Utilizing membrane technologies in advancing the recycling of spent lithium-ion batteries using green electrochemical method – A review

Utilizing membrane technologies in advancing the recycling of spent lithium-ion batteries using green electrochemical method – A review

MUHAMMAD Faiz Aizamddin, SITI Nur Amira Shaffee, MUHAMMAD Zharfan Mohd Halizan, SAIFUL Arifin Shafiee, AWIS Sukarni Mohmad Sabere, ZARIF Mohamed Sofian, NURAINI Daud, FADZLI Irwan Bahrudin, IRINA Harun, NORAZAH Abd Rahman, MOHD Muzamir Mahat

download PDF

Abstract. The demand for lithium (Li) resources is soaring due to the widespread production (or consumption) of electronic products such as mobile and electronic devices, (or laptops, tablets, and home-appliances goods in accommodating current global lifestyle). The other lithium-ion batteries (LiBs) applications include electric vehicles, solar panels, wind turbines, and electric toys. The increasing demand for Li, while driving the economic progress of the industry, is putting a strain on the resource reserves. Therefore, the production industry is promptly searching for an efficient spent LiBs recycling process to counterbalance the highly sought-after element. Current Li recycling systems, in which extraction and recovery are typically accomplished by hydrometallurgical processes, have a significant impact on the environment, are energy-intensive, and necessitate vast operational capacities. Recently, electrochemical methods are seen as sustainable and green approaches to Li production. The use of membrane materials for Li recovery together with electrochemical processes provides a means to reduce energy consumption and scale up the spent LiBs recycling. In this overview, Li recovery technologies through pyrometallurgy, hydrometallurgy and green electrochemical extraction are explored along with their benefits and drawbacks. Recent advances in membrane materials selection that lead to significant improvement in Li production are also discussed.

Spent Lithium-Ion Batteries, Membrane Technology, Lithium Green Recycling, Electrochemical Method, Solid Polymer Electrolytes, Interpenetrating Network Polymer

Published online 5/20/2023, 22 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: MUHAMMAD Faiz Aizamddin, SITI Nur Amira Shaffee, MUHAMMAD Zharfan Mohd Halizan, SAIFUL Arifin Shafiee, AWIS Sukarni Mohmad Sabere, ZARIF Mohamed Sofian, NURAINI Daud, FADZLI Irwan Bahrudin, IRINA Harun, NORAZAH Abd Rahman, MOHD Muzamir Mahat, Utilizing membrane technologies in advancing the recycling of spent lithium-ion batteries using green electrochemical method – A review, Materials Research Proceedings, Vol. 29, pp 170-191, 2023

DOI: https://doi.org/10.21741/9781644902516-21

The article was published as article 21 of the book Sustainable Processes and Clean Energy Transition

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] W. Liu, T. Placke, K.T. Chau, Overview of batteries and battery management for electric vehicles, Energy Reports. 8 (2022) 4058-4084. https://doi.org/10.1016/j.egyr.2022.03.016
[2] V. Lundaev, A.A. Solomon, U. Caldera, C. Breyer, Material extraction potential of desalination brines: A technical and economic evaluation of brines as a possible new material source, Miner Eng. 185 (2022) 107652. https://doi.org/10.1016/j.mineng.2022.107652
[3] Petersen, H. A., Myren, T. H., O’Sullivan, S. J., & Luca, O. R. Electrochemical methods for materials recycling. Materials Advances, 2(4), (2021)1113-1138. https://doi.org/10.1039/D0MA00689K
[4] H. Bae, Y. Kim, Technologies of lithium recycling from waste lithium-ion batteries: A review, Mater Adv. 2 (2021) 3234-3250. https://doi.org/10.1039/D1MA00216C
[5] W. Jin, Y. Zhang, Sustainable Electrochemical Extraction of Metal Resources from Waste Streams: From Removal to Recovery, ACS Sustain Chem Eng. 8 (2020) 4693-4707. https://doi.org/10.1021/acssuschemeng.9b07007
[6] H. Bae, S.M. Hwang, I. Seo, Y. Kim, Electrochemical Lithium Recycling System toward Renewable and Sustainable Energy Technologies, J Electrochem Soc. 163 (2016) 199-205. https://doi.org/10.1149/2.0691607jes
[7] Anastas, P. T., & Warner, J. C. Principles of green chemistry. Green chemistry: Theory and practice, 29 (1998).
