From Plastics to Microplastics: Quantification, Degradation and Mitigation


From Plastics to Microplastics: Quantification, Degradation and Mitigation

P. Herrasti, N. Menendez, J. Sanchez-Marcos, F.J. Recio, E. Mazario

This chapter focuses on the transformation of plastics into smaller units such as microplastics. The most common degradation processes and the techniques used for their quantification and separation will be discussed. We will also try to see the most common and harmful processes for the environment that microplastics can produce, especially focusing on the processes of adsorption of pollutants that will be transported together with microplastics as a vector of pollution. Finally, we will indicate the methodologies used for the reuse of plastics, with the interest of some newer processes. We will end with some issues that should and must be addressed in the near future to prevent further contamination of the environment by these products.

Plastic, Microplastic, Separation, Degradation, Adsorption

Published online 8/10/2023, 23 pages

Citation: P. Herrasti, N. Menendez, J. Sanchez-Marcos, F.J. Recio, E. Mazario, From Plastics to Microplastics: Quantification, Degradation and Mitigation, Materials Research Foundations, Vol. 149, pp 1-23, 2023


Part of the book on New Materials for a Circular Economy

[1] S. L. Wright and F. J. Kelly, Plastic and Human Health: A Micro Issue?, Environ. Sci. Technol. 51 (2017) 6634-6647.
[2] C. P. Ward, C. J. Armstrong, A. N. Walsh, J. H. Jackson, and C. M. Reddy, Sunlight Converts Polystyrene to Carbon Dioxide and Dissolved Organic Carbon, Environ. Sci. Technol. Lett. 6 (2019) 669-674.
[3] C. M. Rochman, E. Hoh, B. T. Hentschel, and S. Kaye, Long-Term Field Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for Plastic Marine Debris, Environ. Sci. Technol. 47 (2013) 1646-1654.
[4] H. K. Imhof, J. Schmid, R. Niessner, N. P. Ivleva, and C. Laforsch, A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments, Limnol. Oceanogr. Methods, 10 (2012) 524-537.
[5] O. S. Ogunola, O. A. Onada, and A. E. Falaye, Mitigation measures to avert the impacts of plastics and microplastics in the marine environment, Environ. Sci. Pollut. Res. 25 (2018) 9293-9310.
[6] J. Li, H. Liu, and J. Paul Chen, Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection, Water Res. 137 (2018) 362-374.
[7] A. L. Andrady, Microplastics in the marine environment, Mar. Pollut. Bull. 62 (2011) 1596-1605.
[8] L. Peng, D. Fu, H. Qi, C. Q. Lan, H. Yu, and C. Ge, Micro- and nano-plastics in marine environment: Source, distribution and threats – A review, Sci. Total Environ. 698 (2020) 134254.
[9] K. Enders, R. Lenz, C. A. Stedmon, and T. G. Nielsen, Abundance, size and polymer composition of marine microplastics ≥10μm in the Atlantic Ocean and their modelled vertical distribution, Mar. Pollut. Bull. 100 (2015) 70-81.
[10] C. Andrés, F. Echevarría, J.I. González-Gordillo and C. M. Duarte, Plastic debris in the open ocean, Proc. Natl. Acad. Sci.vol. 111 (2014) 10239-10244.
[11] N. P. Ivleva, A. C. Wiesheu, and R. Niessner, Microplastic in Aquatic Ecosystems, Angew. Chemie Int. Ed. 56 (2017) 1720-1739.
[12] M. Liu, Y. Song, S. Lu, R. Qiu, J. Hu, X. Li, M. Bigalke, H. Shi and D. He, A method for extracting soil microplastics through circulation of sodium bromide solutions, Sci. Total Environ. 691 (2019) 341-347.
[13] Z. Wang, S. E. Taylor, P. Sharma, and M. Flury, Poor extraction efficiencies of polystyrene nano- and microplastics from biosolids and soil, PLoS One. 13 (2018) e0208009.
[14] L. E. Spelter, A. Steiwand, and H. Nirschl, Processing of dispersions containing fine particles or biological products in tubular bowl centrifuges, Chem. Eng. Sci. 65 (2010) 4173-4181.
[15] M. Lapointe, J. M. Farner, L. M. Hernandez, and N. Tufenkji, Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation, Environ. Sci. Technol. 54 (2020) 8719-8727.
