Recent Advances and Trends in ZnO Hybrid Nanostructures


Recent Advances and Trends in ZnO Hybrid Nanostructures

Rahul Kalia, Ritesh Verma, Ankush Chauhan, Anand Sharma, Rajesh Kumar

ZnO nanostructures are excellent candidates for use in the production of functional devices because to their low toxicity, robust thermal stability, excellent corrosion resistance, biocompatibility, high specific surface area, and high conductivity. In this chapter we have discussed the various nanostructures of ZnO and their kind, synthesis of hybrid ZnO nanostructure, modification in nanostructure of ZnO, Hybrid nanostructure of ZnO. In addition, we have discussed the various methods like Sol-gel method, Hydrothermal method and Green Synthesis method in detail for the synthesis of ZnO nanostructures. The effect of these methods on variation of nanostructures have been discussed in detail. It has been observed that because of its great sensitivity to the chemical environment, ZnO nanostructures have been extensively used in sensing applications. Also, the ZnO nano structures have been widely used in light emitting diodes and in solar cells because of its semiconducting nature. The ZnO is a n-type semiconductors and has a perfect bandgap of 3.37eV for its use in solar cell applications. Thus, this chapter provides a detailed discussion about the various nano structures of ZnO, the synthesis methods and various applications.

ZnO Nanostructures, Hybrid structures, Sensors, Solar Cells, Light Emitting Diode

Published online , 46 pages

Citation: Rahul Kalia, Ritesh Verma, Ankush Chauhan, Anand Sharma, Rajesh Kumar, Recent Advances and Trends in ZnO Hybrid Nanostructures, Materials Research Foundations, Vol. 146, pp 86-131, 2023


Part of the book on ZnO and Their Hybrid Nano-Structures

[1] X. Fang, L. Zhang, Controlled growth of one-dimensional oxide nanomaterials, Cailiao Kexue Yu JishuJournal Mater. Sci. Technol. 22 (2006) 1-18.
[2] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors, Prog. Mater. Sci. 54 (2009) 1-67.
[3] S. Barth, F. Hernandez-Ramirez, J.D. Holmes, A. Romano-Rodriguez, Synthesis and applications of one-dimensional semiconductors, Prog. Mater. Sci. 55 (2010) 563-627.
[4] X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications, Prog. Mater. Sci. 56 (2011) 175-287.
[5] X. Fang, L. Wu, L. Hu, ZnS nanostructure arrays: a developing material star, Adv. Mater. 23 (2011) 585-598.
[6] X. Fang, Y. Bando, M. Liao, U.K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, Single-crystalline ZnS nanobelts as ultraviolet-light sensors, Adv. Mater. 21 (2009) 2034-2039.
[7] Z. Jing, J. Zhan, Fabrication and gas-sensing properties of porous ZnO nanoplates, Adv. Mater. 20 (2008) 4547-4551.
[8] J. Liu, C. Roussel, G. Lagger, P. Tacchini, H.H. Girault, Antioxidant sensors based on DNA-modified electrodes, Anal. Chem. 77 (2005) 7687-7694.
[9] Y. Wang, X. Jiang, Y. Xia, A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc. 125 (2003) 16176-16177.
[10] A. Wei, C. Xu, X.W. Sun, W. Huang, G.-Q. Lo, Field emission from hydrothermally grown ZnO nanoinjectors, J. Disp. Technol. 4 (2008) 9-12.
[11] Z.L. Wang, Towards self-powered nanosystems: from nanogenerators to nanopiezotronics, Adv. Funct. Mater. 18 (2008) 3553-3567.
[12] Y.-C. Chang, W.-C. Yang, C.-M. Chang, P.-C. Hsu, L.-J. Chen, Controlled growth of ZnO nanopagoda arrays with varied lamination and apex angles, Cryst. Growth Des. 9 (2009) 3161-3167.
