ZnO for Probes in Diagnostics


ZnO for Probes in Diagnostics

Debjita Mukherjee, Ehsan Amel Zendehdel, Mojdeh Rahnama Ghahfarokhi, Minoo Alizadeh Pirposhte, Azadeh Jafarizadeh Dehaghani, Agnese Brangule, Dace Bandere, Jhaleh Amirian

Nanoparticles have revolutionized the field of diagnostics in recent years and ZnO nanoparticles (ZnO-NPs) have been one of the most commonly used ones. These easily synthesizable ZnO-NPs have a multitude of advantages over other metal-based nanoparticles owing to their biocompatibility, easy functionalization through their hydroxyl group-rich surface, and cost-effectiveness among several other benefits. Due to their inherent luminescence and fluorescent-tag functionalizing properties, ZnO-NPs have been useful as a probe in tumour and live cell bioimaging. ZnO-NPs have also been identified as probes in biosensors for the detection of various clinically important biochemical analytes like glucose and cholesterol, pathogens, drug molecules, and antibody-antigen based detection systems. In this chapter, several of the different applications of ZnO as probes in diagnostics will be dealt with in detail. Also, the characteristics of ZnO nanoparticles useful for such applications and the way these devices and techniques are developed will be explained.

ZnO Nanoparticles (ZnO-NPs), Biosensors, Diagnostics

Published online , 32 pages

Citation: Debjita Mukherjee, Ehsan Amel Zendehdel, Mojdeh Rahnama Ghahfarokhi, Minoo Alizadeh Pirposhte, Azadeh Jafarizadeh Dehaghani, Agnese Brangule, Dace Bandere, Jhaleh Amirian, ZnO for Probes in Diagnostics, Materials Research Foundations, Vol. 146, pp 202-233, 2023

DOI: https://doi.org/10.21741/9781644902394-7

Part of the book on ZnO and Their Hybrid Nano-Structures

[1] Upadhyay, P.K., Jain, V.K., Sharma, K. and Sharma, R., 2020. Synthesis and applications of ZnO nanoparticles in biomedicine. Research Journal of Pharmacy and Technology, 13(4), pp.1636-1644. https://doi.org/10.5958/0974-360X.2020.00297.8
[2] Tuantranont, A., 2013. Applications of nanomaterials in sensors and diagnostics. Springer series on chemical sensors and biosensors, 14. https://doi.org/10.1007/978-3-642-36025-1
[3] Zhang, Y., R Nayak, T., Hong, H. and Cai, W., 2013. Biomedical applications of zinc oxide nanomaterials. Current molecular medicine, 13(10), pp.1633-1645. https://doi.org/10.2174/1566524013666131111130058
[4] Bogutska, K.I., Sklyarov, Y.P. and Prylutskyy, Y.I., 2013. Zinc and zinc nanoparticles: biological role and application in biomedicine. Ukrainica bioorganica acta, 1, pp.9-16.
[5] Tereshchenko, A., Bechelany, M., Viter, R., Khranovskyy, V., Smyntyna, V., Starodub, N. and Yakimova, R., 2016. Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review. Sensors and Actuators B: Chemical, 229, pp.664-677. https://doi.org/10.1016/j.snb.2016.01.099
[6] Barron, A.R., 2015. Physical methods in chemistry and nano science.
[7] Adams, F. and Barbante, C., 2015. Chemical imaging analysis. Elsevier.
