biopolymer-based edible films and coatings for food applications, in: K. Pal, I. Banerjee, P. Sarkar, A. Bit, D. Kim, A. Anis, S. Maji (Eds.), Food, Medical, and Environmental Applications of Polysaccharides. Elsevier, 2021, pp. 81-107.
[142] S. Mangaraj, A. Yadav, L.M. Bal, S. K. Dash, N.K. Mahanti, Application of biodegradable polymers in food packaging industry: A comprehensive review, J Package Technol. Res. 3 (2019) 77-96.
[143] V. Kumar Rastogi, P. Samyn, Bio-Based coatings for paper applications, Coatings 5 (2015) 887-930
[144] K. Khwaldia, E. Arab-Tehrany, S. Desobry, Biopolymer coatings on paper packaging materials, Compr. Rev. Food Sci. Food Saf. 9 (2010) 82-91.
[145] H. W. Maurer, Starch in the paper industry, Starch, (2009) 657-713.
[146] H. Li, Y. Qi, Y.Zhao, J. Chi, S. Cheng, Starch and its derivatives for paper coatings: A review, Prog. Org. Coat. 135 (2019) 213-227.
[147] S.H. Osong, Mechanical pulp-based nanocellulose processing and applications relating to paper and paperboard, composite films, and foams (2016) Mid Sweden University Doctoral Thesis 245. Information on:
[148] A.F.Turbak, F.W. Snyder, K.R. and Sandberg, Micro-fibrillated cellulose and process for producing it, U.S. Patent CH 648071 (A5). (1985)
[149] T. Isogai, T. Saito, A. Isogai, Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation, Cellulose 18(2) (2011) 421-431.
[150] U. Fillat, B. Wicklein, R. Martín-Sampedro, D. Ibarra, E. Ruiz-Hitzky, C. Valencia, A. Sarrión, E. Castro, M.E. Eugenio, Assessing cellulose nanofiber production from olive tree pruning residue, Carbohydr. Polym. 179 (2018) 252-261.
[151] N. Lin, J. Tang, A. Dufresne, M. K. C. Tam, Advanced functional materials from nanopolysaccharides, in: N. Lin, J. Tang, A. Dufresne, M.K.C. Tam (Eds.), Springer Series in Biomaterials Science and Engineering, Springer Nature Singapore, 2019, 15 pp. 1-54.
[152] A. Balea, E. Fuente, M.C. Monte, N. Merayo, C. Campano, C. Negro, A. Blanco, Industrial application of nanocelluloses in papermaking: a review of challenges, technical solutions, and market perspectives. Molecules 25 (3) 526 (2020) 526 1-30.
[153] A.F. Lourenço, J.A.F. Gamelas, P. Sarmento, P.J. Ferreira, Cellulose micro and nanofibrils as coating agent for improved printability in office papers, Cellulose 27 (2020) 6001-6010.
[154] C. Salas, M. Hubbe, O.J. Rojas, Nanocellulose applications in papermaking, in: Production of materials from sustainable biomass resources, Biofuels and biorefineries, Springer, Singapore, 2019, pp 61-69.
[155] U. Fillat, P. Vergara, N. Gómez. J.C. Villar. Effect of different nanofibers obtained from lignocellulose as barriers for paper packaging. March 2021. XXV TECNICELPA – International Forest, Pulp and Paper Conference, XI CIADICYP – 2021
[156] M. Nasrollahzadeh, Z. Nezafat, Z. Nezafat, N. Shafiei, N.S.S. Bidgoli, Food packaging applications of biopolymer-based (nano)materials, in: M. Nasrollahzadeh (Ed.), Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications, 2021, pp. 137-186.
[157] S. Galus, J. Kadzinska, Food applications of emulsion-based edible films and coatings, Trends Food Sci. Technol. 45 (2015) 273-283.
[158] K. J. Jem, B. Tan, The development and challenges of poly (lactic acid) and poly(glycolic acid). Adv. Ind. Eng. Polym. Res. 3 (2020) 60-70.
[159] A. Z. Naser, I. Deiaba, B. M. Darras, Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review, RSC Adv. 11 (2021) 17151-17196.
[160] M.A. Hubbe. Prospects for maintaining strength of paper and paperboard products while using less forest resources: A review. BioRes 9(1) (2014)1634-1763.