[13] S. Cho, S.-H. Jung, J.-W. Jang, E. Oh, K.-H. Lee, Simultaneous synthesis of Al-doped ZnO nanoneedles and zinc aluminum hydroxides through use of a seed layer, Cryst. Growth Des. 8 (2008) 4553-4558.
[14] X.Y. Kong, Z.L. Wang, Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts, Nano Lett. 3 (2003) 1625-1631.
[15] L. Mazeina, Y.N. Picard, S.M. Prokes, Controlled growth of parallel oriented ZnO nanostructural arrays on Ga2O3 nanowires, Cryst. Growth Des. 9 (2009) 1164-1169.
[16] A. Wei, X.W. Sun, C.X. Xu, Z.L. Dong, Y. Yang, S.T. Tan, W. Huang, Growth mechanism of tubular ZnO formed in aqueous solution, Nanotechnology. 17 (2006) 1740.
[17] H. Gullapalli, V.S. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, P.M. Ajayan, Flexible piezoelectric ZnO-paper nanocomposite strain sensor, Small. 6 (2010) 1641-1646.
[18] V. Pachauri, A. Vlandas, K. Kern, K. Balasubramanian, Site-Specific Self-Assembled Liquid-Gated ZnO Nanowire Transistors for Sensing Applications, Small. 6 (2010) 589-594.
[19] X. Fang, Y. Bando, U.K. Gautam, T. Zhai, H. Zeng, X. Xu, M. Liao, D. Golberg, ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors, Crit. Rev. Solid State Mater. Sci. 34 (2009) 190-223.
[20] J. Kim, K. Yong, Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing, J. Phys. Chem. C. 115 (2011) 7218-7224.
[21] M. Ahmad, C. Pan, Z. Luo, J. Zhu, A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor, J. Phys. Chem. C. 114 (2010) 9308-9313.
[22] B.K. Deka, K. Kong, J. Seo, D. Kim, Y.-B. Park, H.W. Park, Controlled growth of CuO nanowires on woven carbon fibers and effects on the mechanical properties of woven carbon fiber/polyester composites, Compos. Part Appl. Sci. Manuf. 69 (2015) 56-63.
[23] S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell, Nano Lett. 11 (2011) 666-671.
[24] A. Hazarika, B.K. Deka, D. Kim, K. Kong, Y.-B. Park, H.W. Park, Growth of aligned ZnO nanorods on woven Kevlar® fiber and its performance in woven Kevlar® fiber/polyester composites Part A Applied science and manufacturing, (2015).
[25] G. Amin, M.H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method, J. Nanomater. 2011 (2011).
[26] K. Kong, B.K. Deka, S.K. Kwak, A. Oh, H. Kim, Y.-B. Park, H.W. Park, Processing and mechanical characterization of ZnO/polyester woven carbon-fiber composites with different ZnO concentrations, Compos. Part Appl. Sci. Manuf. 55 (2013) 152-160.
[27] M.S. Al-Ruqeishi, T. Mohiuddin, B. Al-Habsi, F. Al-Ruqeishi, A. Al-Fahdi, A. Al-Khusaibi, Piezoelectric nanogenerator based on ZnO nanorods, Arab. J. Chem. 12 (2019) 5173-5179.
[28] N.A. Salahuddin, M. El-Kemary, E.M. Ibrahim, Synthesis and characterization of ZnO nanotubes by hydrothermal method, Int J Sci Res Publ. 5 (2015) 3-6.
[29] S. Ghasaban, M. Atai, M. Imani, Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis, Mater. Res. Express. 4 (2017) 035010.
[30] A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World J Nano Sci Eng 2012 2 154. 160 (2012).
[31] M. Yilmaz, B. Bozkurt Cirak, C. Cirak, S. Aydogan, Hydrothermal growth of ZnO nanoparticles under different conditions, Philos. Mag. Lett. 96 (2016) 45-51.
[32] M. Yilmaz, Investigation of characteristics of ZnO: Ga nanocrystalline thin films with varying dopant content, Mater. Sci. Semicond. Process. 40 (2015) 99-106.