[8] Grover, V.P., Tognarelli, J.M., Crossey, M.M., Cox, I.J., Taylor-Robinson, S.D. and McPhail, M.J., 2015. Magnetic resonance imaging: principles and techniques: lessons for clinicians. Journal of clinical and experimental hepatology, 5(3), pp.246-255. https://doi.org/10.1016/j.jceh.2015.08.001
[9] Livieratos, L., 2012. Basic principles of SPECT and PET imaging. In Radionuclide and Hybrid Bone Imaging (pp. 345-359). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02400-9_12
[10] Rezaei, B. and Irannejad, N., 2019. Electrochemical detection techniques in biosensor applications. In Electrochemical Biosensors (pp. 11-43). Elsevier. https://doi.org/10.1016/B978-0-12-816491-4.00002-4
[11] Tang, Y., Zeng, X. and Liang, J., 2010. Surface plasmon resonance: an introduction to a surface spectroscopy technique. Journal of chemical education, 87(7), pp.742-746. https://doi.org/10.1021/ed100186y
[12] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F., 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), pp.209-249. https://doi.org/10.3322/caac.21660
[13] Whitaker, K., 2020. Earlier diagnosis: the importance of cancer symptoms. The Lancet Oncology, 21(1), pp.6-8. https://doi.org/10.1016/S1470-2045(19)30658-8
[14] Anjum, S., Hashim, M., Malik, S.A., Khan, M., Lorenzo, J.M., Abbasi, B.H. and Hano, C., 2021. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers, 13(18), p.4570. https://doi.org/10.3390/cancers13184570
[15] Barui, A.K., Kotcherlakota, R. and Patra, C.R., 2018. Biomedical applications of zinc oxide nanoparticles. In Inorganic frameworks as smart nanomedicines (pp. 239-278). William Andrew Publishing. https://doi.org/10.1016/B978-0-12-813661-4.00006-7
[16] Xu, C., Yang, C., Gu, B. and Fang, S., 2013. Nanostructured ZnO for biosensing applications. Chinese Science Bulletin, 58(21), pp.2563-2566. https://doi.org/10.1007/s11434-013-5714-5
[17] Huang, H., 2018. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors, 18(10), p.3249. https://doi.org/10.3390/s18103249
[18] Shabani, E., Abdekhodaie, M.J., Mousavi, S.A. and Taghipour, F., 2020. ZnO nanoparticle/nanorod-based label-free electrochemical immunoassay for rapid detection of MMP-9 biomarker. Biochemical Engineering Journal, 164, p.107772. https://doi.org/10.1016/j.bej.2020.107772
[19] Fernández-Baldo, M.A., Ortega, F.G., Pereira, S.V., Bertolino, F.A., Serrano, M.J., Lorente, J.A., Raba, J. and Messina, G.A., 2016. Nanostructured platform integrated into a microfluidic immunosensor coupled to laser-induced fluorescence for the epithelial cancer biomarker determination. Microchemical Journal, 128, pp.18-25. https://doi.org/10.1016/j.microc.2016.03.012
[20] Wang, X., Yu, H., Lu, D., Zhang, J. and Deng, W., 2014. Label free detection of the breast cancer biomarker CA15. 3 using ZnO nanorods coated quartz crystal microbalance. Sensors and Actuators B: Chemical, 195, pp.630-634. https://doi.org/10.1016/j.snb.2014.01.027
[21] Murugan, C., Murugan, N., Sundramoorthy, A.K. and Sundaramurthy, A., 2020. Gradient Triple-Layered ZnS/ZnO/Ta2O5-SiO2 Core-Shell Nanoparticles for Enzyme-Based Electrochemical Detection of Cancer Biomarkers. ACS Applied Nano Materials, 3(8), pp.8461-8471. https://doi.org/10.1021/acsanm.0c01949
[22] Pal, S. and Bhand, S., 2015. Zinc oxide nanoparticle-enhanced ultrasensitive chemiluminescence immunoassay for the carcinoma embryonic antigen. Microchimica Acta, 182(9), pp.1643-1651. https://doi.org/10.1007/s00604-015-1489-5
[23] Liu, Z.Y., Shen, C.L., Lou, Q., Zhao, W.B., Wei, J.Y., Liu, K.K., Zang, J.H., Dong, L. and Shan, C.X., 2020. Efficient chemiluminescent ZnO nanoparticles for cellular imaging. Journal of Luminescence, 221, p.117111. https://doi.org/10.1016/j.jlumin.2020.117111
[24] Hong, H., Wang, F., Zhang, Y., Graves, S.A., Eddine, S.B.Z., Yang, Y., Theuer, C.P., Nickles, R.J., Wang, X. and Cai, W., 2015. Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS applied materials & interfaces, 7(5), pp.3373-3381. https://doi.org/10.1021/am508440j
[25] ISLAM, S., MONDAL, N.I., KARIM, R., CHOWDHURY, M.R.K., RAHMAN, A. and KHAN, H.T., Effects of Communicable Diseases on Life Expectancy in Low-and Lower-Middle-Income Countries.
