Novel Ceramic Materials, Chapter 12


Structural and Optical Properties of Li Doped Zirconia Nanoparticles

A. Abirami, M. Prema Rani

Li-stabilized cubic zirconia nanostructures (Zr1-xLixO2, x = 0.15, x = 0.25 and x = 0.35) have been prepared using a chemical precipitation method. The average size of the prepared crystallite was 17 nm. The electronic distributions in the unit cell were analyzed using the MEM method for the prepared cubic zirconia nanostructure. The bonding features were analyzed and it is found to behave like an ionic material. The energy band gap was determined via UV analysis and is found to be 4.13 eV for pure ZrO2.

Chemical Precipitation, XRD, Rietveld Refinement, Electron Density, Band Gap

Published online 6/1/2016, 14 pages

DOI: 10.21741/9781945291036-12

Part of Novel Ceramic Materials

[1] B. Basu, Toughening of Y-stabilized tetragonal zirconia ceramics, Int. Mater. Rev. 50 (2005) 239–256.
[2] I. Berkby, R. Steven, Applications of zirconia ceramics, Key. Eng. Mater. 527 (1996) 122-124.
[3] M. Maczka, E.T.G. Lutz, H.J. Verbeek, K. Oskam, A. Meijerink, J. Hanuza, M. Stuivinga, Spectroscopic studies of dynamically compacted monoclinic ZrO2, J. Phys. Chem. Solids 60 (1999) 1909–1914.
[4] Andreas Ziehfreund, Ulrich Simon, Wilhelm F. Maier, Oxygen ion conductivity of platinum-impregnated stabilized zirconia in bulk and microporous materials, Adv. Mater. 8 (1996) 424-427.
[5] F.P.F. van Berkel, F.H. van Heuveln, J.P.P. Huijsmans, Characterization of solid oxide fuel cell electrodes by impedance spectroscopy and I–V characteristics, Solid State lonics 72 (1994) 240-247.
[6] Henk Verweij, Nanocrystalline and Nanoporous Ceramics, Adv. Mater. 10 (1998) 1483-1486.<1483::AID-ADMA1483>3.0.CO;2-J
[7] Marc Mamak, Neil Coombs, Geoffrey Ozin, Self-Assembling Solid Oxide Fuel Cell Materials:  Mesoporous Yttria-Zirconia and Metal-Yttria-Zirconia Solid Solutions, J. Am. Chem. Soc, 122 (2000) 8932-8939.
[8] E.H.Kisi,C.J. Howard, Crystal Structures of Zirconia Phases and their Inter-Relation, Key. Eng. Mater 153(1998) 1–36.
[9] Shukla S, Seal S, Synthesis of Tetragonal Phase Stabilized Nano and Submicron Sized Nanoparticles, U.Int. Mater.Rev. 50 (2005) 45-64.
[10] A.E. Bohe, J. Andrade-Gamboa, D.M. Pasquevich, A. Tolley,J.L. Pelegrina, Size-dependent density of zirconia nanoparticles, J. Am. Ceram. Soc. 83(2000) 755-760.
[11] R.C. Garvie., The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect. J. Phys. Chem. 69 (1965) 1238-1243.
[12] H.D. Gesser, P.C. Goswami, – Aerogels and related porous materials, Chem. Rev. 89 (1989) 765-788.
[13] C. Suryanarayana, C.C. Koch, Nanocrystalline materials-Current research and future directions, Hyperfine Interactions 130 (2000) 5-44.
[14] V.R. Choudhary, S. Banerjee, S.G. Pataskar, Low temperature complete combustion of dilute propane over Mn-doped ZrO2 (cubic) catalysts, Journal of chemical sciences, 115 (2003) 287-298.
[15] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2 (1969) 65-71.
[16] V. Petrˇıcˇek, M. Dusˇek, L. Palatinus, in: JANA2000, The Crystallographic Computing System, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, 2000.
[17] S. Kumazawa, Y. Kubota, M. Takata, M. Sakata, Y. Ishibashi, MEED: a program package for electron-density-distribution calculation by the maximum-entropy method, J. Appl. Crystallogr. 26(1993) 453-457.
[18] A. D. Ruben, I. Fujio: Super-fast Program PRIMA for the Maximum-Entropy Method, Advanced materials Laboratory, National Institute for Materials Science, Ibaraki, Japan p. 305 (2004) 0044.
[19] F.Izumi, R.A. Dilanian: Recent Research Developments in Physics, Part II, 3, Transworld, Research Network, Trivandrum, 2002, pp. 699–726.
[20] K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr. 41 (2008) 653.