[33] R. Yoo, S. Yoo, D. Lee, J. Kim, S. Cho, W. Lee, Highly selective detection of dimethyl methylphosphonate (DMMP) using CuO nanoparticles/ZnO flowers heterojunction, Sens. Actuators B Chem. 240 (2017) 1099-1105.
[34] G. Kwak, M. Seol, Y. Tak, K. Yong, Superhydrophobic ZnO nanowire surface: chemical modification and effects of UV irradiation, J. Phys. Chem. C. 113 (2009) 12085-12089.
[35] G. Vijayaprasath, R. Murugan, T. Mahalingam, Y. Hayakawa, G. Ravi, Enhancement of ferromagnetic property in rare earth neodymium doped ZnO nanoparticles, Ceram. Int. 41 (2015) 10607-10615.
[36] M. Abdelfatah, A. El-Shaer, One step to fabricate vertical submicron ZnO rod arrays by hydrothermal method without seed layer for optoelectronic devices, Mater. Lett. 210 (2018) 366-369.
[37] R. Sabry, O. AbdulAzeez, Hydrothermal growth of ZnO nano rods without catalysts in a single step, Manuf. Lett. 2 (2014) 69-73.
[38] J. Fan, T. Li, H. Heng, Hydrothermal growth and optical properties of ZnO nanoflowers, Mater. Res. Express. 1 (2014) 045024.
[39] H. Guo, W. Zhang, Y. Sun, T. Zhou, Y. Qiu, K. Xu, B. Zhang, H. Yang, Double disks shaped ZnO microstructures synthesized by one-step CTAB assisted hydrothermal methods, Ceram. Int. 41 (2015) 10461-10466.
[40] F. Wang, X. Qin, Z. Guo, Y. Meng, L. Yang, Y. Ming, Hydrothermal synthesis of dumbbell-shaped ZnO microstructures, Ceram. Int. 39 (2013) 8969-8973.
[41] Y. Sun, H. Guo, W. Zhang, T. Zhou, Y. Qiu, K. Xu, B. Zhang, H. Yang, Synthesis and characterization of twinned flower-like ZnO structures grown by hydrothermal methods, Ceram. Int. 42 (2016) 9648-9652.
[42] D. Kumar, R.S. Rai, N.K. Singh, An innovative approach to deposit ultrathin ZnO nanoflakes (2D) through hydrothermal assisted electrochemical discharge deposition and growth method, Ceram. Int. 46 (2020) 26216-26220.
[43] A. Król, P. Pomastowski, K. Rafińska, V. Railean-Plugaru, B. Buszewski, Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism, Adv. Colloid Interface Sci. 249 (2017) 37-52.
[44] H. Cai, W. Mu, W. Liu, X. Zhang, Y. Deng, Sol-gel synthesis highly porous titanium dioxide microspheres with cellulose nanofibrils-based aerogel templates, Inorg. Chem. Commun. 51 (2015) 71-74.
[45] V. Caratto, F. Locardi, S. Alberti, S. Villa, E. Sanguineti, A. Martinelli, T. Balbi, L. Canesi, M. Ferretti, Different sol-gel preparations of iron-doped TiO2 nanoparticles: characterization, photocatalytic activity and cytotoxicity, J. Sol-Gel Sci. Technol. 80 (2016) 152-159.
[46] A.L. Chibac, V. Melinte, T. Buruiana, I. Mangalagiu, E.C. Buruiana, Preparation of photocrosslinked sol-gel composites based on urethane-acrylic matrix, silsesquioxane sequences, T iO2, and A g/A u Nanoparticles for use in photocatalytic applications, J. Polym. Sci. Part Polym. Chem. 53 (2015) 1189-1204.
[47] D.M. Fernandes, R. Silva, A.W. Hechenleitner, E. Radovanovic, M.C. Melo, E.G. Pineda, Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide, Mater. Chem. Phys. 115 (2009) 110-115.