[26] Sousa, A.M. and Pereira, M.O., 2013. A prospect of current microbial diagnosis methods.
[27] Mallakpour, S., Azadi, E. and Hussain, C.M., 2021. The latest strategies in the fight against the COVID-19 pandemic: the role of metal and metal oxide nanoparticles. New Journal of Chemistry, 45(14), pp.6167-6179. https://doi.org/10.1039/D1NJ00047K
[28] Vasudevan, S., Srinivasan, P., Rayappan, J.B.B. and Solomon, A.P., 2020. A photoluminescence biosensor for the detection of N-acyl homoserine lactone using cysteamine functionalized ZnO nanoparticles for the early diagnosis of urinary tract infections. Journal of Materials Chemistry B, 8(19), pp.4228-4236. https://doi.org/10.1039/C9TB02243K
[29] Bissonnette, L. and Bergeron, M.G., 2015. POC tests in microbial diagnostics: Current status. In Methods in Microbiology (Vol. 42, pp. 87-110). Academic Press. https://doi.org/10.1016/bs.mim.2015.09.003
[30] Xia, Y., Chen, Y., Tang, Y., Cheng, G., Yu, X., He, H., Cao, G., Lu, H., Liu, Z. and Zheng, S.Y., 2019. Smartphone-based point-of-care microfluidic platform fabricated with a ZnO nanorod template for colorimetric virus detection. ACS sensors, 4(12), pp.3298-3307. https://doi.org/10.1021/acssensors.9b01927
[31] Qiao, Z., Liu, H., Noh, G.S., Koo, B., Zou, Q., Yun, K., Jang, Y.O., Kim, S.H. and Shin, Y., 2020. A simple and rapid fungal DNA isolation assay based on ZnO nanoparticles for the diagnosis of invasive aspergillosis. Micromachines, 11(5), p.515. https://doi.org/10.3390/mi11050515
[32] Boyle, E.C., Bishop, J.L., Grassl, G.A. and Finlay, B.B., 2007. Salmonella: from pathogenesis to therapeutics. Journal of bacteriology, 189(5), pp.1489-1495. https://doi.org/10.1128/JB.01730-06
[33] Huang, F., Guo, R., Xue, L., Cai, G., Wang, S., Li, Y., Liao, M., Wang, M. and Lin, J., 2020. An acid-responsive microfluidic salmonella biosensor using curcumin as signal reporter and ZnO-capped mesoporous silica nanoparticles for signal amplification. Sensors and Actuators B: Chemical, 312, p.127958. https://doi.org/10.1016/j.snb.2020.127958
[34] Upadhyay, A., Yang, H., Zaman, B., Zhang, L., Wu, Y., Wang, J., Zhao, J., Liao, C. and Han, Q., 2020. ZnO Nanoflower-Based NanoPCR as an Efficient Diagnostic Tool for Quick Diagnosis of Canine Vector-Borne Pathogens. Pathogens, 9(2), p.122. https://doi.org/10.3390/pathogens9020122
[35] Shetti, N.P., Bukkitgar, S.D., Reddy, K.R., Reddy, C.V. and Aminabhavi, T.M., 2019. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosensors and Bioelectronics, 141, p.111417. https://doi.org/10.1016/j.bios.2019.111417
[36] Mukherjee, D. and Amirian, J., 2022. Effect of Diabetes and other Risk Factors on Bone Health. Interventions in Obesity and Diabetes, 5(5), pp.523-526 https://doi.org/10.31031/IOD.2021.05.000623
[37] Inbasekaran, S., Senthil, R., Ramamurthy, G. and Sastry, T.P., 2014. Biosensor using zinc oxide nanoparticles. International Journal of Innovative Research in Science, Engineering and Technology, 3(1), pp.8601-8606.