[8] S. Windisch-Kern, A. Holzer, C. Ponak, H. Raupenstrauch, Pyrometallurgical lithium-ion-battery recycling: Approach to limiting lithium slagging with the indured reactor concept, Processes. 9 (2021) 1-15. https://doi.org/10.3390/pr9010084
[9] X. Zheng, W. Gao, X. Zhang, M. He, X. Lin, H. Cao, Y. Zhang, Z. Sun, Spent lithium-ion battery recycling – Reductive ammonia leaching of metals from cathode scrap by sodium sulphite, Waste Management. 60 (2017) 680-688. https://doi.org/10.1016/j.wasman.2016.12.007
[10] A. Holzer, S. Windisch-Kern, C. Ponak, H. Raupenstrauch, A novel pyrometallurgical recycling process for lithium-ion batteries and its application to the recycling of lco and lfp, Metals (Basel). 11 (2021) 1-22. https://doi.org/10.3390/met11010149
[11] T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, M. Rutz, Development of a recycling process for Li-ion batteries, J Power Sources. 207 (2012) 173-182. https://doi.org/10.1016/j.jpowsour.2012.01.152
[12] D.M. Werner, T. Mütze, U.A. Peuker, Influence of Cell Opening Methods on Electrolyte Removal during Processing in Lithium-Ion Battery Recycling, Metals (Basel). 12 (2022) 663. https://doi.org/10.3390/met12040663
[13] C. Peng, F. Liu, Z. Wang, B.P. Wilson, M. Lundström, Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system, J Power Sources. 415 (2019) 179-188. https://doi.org/10.1016/j.jpowsour.2019.01.072
[14] R. Golmohammadzadeh, F. Rashchi, E. Vahidi, Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects, Waste Management. 64 (2017) 244-254. https://doi.org/10.1016/j.wasman.2017.03.037
[15] S. Doose, J.K. Mayer, P. Michalowski, A. Kwade, Challenges in eco-friendly battery recycling and closed material cycles: A perspective on future lithium battery generations, Metals (Basel). 11 (2021) 1-17. https://doi.org/10.3390/met11020291
[16] J. Neumann, M. Petranikova, M. Meeus, J.D. Gamarra, R. Younesi, M. Winter, S. Nowak, Recycling of Lithium-Ion Batteries-Current State of the Art, Circular Economy, and Next Generation Recycling, Adv Energy Mater. 12 (2022) 2102917. https://doi.org/10.1002/aenm.202102917
[17] L.F. Zhou, D. Yang, T. Du, H. Gong, W. bin Luo, The Current Process for the Recycling of Spent Lithium Ion Batteries, Front Chem. 8 (2020) 578044. https://doi.org/10.3389/fchem.2020.578044
[18] L. ye Sun, B. Rui Liu, T. Wu, G. de Wang, Q. Huang, Y. Feng Su, F. Wu, Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int Journal of Minerals, Metallurgy and Materials. 28 (2021) 991-1000. https://doi.org/10.1007/s12613-020-2115-z
[19] N. Vieceli, R. Casasola, G. Lombardo, B. Ebin, M. Petranikova, Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid, Waste Management. 125 (2021) 192-203. https://doi.org/10.1016/j.wasman.2021.02.039
[20] W. Mrozik, M.A. Rajaeifar, O. Heidrich, P. Christensen, Environmental impacts, pollution sources and pathways of spent lithium-ion batteries, Energy Environ Sci. 14 (2021) 6099-6121. https://doi.org/10.1039/D1EE00691F
[21] X. Zhang, H. Cao, Y. Xie, P. Ning, H. An, H. You, F. Nawaz, A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis, Sep Purif Technol. 150 (2015) 186-195. https://doi.org/10.1016/j.seppur.2015.07.003
[22] X. Chen, B. Fan, L. Xu, T. Zhou, J. Kong, An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries, J Clean Prod. 112 (2016) 3562-3570. https://doi.org/10.1016/j.jclepro.2015.10.132
[23] L. Li, J. Lu, Y. Ren, X.X. Zhang, R.J. Chen, F. Wu, K. Amine, Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries, J Power Sources. 218 (2012) 21-27. https://doi.org/10.1016/j.jpowsour.2012.06.068