[48] S.S. Alias, A.B. Ismail, A.A. Mohamad, Effect of pH on ZnO nanoparticle properties synthesized by sol-gel centrifugation, J. Alloys Compd. 499 (2010) 231-237.
[49] A.K. Zak, R. Yousefi, W.H. Abd Majid, M.R. Muhamad, Facile synthesis and X-ray peak broadening studies of Zn1- xMgxO nanoparticles, Ceram. Int. 38 (2012) 2059-2064.
[50] A.K. Zak, M.E. Abrishami, W.A. Majid, R. Yousefi, S.M. Hosseini, Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol-gel combustion method, Ceram. Int. 37 (2011) 393-398.
[51] A.K. Zak, W.A. Majid, M.R. Mahmoudian, M. Darroudi, R. Yousefi, Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study, Adv. Powder Technol. 24 (2013) 618-624.
[52] M.H. Habibi, B. Karimi, Preparation of nanostructure CuO/ZnO mixed oxide by sol-gel thermal decomposition of a CuCO3 and ZnCO3: TG, DTG, XRD, FESEM and DRS investigations, J. Ind. Eng. Chem. 20 (2014) 925-929.
[53] J.L. Konne, B.O. Christopher, Sol-gel syntheses of zinc oxide and hydrogenated zinc oxide (ZnO: H) phases, J. Nanotechnol. 2017 (2017).
[54] S. Jurablu, M. Farahmandjou, T.P. Firoozabadi, Sol-gel synthesis of zinc oxide (ZnO) nanoparticles: study of structural and optical properties, J. Sci. Islam. Repub. Iran. 26 (2015) 281-285.
[55] M. Acosta-Humánez, L. Montes-Vides, O. Almanza-Montero, Sol-gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR, Dyna. 83 (2016) 224-228.
[56] P. Lu, W. Zhou, Y. Li, J. Wang, P. Wu, Abnormal room temperature ferromagnetism in CuO/ZnO nanocomposites via hydrothermal method, Appl. Surf. Sci. 399 (2017) 396-402.
[57] A.R. Marlinda, N.M. Huang, M.R. Muhamad, M.N. An’Amt, B.Y.S. Chang, N. Yusoff, I. Harrison, H.N. Lim, C.H. Chia, S.V. Kumar, Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites, Mater. Lett. 80 (2012) 9-12.
[58] C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications, Renew. Sustain. Energy Rev. 81 (2018) 536-551.
[59] A.K. Zak, R. Razali, W.H. Abd Majid, M. Darroudi, Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles, Int. J. Nanomedicine. 6 (2011) 1399.
[60] M. Saranya, R. Ramachandran, F. Wang, Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications, J. Sci. Adv. Mater. Devices. 1 (2016) 454-460.
[61] J. Wu, X. Shen, L. Jiang, K. Wang, K. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites, Appl. Surf. Sci. 256 (2010) 2826-2830.
[62] J. Lian, Y. Liang, F. Kwong, Z. Ding, D.H. Ng, Template-free solvothermal synthesis of ZnO nanoparticles with controllable size and their size-dependent optical properties, Mater. Lett. 66 (2012) 318-320.
[63] A. Matei, I. Cernica, O. Cadar, C. Roman, V. Schiopu, Synthesis and characterization of ZnO-polymer nanocomposites, Int. J. Mater. Form. 1 (2008) 767-770.
[64] S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles, Int. Nano Lett. 3 (2013) 1-6.
[65] S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-doped ZnO nanoparticles: synthesis, structural and electrical properties, Phys. B Condens. Matter. 407 (2012) 1223-1226.
[66] F. Gu, D. You, Z. Wang, D. Han, G. Guo, Improvement of gas-sensing property by defect engineering in microwave-assisted synthesized 3D ZnO nanostructures, Sens. Actuators B Chem. 204 (2014) 342-350.