[38] Muthuchamy, N., Atchudan, R., Edison, T.N.J.I., Perumal, S. and Lee, Y.R., 2018. High-performance glucose biosensor based on green synthesized zinc oxide nanoparticle embedded nitrogen-doped carbon sheet. Journal of Electroanalytical chemistry, 816, pp.195-204. https://doi.org/10.1016/j.jelechem.2018.03.059
[39] Devi, R., Thakur, M., and Pundir, C.S., 2011. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles-polypyrrole composite film. Biosensors and Bioelectronics, 26(8), pp.3420-3426. https://doi.org/10.1016/j.bios.2011.01.014
[40] Khan, M.Z.H., Ahommed, M.S. and Daizy, M., 2020. Detection of xanthine in food samples with an electrochemical biosensor based on PEDOT: PSS and functionalized gold nanoparticles. RSC Advances, 10(59), pp.36147-36154. https://doi.org/10.1039/D0RA06806C
[41] Devi, R., Yadav, S., Nehra, R., Yadav, S. and Pundir, C.S., 2013. Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. Journal of Food Engineering, 115(2), pp.207-214. https://doi.org/10.1016/j.jfoodeng.2012.10.014
[42] Narwal, V., Deswal, R., Batra, B., Kalra, V., Hooda, R., Sharma, M. and Rana, J.S., 2019. Cholesterol biosensors: A review. Steroids, 143, pp.6-17. https://doi.org/10.1016/j.steroids.2018.12.003
[43] Alexander, S., Baraneedharan, P., Balasubrahmanyan, S. and Ramaprabhu, S., 2017. Modified graphene based molecular imprinted polymer for electrochemical non-enzymatic cholesterol biosensor. European Polymer Journal, 86, pp.106-116. https://doi.org/10.1016/j.eurpolymj.2016.11.024
[44] Agrawal, N., Zhang, B., Saha, C., Kumar, C., Pu, X. and Kumar, S., 2020. Ultra-sensitive cholesterol sensor using gold and zinc-oxide nanoparticles immobilized core mismatch MPM/SPS probe. Journal of Lightwave Technology, 38(8), pp.2523-2529. https://doi.org/10.1109/JLT.2020.2974818
[45] Eguílaz, M., Dalmasso, P.R., Rubianes, M.D., Gutierrez, F., Rodríguez, M.C., Gallay, P.A., Mujica, M.E.L., Ramírez, M.L., Tettamanti, C.S., Montemerlo, A.E. and Rivas, G.A., 2019. Recent advances in the development of electrochemical hydrogen peroxide carbon nanotube-based (bio) sensors. Current Opinion in Electrochemistry, 14, pp.157-165. https://doi.org/10.1016/j.coelec.2019.02.007
[46] Sekar, N.K., Gumpu, M.B., Ramachandra, B.L., Nesakumar, N., Sankar, P., Babu, K.J., Krishnan, U.M. and Rayappan, J.B.B., 2018. Fabrication of electrochemical biosensor with ZnO-PVA nanocomposite interface for the detection of hydrogen peroxide. Journal of nanoscience and nanotechnology, 18(6), pp.4371-4379. https://doi.org/10.1166/jnn.2018.15259
[47] Wang, J.X., Sun, X.W., Wei, A., Lei, Y., Cai, X.P., Li, C.M. and Dong, Z.L., 2006. Zinc oxide nanocomb biosensor for glucose detection. Applied physics letters, 88(23), p.233106. https://doi.org/10.1063/1.2210078
[48] Ren, X., Chen, D., Meng, X., Tang, F., Hou, X., Han, D. and Zhang, L., 2009. Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. Journal of colloid and interface science, 334(2), pp.183-187. https://doi.org/10.1016/j.jcis.2009.02.043
[49] Dayakar, T., Rao, K.V., Bikshalu, K., Rajendar, V. and Park, S.H., 2017. Novel synthesis and structural analysis of zinc oxide nanoparticles for the non enzymatic glucose biosensor. Materials Science and Engineering: C, 75, pp.1472-1479. https://doi.org/10.1016/j.msec.2017.02.032
[50] DÖNMEZ, S., 2020. Green synthesis of zinc oxide nanoparticles using zingiber officinale root extract and their applications in glucose biosensor. El-Cezeri Journal of Science and Engineering, 7(3), pp.1191-1200.