[16] C. Wang, H. Wang, J. Fu, and Y. Liu, Flotation separation of waste plastics for recycling-A review, Waste Manag. 41 (2015) 28-38.
[17] Y. S. Shaikh and P. Kampeis, Development of a novel disposable filter bag for separation of biomolecules with functionalized magnetic particles, Eng. Life Sci. 17 (2017) 817-828.
[18] F. Rhein, F. Scholl, and H. Nirschl, Magnetic seeded filtration for the separation of fine polymer particles from dilute suspensions: Microplastics, Chem. Eng. Sci. 207 (2019) 1278-1287.
[19] F. Radford, L. M. Zapata-Restrepo, A. A. Horton, M. D. Hudson, P. J. Shaw, and I. D. Williams, Developing a systematic method for extraction of microplastics in soils, Anal. Methods. 13 (2021) 1695-1705.
[20] R. C. Thompson, Y. Olsen, R. P. Mitchell, A. Davis, and et al, Lost at Sea: Where Is All the Plastic?, Science. 304 (2004) 838.
[21] B. Quinn, F. Murphy, and C. Ewins, Validation of density separation for the rapid recovery of microplastics from sediment, Anal. Methods. 9 (2017) 1491-1498.
[22] K.-G. Wahlund, Flow field-flow fractionation: Critical overview, J. Chromatogr. A. 1287 (2013) 97-112.
[23] B. W. J. Pirok, N. Abdulhussain, T. Aalbers, B. Wouters, R. A. H. Peters, and P. J. Schoenmakers, Nanoparticle Analysis by Online Comprehensive Two-Dimensional Liquid Chromatography combining Hydrodynamic Chromatography and Size-Exclusion Chromatography with Intermediate Sample Transformation, Anal. Chem. 89 (2017) 9167-9174.
[24] J. Grbic, B. Nguyen, E. Guo, J. B. You, D. Sinton, and C. M. Rochman, Magnetic Extraction of Microplastics from Environmental Samples, Environ. Sci. Technol. Lett. 6 (2019) 68-72.
[25] Y. Tang, S. Zhang, Y. Su, D. Wu, Y. Zhao, and B. Xie, Removal of microplastics from aqueous solutions by magnetic carbon nanotubes, Chem. Eng. J. 406 (2021) 126804.
[26] J. Wang, D. Yue, and H. Wang, In situ Fe3O4 nanoparticles coating of polymers for separating hazardous PVC from microplastic mixtures, Chem. Eng. J. 407 (2021) 127170.
[27] S. Hamzah, L.Y. Ying, A. Azzura abd, R. Azmi, N.A. Razali, N. Hanis Hayati Hairom, N. A. Mohamad and M. H. Che Harun, Synthesis, characterisation and evaluation on the performance of ferrofluid for microplastic removal from synthetic and actual wastewater, J. Environ. Chem. Eng. 9 (2021) 105894.
[28] F. Soto, E. Karshalev, F. Zhang, B. Esteban Fernandez de Avila, A. Nourhani, and J. Wang, Smart Materials for Microrobots, Chem. Rev. 122 (2022) 5365-5403.
[29] H. Wang, G. Zhao, and M. Pumera, Beyond Platinum: Bubble-Propelled Micromotors Based on Ag and MnO2 Catalysts, J. Am. Chem. Soc. 136, (2014) 2719-2722.
[30] K. Villa, J. Parmar, D. Vilela, and S. Sánchez, Metal-Oxide-Based Microjets for the Simultaneous Removal of Organic Pollutants and Heavy Metals, ACS Appl. Mater. Interfaces. 10 (2018) 20478-20486.
[31] H. Ye, Y. Wang, X. Liu, D. Xu, H. Yuan, H. Sun, S. Wang and X. Ma, Magnetically steerable iron oxides-manganese dioxide core-shell micromotors for organic and microplastic removals, J. Colloid Interface Sci. 588 (2021) 510-521.
[32] L. Wang, A. Kaeppler, D. Fischer, and J. Simmchen, Photocatalytic TiO2 Micromotors for Removal of Microplastics and Suspended Matter, ACS Appl. Mater. Interfaces. 36 (2019) 32937-32944.
[33] V. Hidalgo-Ruz, L. Gutow, R. C. Thompson, and M. Thiel, Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification, Environ. Sci. Technol. 46 (2012) 3060-3075.
[34] L. Fok, T. W. L. Lam, H.-X. Li, and X.-R. Xu, A meta-analysis of methodologies adopted by microplastic studies in China, Sci. Total Environ. 718 (2020) 135371.
[35] A. B. Silva, A. S. Bastos, C. I. L. Justino, J. P. da Costa, A. C. Duarte, and T. A. P. Rocha-Santos, Microplastics in the environment: Challenges in analytical chemistry – A review, Anal. Chim. Acta, 1017 (2018) 1-19.