[67] K.D. Bhatte, P. Tambade, S. Fujita, M. Arai, B.M. Bhanage, Microwave-assisted additive free synthesis of nanocrystalline zinc oxide, Powder Technol. 203 (2010) 415-418.
[68] S. Soumya, A.P. Mohamed, L. Paul, K. Mohan, S. Ananthakumar, Near IR reflectance characteristics of PMMA/ZnO nanocomposites for solar thermal control interface films, Sol. Energy Mater. Sol. Cells. 125 (2014) 102-112.
[69] R. He, B. Tang, C. Ton-That, M. Phillips, T. Tsuzuki, Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation, J. Nanoparticle Res. 15 (2013) 1-8.
[70] D. Sharma, S. Sharma, B.S. Kaith, J. Rajput, M. Kaur, Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method, Appl. Surf. Sci. 257 (2011) 9661-9672.
[71] R. Dobrucka, J. D\lugaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract, Saudi J. Biol. Sci. 23 (2016) 517-523.
[72] B. Kumar, K. Smita, L. Cumbal, A. Debut, Green approach for fabrication and applications of zinc oxide nanoparticles, Bioinorg. Chem. Appl. 2014 (2014).
[73] K. Lingaraju, H. Raja Naika, K. Manjunath, R.B. Basavaraj, H. Nagabhushana, G. Nagaraju, D. Suresh, Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities, Appl. Nanosci. 6 (2016) 703-710.
[74] A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnol. Adv. 31 (2013) 346-356.
[75] P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, J. Nanoparticle Res. 10 (2008) 507-517.
[76] N. Bala, S. Saha, M. Chakraborty, M. Maiti, S. Das, R. Basu, P. Nandy, Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity, RSC Adv. 5 (2015) 4993-5003.
[77] S.J. Lakshmi, R.R.S. Bai, H. Sharanagouda, U.K. Nidoni, A review study of zinc oxide nanoparticles synthesis from plant extracts, Green Chem Technol Lett. 3 (2017) 26-37.
[78] D.K. Slman, R.D.A. Jalill, A.N. Abd, Biosynthesis of zinc oxide nanoparticles by hot aqueous extract of Allium sativum plants, J. Pharm. Sci. Res. 10 (2018) 1590-1596.
[79] S. Azizi, M.B. Ahmad, F. Namvar, R. Mohamad, Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract, Mater. Lett. 116 (2014) 275-277.
[80] H.A. Salam, R. Sivaraj, R. Venckatesh, Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract, Mater. Lett. 131 (2014) 16-18.
[81] H. Mirzaei, M. Darroudi, Zinc oxide nanoparticles: Biological synthesis and biomedical applications, Ceram. Int. 43 (2017) 907-914.
[82] P. Jamdagni, P. Khatri, J.S. Rana, Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity, J. King Saud Univ.-Sci. 30 (2018) 168-175.
[83] C. Vidya, S. Hiremath, M.N. Chandraprabha, M.L. Antonyraj, I.V. Gopal, A. Jain, K. Bansal, Green synthesis of ZnO nanoparticles by Calotropis gigantea, Int J Curr Eng Technol. 1 (2013) 118-120.
[84] G. Sangeetha, S. Rajeshwari, R. Venckatesh, Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties, Mater. Res. Bull. 46 (2011) 2560-2566.
[85] S. Baskoutas, Zinc oxide nanostructures: Synthesis and characterization, Materials. 11 (2018) 873.
[86] R. Brayner, S.A. Dahoumane, C. Yéprémian, C. Djediat, M. Meyer, A. Couté, F. Fiévet, ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies, Langmuir. 26 (2010) 6522-6528.
[87] T. Gordon, B. Perlstein, O. Houbara, I. Felner, E. Banin, S. Margel, Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties, Colloids Surf. Physicochem. Eng. Asp. 374 (2011) 1-8.
[88] S. Sharma, R. Uttam, A. Sarika Bharti, K.N. Uttam, Interaction of zinc oxide and copper oxide nanoparticles with chlorophyll: a fluorescence quenching study, Anal. Lett. 52 (2019) 1539-1557.