[51] Khan, R., Kaushik, A., Solanki, P.R., Ansari, A.A., Pandey, M.K. and Malhotra, B.D., 2008. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Analytica Chimica Acta, 616(2), pp.207-213. https://doi.org/10.1016/j.aca.2008.04.010
[52] Umar, A., Rahman, M.M., Vaseem, M. and Hahn, Y.B., 2009. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochemistry Communications, 11(1), pp.118-121. https://doi.org/10.1016/j.elecom.2008.10.046
[53] Ahmad, R., Tripathy, N. and Hahn, Y.B., 2012. Wide linear-range detecting high sensitivity cholesterol biosensors based on aspect-ratio controlled ZnO nanorods grown on silver electrodes. Sensors and Actuators B: Chemical, 169, pp.382-386. https://doi.org/10.1016/j.snb.2012.05.027
[54] Hayat, A., Haider, W., Raza, Y. and Marty, J.L., 2015. Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta, 143, pp.157-161. https://doi.org/10.1016/j.talanta.2015.05.051
[55] Zhang, X., Dong, J., Qian, X. and Zhao, C., 2015. One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine. Sensors and Actuators B: Chemical, 221, pp.528-536. https://doi.org/10.1016/j.snb.2015.06.039
[56] Xue, G., Yu, W., Yutong, L., Qiang, Z., Xiuying, L., Yiwei, T. and Jianrong, L., 2019. Construction of a novel xanthine biosensor using zinc oxide (ZnO) and the biotemplate method for detection of fish freshness. Analytical Methods, 11(8), pp.1021-1026. https://doi.org/10.1039/C8AY02554A
[57] Sahyar, B.Y., Kaplan, M., Ozsoz, M., Celik, E. and Otles, S., 2019. Electrochemical xanthine detection by enzymatic method based on Ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochemistry, 130, p.107327. https://doi.org/10.1016/j.bioelechem.2019.107327
[58] Zhu, X., Yuri, I., Gan, X., Suzuki, I. and Li, G., 2007. Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosensors and Bioelectronics, 22(8), pp.1600-1604. https://doi.org/10.1016/j.bios.2006.07.007
[59] Xie, L., Xu, Y. and Cao, X., 2013. Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 107, pp.245-250. https://doi.org/10.1016/j.colsurfb.2013.02.020
[60] Al-Hardan, N.H., Abdul Hamid, M.A., Shamsudin, R., Othman, N.K. and Kar Keng, L., 2016. Amperometric non-enzymatic hydrogen peroxide sensor based on aligned zinc oxide nanorods. Sensors, 16(7), p.1004. https://doi.org/10.3390/s16071004
[61] Uribe, P.A., Ortiz, C.C., Centeno, D.A., Castillo, J.J., Blanco, S.I. and Gutierrez, J.A., 2019. Self-assembled Pt screen printed electrodes with a novel peroxidase Panicum maximum and zinc oxide nanoparticles for H2O2 detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561, pp.18-24. https://doi.org/10.1016/j.colsurfa.2018.10.051
[62] Zhu, S., Xu, L., Yang, S., Zhou, X., Chen, X., Dong, B., Bai, X., Lu, G. and Song, H., 2020. Cobalt-doped ZnO nanoparticles derived from zeolite imidazole frameworks: Synthesis, characterization, and application for the detection of an exhaled diabetes biomarker. Journal of Colloid and Interface Science, 569, pp.358-365. https://doi.org/10.1016/j.jcis.2020.02.081
[63] Haque, M., Fouad, H., Seo, H.K., Alothman, O.Y. and Ansari, Z.A., 2020. Cu-doped ZnO nanoparticles as an electrochemical sensing electrode for cardiac biomarker myoglobin detection. IEEE Sensors Journal, 20(15), pp.8820-8832. https://doi.org/10.1109/JSEN.2020.2982713