[36] F. Stock, C. Kochleus, B. Bänsch-Baltruschat, N. Brennholt, and G. Reifferscheid, Sampling techniques and preparation methods for microplastic analyses in the aquatic environment – A review, TrAC Trends Anal. Chem. 113 (2019) 84-92.
[37] Y. K. Song, S.H. Hong, M. Jang, Gi. M. Han, M. Rani, J. Lee and W. J. Shim, A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples, Mar. Pollut. Bull. 93 (2015) 202-209.
[38] A. Cincinelli, C. Scopetani, D. chelazzi, E. Lombardini, T. Martellini, A. Katsoyiannis, M.C. Fossi and S. Corsolini, Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR, Chemosphere, 175 (2017) 391-400.
[39] J. P. G. L. Frias, P. Sobral, and A. M. Ferreira, Organic pollutants in microplastics from two beaches of the Portuguese coast, Mar. Pollut. Bull. 60 (2010) 1988-1992.
[40] M. A. Browne, P. Crump, S.J. Niven, E. Teuten, A. Tonkin, T. Galloway and R. Thompson, Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks, Environ. Sci. Technol. 45 (2011) 9175-9179.
[41] P. Wu, Y. Tang, M. Dang, S. Wang, H. Jin, Y. Liu, H. Jing, C. Zheng, S. Yi and Z. Cai, Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area, Sci. Total Environ. 717 (2020) 135187.
[42] G. Peng, R. Bellerby, F. Zhang, X. Sun, and D. Li, The ocean’s ultimate trashcan: Hadal trenches as major depositories for plastic pollution, Water Res. 168 (2020) 115121.
[43] K. Liu, X. Wang, T. Fang, P. Xu, L. Zhu, and D. Li, Source and potential risk assessment of suspended atmospheric microplastics in Shanghai, Sci. Total Environ. 675 (2019) 462-471.
[44] B. Nan, L. Su, C. Kellar, N. J. Craig, M. J. Keough, and V. Pettigrove, Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia, Environ. Pollut. 259 (2020) 113865.
[45] M. Löder and G. Gerdts, Methodology Used for the Detection and Identification of Microplastics-A Critical Appraisal. Springer, 2015.
[46] S. Zhao, M. Danley, J. E. Ward, D. Li, and T. J. Mincer, An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy, Anal. Methods. 9 (2017) 1470-147.
[47] S. Karbalaei et al., Analysis and inorganic composition of microplastics in commercial Malaysian fish meals, Mar. Pollut. Bull. 150 (2020) 110687.
[48] M. Kazour, S. Jemaa, C. Issa, G. Khalaf, and R. Amara, Microplastics pollution along the Lebanese coast (Eastern Mediterranean Basin): Occurrence in surface water, sediments and biota samples, Sci. Total Environ. 696 (2019) 133933.
[49] A. Käppler, D. Fischer, S. Oberbeckmann, G. Schernewski, M. Labrenz, K.J. Eichhorn and B. Voit, Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?, Anal. Bioanal. Chem. 408 (2016) 8377-8391.
[50] Y. Su, X. Hu, H. Tang, K. Lu, H. Li, S. Liu, B. Xing and R. Ji, Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy, Nat. Nanotechnol. 17 (2022) 76-85.
[51] E. Dümichen, P. Eisentraut, C. G. Bannick, A.K. Barthel, R. Senz, and U. Braun, Fast identification of microplastics in complex environmental samples by a thermal degradation method, Chemosphere. 174 (2017) 572-584.
[52] P. M. Peacock and C. N. McEwen, Mass Spectrometry of Synthetic Polymers, Anal. Chem. 78 (2006) 3957-3964.
[53] H. Luo, Y. Zhao, Y. Li, Y. Xiang, D. He, and X. Pan, Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids, Sci. Total Environ. 714 (2020) 136862.
[54] W. J. Shim, Y. K. Song, S. H. Hong, and M. Jang, Identification and quantification of microplastics using Nile Red staining, Mar. Pollut. Bull. 113 (2016) 469-476.
[55] B. Nguyen, D. Claveau-Mallet, L. M. Hernandez, E. G. Xu, J. M. Farner, and N. Tufenkji, Separation and Analysis of Microplastics and Nanoplastics in Complex Environmental Samples, Acc. Chem. Res. 52 (2019) 858-866.
[56] F. G. Torres, D. C. Dioses-Salinas, C. I. Pizarro-Ortega, and G. E. De-la-Torre, Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends, Sci. Total Environ. 757 (2021) 143875.
[57] M. Filella, Questions of size and numbers in environmental research on microplastics: methodological and conceptual aspects, Environ. Chem. 12 (2015) 527-538.