[89] L.-H. Li, J.-C. Deng, H.-R. Deng, Z.-L. Liu, L. Xin, Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes, Carbohydr. Res. 345 (2010) 994-998.
[90] A.C. Mohan, B. Renjanadevi, Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-ray diffraction (XRD), Procedia Technol. 24 (2016) 761-766.
[91] O.-R. Vasile, E. Andronescu, C. Ghitulica, B.S. Vasile, O. Oprea, E. Vasile, R. Trusca, Synthesis and characterization of nanostructured zinc oxide particles synthesized by the pyrosol method, J. Nanoparticle Res. 14 (2012) 1-13.
[92] D. Fu, G. Han, Y. Chang, J. Dong, The synthesis and properties of ZnO-graphene nano hybrid for photodegradation of organic pollutant in water, Mater. Chem. Phys. 132 (2012) 673-681.
[93] M.A. Ashraf, J. Wiener, A. Farooq, J. Saskova, M.T. Noman, Development of maghemite glass fibre nanocomposite for adsorptive removal of methylene blue, Fibers Polym. 19 (2018) 1735-1746.
[94] M.T. Noman, J. Militky, J. Wiener, J. Saskova, M.A. Ashraf, H. Jamshaid, M. Azeem, Sonochemical synthesis of highly crystalline photocatalyst for industrial applications, Ultrasonics. 83 (2018) 203-213.
[95] M.T. Noman, J. Wiener, J. Saskova, M.A. Ashraf, M. Vikova, H. Jamshaid, P. Kejzlar, In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method, Ultrason. Sonochem. 40 (2018) 41-56.
[96] C.C. Vidyasagar, Y.A. Naik, T.G. Venkatesh, R. Viswanatha, Solid-state synthesis and effect of temperature on optical properties of Cu-ZnO, Cu-CdO and CuO nanoparticles, Powder Technol. 214 (2011) 337-343.
[97] Q.-P. Luo, X.-Y. Yu, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity, J. Phys. Chem. C. 116 (2012) 8111-8117.
[98] M.T. Noman, M. Petru, N. Amor, P. Louda, Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics, Sci. Rep. 10 (2020) 1-12.
[99] H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S.D. Lambert, M. Crine, B. Heinrichs, Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol-gel process, Alex. Eng. J. 52 (2013) 517-523.
[100] S. Yue, Z. Yan, Y. Shi, G. Ran, Synthesis of zinc oxide nanotubes within ultrathin anodic aluminum oxide membrane by sol-gel method, Mater. Lett. 98 (2013) 246-249.
[101] E. Asikuzun, O. Ozturk, L. Arda, C. Terzioglu, Preparation, growth and characterization of nonvacuum Cu-doped ZnO thin films, J. Mol. Struct. 1165 (2018) 1-7.
[102] K. Choi, T. Kang, S.-G. Oh, Preparation of disk shaped ZnO particles using surfactant and their PL properties, Mater. Lett. 75 (2012) 240-243.
[103] R.-M. Ko, Y.-R. Lin, C.-Y. Chen, P.-F. Tseng, S.-J. Wang, Facilitating epitaxial growth of ZnO films on patterned GaN layers: A solution-concentration-induced successive lateral growth mechanism, Curr. Appl. Phys. 18 (2018) 1-11.
[104] B. Gong, T. Shi, G. Liao, X. Li, J. Huang, T. Zhou, Z. Tang, UV irradiation assisted growth of ZnO nanowires on optical fiber surface, Appl. Surf. Sci. 406 (2017) 294-300.
[105] J. Zhang, J. Wang, S. Zhou, K. Duan, B. Feng, J. Weng, H. Tang, P. Wu, Ionic liquid-controlled synthesis of ZnO microspheres, J. Mater. Chem. 20 (2010) 9798-9804.