[64] Fathil, M.F.M., Arshad, M.M., Ruslinda, A.R., Gopinath, S.C., Nuzaihan, M., Adzhri, R., Hashim, U. and Lam, H.Y., 2017. Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin I detection. Sensors and Actuators B: Chemical, 242, pp.1142-1154. https://doi.org/10.1016/j.snb.2016.09.131
[65] Cao, M., Zheng, L., Gu, Y., Wang, Y., Zhang, H. and Xu, X., 2020. Electrostatic self-assembly to fabricate ZnO nanoparticles/reduced graphene oxide composites for hypersensitivity detection of dopamine. Microchemical Journal, 159, p.105465. https://doi.org/10.1016/j.microc.2020.105465
[66] Charak, S. and Mehrotra, R., 2013. Structural investigation of idarubicin-DNA interaction: Spectroscopic and molecular docking study. International journal of biological macromolecules, 60, pp.213-218. https://doi.org/10.1016/j.ijbiomac.2013.05.027
[67] Karimi-Maleh, H., Khataee, A., Karimi, F., Baghayeri, M., Fu, L., Rouhi, J., Karaman, C., Karaman, O. and Boukherroub, R., 2022. A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere, 291, p.132928. https://doi.org/10.1016/j.chemosphere.2021.132928
[68] Ilager, D., Shetti, N.P., Malladi, R.S., Shetty, N.S., Reddy, K.R. and Aminabhavi, T.M., 2021. Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, acyclovir. Journal of Molecular Liquids, 322, p.114552. https://doi.org/10.1016/j.molliq.2020.114552
[69] Xiong, H.M., 2013. ZnO nanoparticles applied to bioimaging and drug delivery. Advanced Materials, 25(37), pp.5329-5335. https://doi.org/10.1002/adma.201301732
[70] Urban, B.E., Neogi, P., Senthilkumar, K., Rajpurohit, S.K., Jagadeeshwaran, P., Kim, S., Fujita, Y. and Neogi, A., 2012. Bioimaging using the optimized nonlinear optical properties of ZnO nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 18(4), pp.1451-1456. https://doi.org/10.1109/JSTQE.2012.2184793
[71] Eixenberger, J.E., Anders, C.B., Wada, K., Reddy, K.M., Brown, R.J., Moreno-Ramirez, J., Weltner, A.E., Karthik, C., Tenne, D.A., Fologea, D. and Wingett, D.G., 2019. Defect engineering of ZnO nanoparticles for bioimaging applications. ACS applied materials & interfaces, 11(28), pp.24933-24944. https://doi.org/10.1021/acsami.9b01582
[72] De, M., Ghosh, P.S. and Rotello, V.M., 2008. Applications of nanoparticles in biology. Advanced Materials, 20(22), pp.4225-424. https://doi.org/10.1002/adma.200703183
[73] Martínez-Carmona, M., Gun’Ko, Y. and Vallet-Regí, M., 2018. ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials, 8(4), p.268. https://doi.org/10.3390/nano8040268
[74] Dougherty, T.J., Gomer, C.J., Henderson, B.W., Jori, G., Kessel, D., Korbelik, M., Moan, J. and Peng, Q., 1998. Photodynamic therapy. JNCI: Journal of the national cancer institute, 90(12), pp.889-905. https://doi.org/10.1093/jnci/90.12.889
[75] Chen, Z., Li, Z., Wang, J., Ju, E., Zhou, L., Ren, J. and Qu, X., 2014. A multi‐synergistic platform for sequential irradiation‐activated high‐performance apoptotic cancer therapy. Advanced Functional Materials, 24(4), pp.522-529. https://doi.org/10.1002/adfm.201301951