[24] X. Chen, B. Fan, L. Xu, T. Zhou, J. Kong, An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries, J Clean Prod. 112 (2016) 3562-3570. https://doi.org/10.1016/j.jclepro.2015.10.132
[25] X. Chen, D. Kang, L. Cao, J. Li, T. Zhou, H. Ma, Separation and recovery of valuable metals from spent lithium-ion batteries: Simultaneous recovery of Li and Co in a single step, Sep Purif Technol. 210 (2019) 690-697. https://doi.org/10.1016/j.seppur.2018.08.072
[26] Y. Zhang, W. Sun, R. Xu, L. Wang, H. Tang, Lithium extraction from water lithium resources through green electrochemical-battery approaches: A comprehensive review, J Clean Prod. 285 (2021) 124905. https://doi.org/10.1016/j.jclepro.2020.124905
[27] X. Zhao, H. Yang, Y. Wang, Z. Sha, Review on the electrochemical extraction of lithium from seawater/brine, Journal of Electroanalytical Chemistry. 850 (2019) 113389. https://doi.org/10.1016/j.jelechem.2019.113389
[28] Y. Bai, N. Muralidharan, J. Li, R. Essehli, I. Belharouak, Sustainable direct recycling of lithium-ion batteries via solvent recovery of electrode materials, Chem Sus Chem. 13 (2020) 5664-5670. https://doi.org/10.1002/cssc.202001479
[29] H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Electrochemical recovery of lithium ions in the aqueous phase, Sep Sci Technol. 28 (1993) 643-651. https://doi.org/10.1080/01496399308019512
[30] M. Pasta, C.D. Wessells, Y. Cui, F. la Mantia, A desalination battery, Nano Lett. 12 (2012) 839-843. https://doi.org/10.1021/nl203889e
[31] A. Battistel, M.S. Palagonia, D. Brogioli, F. la Mantia, R. Trócoli, Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review, Advanced Materials. 32 (2020) 1905440. https://doi.org/10.1002/adma.201905440
[32] N. Kim, X. Su, C. Kim, Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction, Chemical Engineering Journal. 420 (2021) 127715. https://doi.org/10.1016/j.cej.2020.127715
[33] G. Zhou, L. Chen, Y. Chao, X. Li, G. Luo, W. Zhu, Progress in electrochemical lithium ion pumping for lithium recovery, Journal of Energy Chemistry. 59 (2021) 431-445. https://doi.org/10.1016/j.jechem.2020.11.012
[34] V. Flexer, C.F. Baspineiro, C.I. Galli, Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing, Science of the Total Environment. 639 (2018) 1188-1204. https://doi.org/10.1016/j.scitotenv.2018.05.223
[35] J.F. Song, L.D. Nghiem, X.M. Li, T. He, Lithium extraction from Chinese salt-lake brines: Opportunities, challenges, and future outlook, Environ Sci (Camb). 3 (2017) 593-597. https://doi.org/10.1039/C7EW00020K
[36] J. Lee, S.H. Yu, C. Kim, Y.E. Sung, J. Yoon, Highly selective lithium recovery from brine using a λ-MnO 2-Ag battery, Physical Chemistry Chemical Physics. 15 (2013) 7690-7695. https://doi.org/10.1039/c3cp50919b
[37] T. Or, S.W.D. Gourley, K. Kaliyappan, A. Yu, Z. Chen, Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook, Carbon Energy. 2 (2020) 6-43. https://doi.org/10.1002/cey2.29
[38] W. Gu, F. Li, T. Liu, S. Gong, Q. Gao, J. Li, Z. Fang, Recyclable, Self-Healing Solid Polymer Electrolytes by Soy Protein-Based Dynamic Network, Advanced Science. (2022) 2103623. https://doi.org/10.1002/advs.202103623
[39] F. Baskoro, H.Q. Wong, H.J. Yen, Strategic Structural Design of a Gel Polymer Electrolyte toward a High-Efficiency Lithium-Ion Battery, ACS Appl Energy Mater. 2 (2019) 3937-3971. https://doi.org/10.1021/acsaem.9b00295
[40] S.K. Kim, Y. Yoon, J.H. Ryu, J.H. Kim, S. Ji, W. Song, S. Myung, J. Lim, H.K. Jung, S.S. Lee, J. Lee, K.S. An, Recyclable High-Performance Polymer Electrolyte Based on a Modified Methyl Cellulose-Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems, Chem Sus Chem. 13 (2020) 376-384. https://doi.org/10.1002/cssc.201902756