[106] J.J. Schneider, R.C. Hoffmann, J. Engstler, A. Klyszcz, E. Erdem, P. Jakes, R.-A. Eichel, L. Pitta-Bauermann, J. Bill, Synthesis, characterization, defect chemistry, and FET properties of microwave-derived nanoscaled zinc oxide, Chem. Mater. 22 (2010) 2203-2212.
[107] A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.-S. Ahn, R.B. Pode, Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method, Adv. Powder Technol. 24 (2013) 331-335.
[108] Z.M. Khoshhesab, M. Sarfaraz, Z. Houshyar, Influences of urea on preparation of zinc oxide nanostructures through chemical precipitation in ammonium hydrogencarbonate solution, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42 (2012) 1363-1368.
[109] W. Jia, S. Dang, H. Liu, Z. Zhang, C. Yu, X. Liu, B. Xu, Evidence of the formation mechanism of ZnO in aqueous solution, Mater. Lett. 82 (2012) 99-101.
[110] K.M. Kumar, B.K. Mandal, E.A. Naidu, M. Sinha, K.S. Kumar, P.S. Reddy, Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 104 (2013) 171-174.
[111] Y. Wang, C. Zhang, S. Bi, G. Luo, Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor, Powder Technol. 202 (2010) 130-136.
[112] C.I. Ezeh, X. Yang, J. He, C. Snape, X.M. Cheng, Correlating ultrasonic impulse and addition of ZnO promoter with CO2 conversion and methanol selectivity of CuO/ZrO2 catalysts, Ultrason. Sonochem. 42 (2018) 48-56.
[113] T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, A. Varma, Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications, Mater. Sci. Semicond. Process. 32 (2015) 55-61.
[114] A. Raja, S. Ashokkumar, R.P. Marthandam, J. Jayachandiran, C.P. Khatiwada, K. Kaviyarasu, R.G. Raman, M. Swaminathan, Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity, J. Photochem. Photobiol. B. 181 (2018) 53-58.
[115] S.A. Khan, F. Noreen, S. Kanwal, A. Iqbal, G. Hussain, Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities, Mater. Sci. Eng. C. 82 (2018) 46-59.
[116] F.T. Thema, E. Manikandan, M.S. Dhlamini, M. Maaza, Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract, Mater. Lett. 161 (2015) 124-127.
[117] M. Sundrarajan, S. Ambika, K. Bharathi, Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria, Adv. Powder Technol. 26 (2015) 1294-1299.
[118] H.-T. Wang, B.S. Kang, F. Ren, L.C. Tien, P.W. Sadik, D.P. Norton, S.J. Pearton, J. Lin, Hydrogen-selective sensing at room temperature with ZnO nanorods, Appl. Phys. Lett. 86 (2005) 243503.
[119] L.C. Tien, S.J. Pearton, D.P. Norton, F. Ren, Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition, J. Mater. Sci. 43 (2008) 6925-6932.
[120] C.S. Rout, A.R. Raju, A. Govindaraj, C.N.R. Rao, Hydrogen sensors based on ZnO nanoparticles, Solid State Commun. 138 (2006) 136-138.
[121] Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng, J.G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Appl. Phys. Lett. 85 (2004) 5923-5925.
[122] Z. Fan, J.G. Lu, Gate-refreshable nanowire chemical sensors, Appl. Phys. Lett. 86 (2005) 123510.
[123] Q. Wan, Q.H. Li, Y.J. Chen, T.-H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 84 (2004) 3654-3656.
[124] C. Xiangfeng, J. Dongli, A.B. Djurišic, Y.H. Leung, Gas-sensing properties of thick film based on ZnO nano-tetrapods, Chem. Phys. Lett. 401 (2005) 426-429.
[125] M. Yang, D. Wang, L. Peng, Q. Zhao, Y. Lin, X. Wei, Surface photocurrent gas sensor with properties dependent on Ru (dcbpy) 2 (NCS) 2-sensitized ZnO nanoparticles, Sens. Actuators B Chem. 117 (2006) 80-85.