[76] Choi, K.Y., Yoon, H.Y., Kim, J.H., Bae, S.M., Park, R.W., Kang, Y.M., Kim, I.S., Kwon, I.C., Choi, K., Jeong, S.Y. and Kim, K., 2011. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS nano, 5(11), pp.8591-8599. https://doi.org/10.1021/nn202070n
[77] Mellman, I., Coukos, G. and Dranoff, G., 2011. Cancer immunotherapy comes of age. Nature, 480(7378), pp.480-489. https://doi.org/10.1038/nature10673
[78] Cho, N.H., Cheong, T.C., Min, J.H., Wu, J.H., Lee, S.J., Kim, D., Yang, J.S., Kim, S., Kim, Y.K. and Seong, S.Y., 2011. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nature nanotechnology, 6(10), pp.675-682. https://doi.org/10.1038/nnano.2011.149
[79] Hu, J., Johnston, K.P. and Williams III, R.O., 2004. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug development and industrial pharmacy, 30(3), pp.233-245. https://doi.org/10.1081/DDC-120030422
[80] Kou, L., Bhutia, Y.D., Yao, Q., He, Z., Sun, J. and Ganapathy, V., 2018. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Frontiers in pharmacology, 9, p.27. https://doi.org/10.3389/fphar.2018.00027
[81] Zhao, Y.L., Li, Z., Kabehie, S., Botros, Y.Y., Stoddart, J.F. and Zink, J.I., 2010. pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles. Journal of the American Chemical Society, 132(37), pp.13016-13025. https://doi.org/10.1021/ja105371u
[82] Wang, Y., Song, S., Liu, J., Liu, D. and Zhang, H., 2015. ZnO‐functionalized upconverting nanotheranostic agent: multi‐modality imaging‐guided chemotherapy with on‐demand drug release triggered by pH. Angewandte Chemie International Edition, 54(2), pp.536-540. https://doi.org/10.1002/anie.201409519
[83] Zhao, H., Lv, P., Huo, D., Zhang, C., Ding, Y., Xu, P. and Hu, Y., 2015. Doxorubicin loaded chitosan-ZnO hybrid nanospheres combining cell imaging and cancer therapy. RSC Advances, 5(74), pp.60549-60551. https://doi.org/10.1039/C5RA09587E
[84] Wang, J., Lee, J.S., Kim, D. and Zhu, L., 2017. Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS applied materials & interfaces, 9(46), pp.39971-39984. https://doi.org/10.1021/acsami.7b11219
[85] Vimala, K., Shanthi, K., Sundarraj, S. and Kannan, S., 2017. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. Journal of Colloid and Interface Science, 488, pp.92-108. https://doi.org/10.1016/j.jcis.2016.10.067
[86] Qiu, H., Cui, B., Zhao, W., Chen, P., Peng, H. and Wang, Y., 2015. A novel microwave stimulus remote controlled anticancer drug release system based on Fe3O4@ ZnO@ mGd2O3: Eu@P (NIPAm-co-MAA) multifunctional nanocarriers. Journal of Materials Chemistry B, 3(34), pp.6919-6927. https://doi.org/10.1039/C5TB00915D
[87] Puvvada, N., Rajput, S., Kumar, B.N., Sarkar, S., Konar, S., Brunt, K.R., Rao, R.R., Mazumdar, A., Das, S.K., Basu, R. and Fisher, P.B., 2015. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression. Scientific reports, 5(1), pp.1-15. https://doi.org/10.1038/srep11760
[88] Muhammad, F., Wang, A., Guo, M., Zhao, J., Qi, W., Yingjie, G., Gu, J. and Zhu, G., 2013. pH dictates the release of hydrophobic drug cocktail from mesoporous nanoarchitecture. ACS Applied Materials & Interfaces, 5(22), pp.11828-11835. https://doi.org/10.1021/am4035027