[58] H. Zhang, J. Wang, B. Zhou, Y. Zhou, Z. Dai, Q. Zhou, P. Chriestie and Y. Luo, Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors, Environ. Pollut. 243 (2018) 1550-1557.
[59] A. Bakir, S. J. Rowland, and R. C. Thompson, Transport of persistent organic pollutants by microplastics in estuarine conditions, Estuar. Coast. Shelf Sci. 140 (2014) 14-21.
[60] X. Liu, J. Xu, Y. Zhao, H. Shi, and C.-H. Huang, Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics, Chemosphere. 226 (2019) 726-735.
[61] I. Velzeboer, C. J. A. F. Kwadijk, and A. A. Koelmans, Strong Sorption of PCBs to Nanoplastics, Microplastics, Carbon Nanotubes, and Fullerenes, Environ. Sci. Technol. 48 (2014) 4869-4876.
[62] M. Ateia, T. Zheng, S. Calace, N. Tharayil, S. Pilla, and T. Karanfil, Sorption behavior of real microplastics (MPs): Insights for organic micropollutants adsorption on a large set of well-characterized MPs, Sci. Total Environ. 720 (2020) 137634.
[63] A. ter Halle, L. Ladirat, X. Gendre, D. Goudouneche, C. Pusineri, C. Routaboul, C. Tenailleau, B. Duployer and E. Perez, Understanding the Fragmentation Pattern of Marine Plastic Debris, Environ. Sci. Technol. 50 (2016) 5668-5675.
[64] E. Hernandez, B. Nowack, and D. M. Mitrano, Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing, Environ. Sci. Technol. 51 (2017) 7036-7046.
[65] J. Wang, X. Liu, G. Liu and Z. Zhang, Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene, Ecotoxicol. Environ. Saf. 173 (2019) 331-338,.
[66] M. P. Johansen, T. Cresswell, J. Davis, D. L. Howard, N. R. Howell, and E. Prentice, Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: Use of spectroscopy, microscopy and radiotracer methods, Water Res. 158 (2019) 392-400.
[67] X. Wu, P. Liu, H. Huang, and S. Gao, Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations, Sci. Total Environ. 717 (2020) 137033.
[68] F. Yu, C. Yang, G. Huang, T. Zhou, Y. Zhao, and J. Ma, Interfacial interaction between diverse microplastics and tetracycline by adsorption in an aqueous solution, Sci. Total Environ. 721 (2020) 137729.
[69] R. Mao, M. Lang, X. Yu, R. Wu, X. Yang, and X. Guo, Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals, J. Hazard. Mater. 393 (2020) 122515.
[70] P. Liu, K. Lu, J. Li, X. Wu, L. Qian, M. Wang and S. Gao, Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates, J. Hazard. Mater. 384 (2019) 121193.
[71] M. Lang, X. Yu, J. Liu, T. Xia, T. Wang, H. Jia and X. Guo, Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics, Sci. Total Environ. 722, (2020) 137762.
[72] Q. Wang, Y. Zhang, X. Wangjin, Y. Wang, G. Meng, and Y. Chen, The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation, J. Environ. Sci. 87 (2020) 272-280.
[73] J. N. Hahladakis, C. A. Velis, R. Weber, E. Iacovidou, and P. Purnell, An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling, J. Hazard. Mater. 344 (2018) 179-199.
[74] J. Wang, J. Peng, Z. Tan, Y. Gao, Z. Zhan, Q. Chen and L. Cai, Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals, Chemosphere. 171 (2017) 248-258.
[75] A. Turner, L. Holmes, R. C. Thompson, and A. S. Fisher, Metals and marine microplastics: Adsorption from the environment versus addition during manufacture, exemplified with lead, Water Res. 173 (2020) 115577.
[76] I. Vollmer, M. J.F. Jenks, M. C.P. Roelands, R.J. White, T. van Harmelen, P. de Wild, G.P. van der Laan, F. Meirer, J.T.F. Keurentjes, and B.M. Weckhuysen, Beyond Mechanical Recycling: Giving New Life to Plastic Waste, Angew. Chem. Int. Ed. Engl. 59 (2020) 15402-15423.
[77] S. Fernández-Velayos, J. Sánchez-Marcos, A. Munoz-Bonilla, P. Herrasti, N. Menéndez, and E. Mazarío, Direct 3D printing of zero valent iron@polylactic acid catalyst for tetracycline degradation with magnetically inducing active persulfate, Sci. Total Environ. 806 (2022) 150917.