[126] A. Wei, Z. Wang, L.-H. Pan, W.-W. Li, L. Xiong, X.-C. Dong, W. Huang, Room-temperature NH3 gas sensor based on hydrothermally grown ZnO nanorods, Chin. Phys. Lett. 28 (2011) 080702.
[127] J. Bao, M.A. Zimmler, F. Capasso, X. Wang, Z.F. Ren, Broadband ZnO single-nanowire light-emitting diode, Nano Lett. 6 (2006) 1719-1722.
[128] X. Dong, Y. Liu, K. Huang, W. Zhao, Y. Ye, X. Xia, Y. Zhang, J. Wang, B. Zhang, G. Du, Study on the p-MgZnO/i-ZnO/n-MgZnO light-emitting diode fabricated by MOCVD, J. Phys. Appl. Phys. 42 (2009) 235101.
[129] D.G. Thomas, Interstitial zinc in zinc oxide, J. Phys. Chem. Solids. 3 (1957) 229-237.
[130] R. Könenkamp, R.C. Word, M. Godinez, Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes, Nano Lett. 5 (2005) 2005-2008.
[131] J.F. Flores, Engineering 3D Nanostructures for a Multitude of Applications, University of California, Merced, 2015.
[132] J.-H. Choy, E.-S. Jang, J.-H. Won, J.-H. Chung, D.-J. Jang, Y.-W. Kim, Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser, Adv. Mater. 15 (2003) 1911-1914.
[133] J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, M. Hara, Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor, Nanotechnology. 17 (2006) 2567.
[134] I. Bedja, P.V. Kamat, X. Hua, A.G. Lappin, S. Hotchandani, Photosensitization of Nanocrystalline ZnO Films by Bis (2, 2 ‘-bipyridine)(2, 2 ‘-bipyridine-4, 4 ‘-dicarboxylic acid) ruthenium (II), Langmuir. 13 (1997) 2398-2403.
[135] K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, Nanostructured ZnO electrodes for dye-sensitized solar cell applications, J. Photochem. Photobiol. Chem. 148 (2002) 57-64.
[136] K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, A. Hagfeldt, A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes, Sol. Energy Mater. Sol. Cells. 73 (2002) 51-58.
[137] R. Katoh, A. Furube, Y. Tamaki, T. Yoshihara, M. Murai, K. Hara, S. Murata, H. Arakawa, M. Tachiya, Microscopic imaging of the efficiency of electron injection from excited sensitizer dye into nanocrystalline ZnO film, J. Photochem. Photobiol. Chem. 166 (2004) 69-74.
[138] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films, J. Phys. Chem. B. 108 (2004) 4818-4822.
[139] A. Furube, R. Katoh, K. Hara, S. Murata, H. Arakawa, M. Tachiya, Ultrafast stepwise electron injection from photoexcited Ru-complex into nanocrystalline ZnO film via intermediates at the surface, J. Phys. Chem. B. 107 (2003) 4162-4166.
[140] U. Bach, D. Lupo, P. Comte, J.-E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature. 395 (1998) 583-585.
[141] L. Schmidt-Mende, M. Grätzel, TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells, Thin Solid Films. 500 (2006) 296-301.
[142] J.E. Kroeze, N. Hirata, L. Schmidt-Mende, C. Orizu, S.D. Ogier, K. Carr, M. Grätzel, J.R. Durrant, Parameters influencing charge separation in solid-state dye-sensitized solar cells using novel hole conductors, Adv. Funct. Mater. 16 (2006) 1832-1838.
[143] D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Hybrid photovoltaic devices of polymer and ZnO nanofiber composites, Thin Solid Films. 496 (2006) 26-29.
[144] P. Ravirajan, A.M. Peiró, M.K. Nazeeruddin, M. Graetzel, D.D. Bradley, J.R. Durrant, J. Nelson, Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer, J. Phys. Chem. B. 110 (2006) 7635-7639.