[89] Qiu, L., Zhao, Y., Li, B., Wang, Z., Cao, L. and Sun, L., 2017. Triple-stimuli (protease/redox/pH) sensitive porous silica nanocarriers for drug delivery. Sensors and Actuators B: Chemical, 240, pp.1066-1074. https://doi.org/10.1016/j.snb.2016.09.083
[90] Jiang, J., Pi, J. and Cai, J., 2018. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic chemistry and applications, 2018. https://doi.org/10.1155/2018/1062562
[91] Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V. and Buszewski, B., 2017. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in colloid and interface science, 249, pp.37-52. https://doi.org/10.1016/j.cis.2017.07.033
[92] Chen, H., Zhang, M., Li, B., Chen, D., Dong, X., Wang, Y. and Gu, Y., 2015. Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Biomaterials, 53, pp.532-544. https://doi.org/10.1016/j.biomaterials.2015.02.105
[93] Kadiyala, U., Turali-Emre, E.S., Bahng, J.H., Kotov, N.A. and Vanepps, J.S., 2018. Unexpected insights into antibacterial activity of zinc oxide nanoparticles against methicillin resistant Staphylococcus aureus (MRSA). Nanoscale, 10(10), pp.4927-4939. https://doi.org/10.1039/C7NR08499D
[94] Sarwar, S., Chakraborti, S., Bera, S., Sheikh, I.A., Hoque, K.M. and Chakrabarti, P., 2016. The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype. Nanomedicine: Nanotechnology, Biology and Medicine, 12(6), pp.1499-1509. https://doi.org/10.1016/j.nano.2016.02.006
[95] Alves, M.M., Bouchami, O., Tavares, A., Córdoba, L., Santos, C.F., Miragaia, M. and de Fátima Montemor, M., 2017. New insights into antibiofilm effect of a nanosized ZnO coating against the pathogenic methicillin resistant Staphylococcus aureus. ACS applied materials & interfaces, 9(34), pp.28157-28167. https://doi.org/10.1021/acsami.7b02320
[96] Gunalan, S., Sivaraj, R. and Rajendran, V., 2012. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22(6), pp.693-700. https://doi.org/10.1016/j.pnsc.2012.11.015
[97] Ilves, M., Palomäki, J., Vippola, M., Lehto, M., Savolainen, K., Savinko, T. and Alenius, H., 2014. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model. Particle and fibre toxicology, 11(1), pp.1-12. https://doi.org/10.1186/s12989-014-0038-4
[98] Sudheesh Kumar, P.T., Lakshmanan, V.K., Anilkumar, T.V., Ramya, C., Reshmi, P., Unnikrishnan, A.G., Nair, S.V. and Jayakumar, R., 2012. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS applied materials & interfaces, 4(5), pp.2618-2629. https://doi.org/10.1021/am300292v
[99] Alavi, M. and Nokhodchi, A., 2020. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydrate polymers, 227, p.115349. https://doi.org/10.1016/j.carbpol.2019.115349
[100] Kitture, R., Chordiya, K., Gaware, S., Ghosh, S., More, P.A., Kulkarni, P., Chopade, B.A. and Kale, S.N., 2015. ZnO nanoparticles-red sandalwood conjugate: a promising anti-diabetic agent. Journal of nanoscience and nanotechnology, 15(6), pp.4046-4051. https://doi.org/10.1166/jnn.2015.10323
[101] Huang, H.C. and Hasan, T., 2014. The “Nano” world in photodynamic therapy. Austin journal of nanomedicine & nanotechnology, 2(3).