[41] L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries, Adv Energy Mater. 8 (2018) 1702657. https://doi.org/10.1002/aenm.201702657
[42] K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety, Science advances. 4 (2018) 9820. https://doi.org/10.1126/sciadv.aas9820
[43] Z. Sun, Y. Li, S. Zhang, L. Shi, H. Wu, H. Bu, S. Ding, G-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability, J Mater Chem A Mater. 7 (2019) 11069-11076. https://doi.org/10.1039/C9TA00634F
[44] W. Tang, S. Tang, C. Zhang, Q. Ma, Q. Xiang, Y.W. Yang, J. Luo, Simultaneously Enhancing the Thermal Stability, Mechanical Modulus, and Electrochemical Performance of Solid Polymer Electrolytes by Incorporating 2D Sheets, Adv Energy Mater. 8 (2018) 1800866. https://doi.org/10.1002/aenm.201800866
[45] S.N. ‘Afini M. Johari, N.A. Tajuddin, H. Hanibah, S.K. Deraman, A Review: Ionic Conductivity of Solid Polymer Electrolyte Based Polyethylene Oxide, Int J Electrochem Sci. 16 (2021) 1-15. https://doi.org/10.20964/2021.10.53
[46] Y.L. Ni’Mah, Z.H. Muhaiminah, S. Suprapto, Increase of solid polymer electrolyte ionic conductivity using nano-SiO2 synthesized from sugarcane bagasse as filler, Polymers (Basel). 13 (2021) 4240. https://doi.org/10.3390/polym13234240
[47] Z. Wei, Y. Ren, M. Wang, J. He, W. Huo, H. Tang, Improving the Conductivity of Solid Polymer Electrolyte by Grain Reforming, Nanoscale Res Lett. 15 (2020) 1-8. https://doi.org/10.1186/s11671-020-03355-4
[48] N. Verdier, D. Lepage, R. Zidani, A. Prébé, D. Aymé-Perrot, C. Pellerin, M. Dollé, D. Rochefort, Cross-Linked Polyacrylonitrile-Based Elastomer Used as Gel Polymer Electrolyte in Li-Ion Battery, ACS Appl Energy Mater. 3 (2020) 1099-1110. https://doi.org/10.1021/acsaem.9b02129
[49] G. Homann, L. Stolz, J. Nair, I.C. Laskovic, M. Winter, J. Kasnatscheew, Poly(Ethylene Oxide)-based Electrolyte for Solid-State-Lithium-Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure, Sci Rep. 10 (2020) 1-9. https://doi.org/10.1038/s41598-020-61373-9
[50] C.Y. Chiang, Y.J. Shen, M.J. Reddy, P.P. Chu, Complexation of poly(vinylidene fluoride): LiPF6 solid polymer electrolyte with enhanced ion conduction in “wet” form, J Power Sources. 123 (2003) 222-229. https://doi.org/10.1016/S0378-7753(03)00514-7
[51] M. Serhan, M. Sprowls, D. Jackemeyer, M. Long, I.D. Perez, W. Maret, N. Tao, E. Forzani, Total iron measurement in human serum with a smartphone, in AIChE Annual Meeting, Conference Proceedings, American Institute of Chemical Engineers, 2019. https://doi.org/10.1109/JTEHM.2020.3005308
[52] E. Nasybulin, W. Xu, M.H. Engelhard, Z. Nie, S.D. Burton, L. Cosimbescu, M.E. Gross, J.G. Zhang, Effects of electrolyte salts on the performance of Li-O2 batteries, Journal of Physical Chemistry C. 117 (2013) 2635-2645. https://doi.org/10.1021/jp311114u
[53] I.J. Shamsudin, A. Ahmad, N.H. Hassan, H. Kaddami, Biopolymer electrolytes based on carboxymethyl ҡ-carrageenan and imidazolium ionic liquid, Ionics (Kiel). 22 (2016) 841-851. https://doi.org/10.1007/s11581-015-1598-5
[54] M.D. Widstrom, K.B. Ludwig, J.E. Matthews, A. Jarry, M. Erdi, A. v. Cresce, G. Rubloff, P. Kofinas, Enabling high-performance all-solid-state lithium metal batteries using solid polymer electrolytes plasticized with ionic liquid, Electrochim Acta. 345 (2020) 136156. https://doi.org/10.1016/j.electacta.2020.136156
[55] H.K. Yoon, W.S. Chung, N.J. Jo, Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3, Electrochim Acta. 50 (2004) 289-293. https://doi.org/10.1016/j.electacta.2004.01.095