[161] T. Fadiji, T. Berry, C.J. Coetzee, L. Opara Investigating the mechanical properties of paperboard packaging material for handling fresh produce under different environmental conditions: experimental analysis and finite element modelling. J. Appl. Pack. Res. 9(2) (2017) 20-34.
[162] S. Sid, R.S. Mor, A. Kishore, V.S. Sharanagat, V. S. Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends Food Sci. Technol. 115 (2021) 87-104.
[163] Y. Hamzeh, A. Ashori, Z. Khorasani, A. Abdulkhani, A. Abyaz, Pre-extraction of hemicelluloses from bagasse fibers: Effects of dry-strength additives on paper properties. Ind. Crops Prod. 43 (2013) 365-371.
[164] H. Lindqvist, J. Homback, A. Rosling, K. Salminen, B. Holmbom, M. Auer, A. Sundberg, Galactoglucomannan derivatives and their application in papermaking. Biores 8(1) (2013) 994-1010.
[165] X. Song, M.A: Hubbe, M. A. Enhancement of paper dry strength by carboxymethylated β-D-glucan from oat as additive. Holzforschung, 68(3) (2013) 257-263.
[166] X. Song, M.A: Hubbe, TEMPO-mediated oxidation of oat β-D-glucan and its influences on paper properties. Carbohyd. Pol. 99 (2014) 617-623.
[167] G.B. Xu, W.Q. Kong, C.F. Liu, R.C. Sun, J.L. Ren, Synthesis and characteristic of xylan-grafted-polyacrylamide and application for improving pulp properties. Materials 10(8) (2017) 971.
[168] M.S. Firouz, K. Mohi-Alden, M. Omid, A critical review on intelligent and active packaging in the food industry: Research and development. Food Res. Intern. 141 (2021) 110113.
[169] Eurostat Recycling rates for packaging waste. Information on:
[170] EN 13432: 2001 Packaging – Requirements for Packaging Recoverable Through Composting and Biodegradation – Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging
[171] G. Dolci, V. Venturelli, A. Catenacci, R. Ciapponi, F. Malpei, Romano S.E. Turri, M. Grosso, Evaluation of the anaerobic degradation of food waste collection bags made of paper or bioplastic, J. Environ. Manage. 305 (2022) 114331.
[172] S. Otto, M. Strenger, A. Maier-Nöth, M. Schmid, Food packaging and sustainability – Consumer perception vs. correlated scientific facts: A review, J. Cleaner Prod. 298, (2021) 126733.
[173] C. Andersson, New ways to enhance the functionality of paperboard by surface treatment - a review, Packag. Technol. and Sci. 21 (2008).
[174] G. Glenn, R. Shogren, X. Jin, W. Orts, W. Hart-Cooper, L. Olson, Per- and polyfluoroalkyl substances and their alternatives in paper food packaging, Compr Rev Food Sci Food Saf. 20 (2021) 2596-2625.
[175] M. Vikman, J. Vartiainen, I. Tsitko, P. Korhonen, biodegradability and compostability of nanofibrillar cellulose-based products, J. Polym. Environ. 23 (2015) 206-215.
[176] CEPI (Confereration of European Paper Infustries) Food Contact Guidelines for the compilance of paper & board materials and articles. Information on:
[177] C. Nerín, S. Bourdoux, B. Faust, T. Gude, C. Lesueur, T. Simat, A. Stoermer, E. Van Hoek, P. Oldring, Guidance in selecting analytical techniques for identification and quantification of non-intentionally added substances (NIAS) in food contact materials (FCMS). Food Addit. Contam. Part A: Chem. Anal. Control Expo. Risk Assess. 39 (2022) 620-643.
[178] K. Grob, How to make the use of recycled paperboard fit for food contact? A contribution to the discussion, Food Addit. Contam. Part A: Chem. Anal. Control Expo. Risk Assess. 39 (2022) 198-213.
[179] T. Brennan, M. Chui, W. Chyan, A. Spamann. McKinsey & Company, 2021. The third wave of biomaterials: When Innovation meets demand. Information on:
[180] National Research Council, 2015. Industrialization of Biology: A Roadmap to Accelerate the Advanced Manufacturing of Chemicals. Washington D.C. The National Academies Press. Information on:
[181] M.K. Verma, S. Shakya, P. Kumar, J. Madhavi, J. Murugaiyan, M.V.R. Rao. Trends in packaging material for food products: Historical background, current scenario, and future prospects. J. Food. Sci. Technol. 58(11) (2021) 4069-4082.