[56] C. Mendes-Felipe, J.C. Barbosa, R. Gonçalves, D. Miranda, C.M. Costa, J.L. Vilas-Vilela, S. Lanceros-Mendez, Lithium bis(trifluoromethanesulfonyl)imide blended in polyurethane acrylate photocurable solid polymer electrolytes for lithium-ion batteries, Journal of Energy Chemistry. 62 (2021) 485-496. https://doi.org/10.1016/j.jechem.2021.01.030
[57] C.Z. Zhao, Q. Zhao, X. Liu, J. Zheng, S. Stalin, Q. Zhang, L.A. Archer, Rechargeable Lithium Metal Batteries with an In-Built Solid-State Polymer Electrolyte and a High Voltage/Loading Ni-Rich Layered Cathode, Advanced Materials. 32 (2020) 1905629. https://doi.org/10.1002/adma.201905629
[58] Y. Chen, Y. Wang, Z. Li, D. Wang, H. Yuan, H. Zhang, Y. Tan, A flame retarded polymer-based composite solid electrolyte improved by natural polysaccharides, Composites Communications. 26 (2021) 100774. https://doi.org/10.1016/j.coco.2021.100774
[59] S.B. Kale, T.C. Nirmale, N.D. Khupse, B.B. Kale, M. v. Kulkarni, S. Pavitran, S.W. Gosavi, Cellulose-Derived Flame-Retardant Solid Polymer Electrolyte for Lithium-Ion Batteries, ACS Sustain Chem Eng. 9 (2021) 1559-1567. https://doi.org/10.1021/acssuschemeng.0c06309
[60] R.A.G. Whba, L. TianKhoon, M.S. Su’ait, M.Y.A. Rahman, A. Ahmad, Influence of binary lithium salts on 49% poly(methyl methacrylate) grafted natural rubber based solid polymer electrolytes, Arabian Journal of Chemistry. 13 (2020) 3351-3361. https://doi.org/10.1016/j.arabjc.2018.11.009
[61] Q. Sabrina, C.R. Ratri, A. Hardiansyah, T. Lestariningsih, A. Subhan, A. Rifai, R. Yudianti, H. Uyama, Preparation and characterization of nanofibrous cellulose as solid polymer electrolyte for lithium-ion battery applications, RSC Adv. 11 (2021) 22929-22936. https://doi.org/10.1039/D1RA03480D
[62] J. il Kim, Y.G. Choi, Y. Ahn, D. Kim, J.H. Park, Optimized ion-conductive pathway in UV-cured solid polymer electrolytes for all-solid lithium/sodium ion batteries, J Memb Sci. 619 (2021) 118771. https://doi.org/10.1016/j.memsci.2020.118771
[63] M.M.U. Din, M. Häusler, S.M. Fischer, K. Ratzenböck, F.F. Chamasemani, I. Hanghofer, V. Henninge, R. Brunner, C. Slugovc, D. Rettenwander, Role of Filler Content and Morphology in LLZO/PEO Membranes, Front Energy Res. 9 (2021) 532. https://doi.org/10.3389/fenrg.2021.711610
[64] W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang, A.D. Sendek, Y. Cui, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires, Nat Energy. 2 (2017) 1-7. https://doi.org/10.1038/nenergy.2017.35
[65] B. Li, Q. Su, L. Yu, D. Wang, S. Ding, M. Zhang, G. Du, B. Xu, Li0.35La0.55TiO3 Nanofibers Enhanced Poly(vinylidene fluoride)-Based Composite Polymer Electrolytes for All-Solid-State Batteries, ACS Appl Mater Interfaces. 11 (2019) 42206-42213. https://doi.org/10.1021/acsami.9b14824
[66] J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang, X. He, PEO based polymer-ceramic hybrid solid electrolytes: a review, Nano Converg. 8 (2021) 1-12. https://doi.org/10.1186/s40580-020-00251-6
[67] R. Li, D. Wu, L. Yu, Y. Mei, L. Wang, H. Li, X. Hu, Unitized Configuration Design of Thermally Stable Composite Polymer Electrolyte for Lithium Batteries Capable of Working Over a Wide Range of Temperatures, Adv Eng Mater. 21 (2019) 1900055. https://doi.org/10.1002/adem.201900055
68] F. Ma, Z. Zhang, W. Yan, X. Ma, D. Sun, Y. Jin, X. Chen, K. He, Solid Polymer Electrolyte Based on Polymerized Ionic Liquid for High Performance All-Solid-State Lithium-Ion Batteries, ACS Sustain Chem Eng. 7 (2019) 4675-4683. https://doi.org/10.1021/acssuschemeng.8b04076
[69] H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal, Y. Yang, A Flexible Solid Composite Electrolyte with Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries, Nano Lett. 17 (2017) 3182-3187. https://doi.org/10.1021/acs.nanolett.7b00715
[70] K. Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, C. Wang, Y. Wang, Y. Chen, C. Yan, Y. Li, E.D. Wachsman, L. Hu, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries, Proc Natl Acad Sci U S A. 113 (2016) 7094-7099. https://doi.org/10.1073/pnas.1600422113
[71] J. Sun, Y. Li, Q. Zhang, C. Hou, Q. Shi, H. Wang, A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires, Chemical Engineering Journal. 375 (2019) 121922. https://doi.org/10.1016/j.cej.2019.121922
[72] Y. Li, W. Zhang, Q. Dou, K.W. Wong, K.M. Ng, Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries, J Mater Chem A Mater. 7 (2019) 3391-3398. https://doi.org/10.1039/C8TA11449H
[73] Q. Han, X. Chi, S. Zhang, Y. Liu, B. Zhou, J. Yang, Y. Liu, Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries, J Mater Chem A Mater. 6 (2018) 23046-23054. https://doi.org/10.1039/C8TA08314B
[74] J. Dai, K. Fu, Y. Gong, J. Song, C. Chen, Y. Yao, G. Pastel, L. Zhang, E. Wachsman, L. Hu, Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood, ACS Mater Lett. 1 (2019) 354-361. https://doi.org/10.1021/acsmaterialslett.9b00189
[75] P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu, M. Lavorgna, J. Wu, X. Liu, Review on Polymer-Based Composite Electrolytes for Lithium Batteries, Front Chem. 7 (2019). https://doi.org/10.3389/fchem.2019.00522
[76] Sperling LH, Hu R. Interpenetrating polymer networks. InPolymer blends handbook Springer, Dordrecht (2014) 677-724. https://doi.org/10.1007/978-94-007-6064-6_8
[77] H. Xin Xie, Q. gang Fu, Z. Li, S. Chen, J. min Wu, L. Wei, X. Guo, Ultraviolet-Cured Semi-Interpenetrating Network Polymer Electrolytes for High-Performance Quasi-Solid-State Lithium Metal Batteries, Chemistry – A European Journal. 27 (2021) 7773-7780. https://doi.org/10.1002/chem.202100380
[78] X.X. Zeng, Y.X. Yin, N.W. Li, W.C. Du, Y.G. Guo, L.J. Wan, Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries, J Am Chem Soc. 138 (2016) 15825-15828. https://doi.org/10.1021/jacs.6b10088
[79] K.D. Fong, T. Wang, H.K. Kim, R.V. Kumar, S.K. Smoukov, Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes, ACS Energy Lett. 2 (2017) 2014-2020. https://doi.org/10.1021/acsenergylett.7b00466
[80] W. Hua, B. Schwarz, R. Azmi, M. Müller, M.S. Dewi Darma, M. Knapp, A. Senyshyn, M. Heere, A. Missyul, L. Simonelli, J.R. Binder, S. Indris, H. Ehrenberg, Lithium-ion (de)intercalation mechanism in core-shell layered Li(Ni,Co,Mn)O2 cathode materials, Nano Energy. 78 (2020) 105231. https://doi.org/10.1016/j.nanoen.2020.105231
[81] Z. Wang, R. Pan, C. Ruan, K. Edström, M. Strømme, L. Nyholm, Redox-Active Separators for Lithium-Ion Batteries, Advanced Science. 5 (2018) 1700663. https://doi.org/10.1002/advs.201700663
[82] Y. Zhao, L. Wang, Y. Zhou, Z. Liang, N. Tavajohi, B. Li, T. Li, Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li-Based Rechargeable Batteries, Advanced Science. 8 (2021) 2003675. https://doi.org/10.1002/advs.202003675
[83] K. Leš, C.S. Jordan, Ionic conductivity enhancement in solid polymer electrolytes by electrochemical: In situ formation of an interpenetrating network, RSC Adv. 10 (2020) 41296-41304. https://doi.org/10.1039/D0RA07966A
[84] Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J Mater Chem A Mater. 3 (2015) 19218-19253. https://doi.org/10.1039/C5TA03471J