Magnetic Spinel Ferrite Nanoparticles: From Synthesis to Biomedical Applications


Magnetic Spinel Ferrite Nanoparticles: From Synthesis to Biomedical Applications

M.V. Nikolic

Spinel ferrites are a widely investigated and applied class of materials with a cubic spinel lattice structure. Their unique multifunctional properties (magnetic characteristics, tunable shape/size, large number of active surface sites, high values of specific surface area, good chemical stability, and possibilities for enhancing properties through surface modification) influenced by the synthesis procedure make them attractive for biomedical applications as magnetic nanoparticles in drug delivery to a set target, magnetic hyperthermia, tissue engineering, magnetic extraction of biological components and magnetic diagnostics. In this review, we give an overview of up-to-date synthesis procedures for obtaining magnetic spinel nanoparticles and nanocomposites with optimal properties for biomedical applications.

Magnetic Nanoparticles, Spinel Ferrites, Nanocomposites, Synthesis, Biomedical Applications

Published online , 35 pages

Citation: M.V. Nikolic, Magnetic Spinel Ferrite Nanoparticles: From Synthesis to Biomedical Applications, Materials Research Foundations, Vol. 143, pp 41-75, 2023


Part of the book on Magnetic Nanoparticles for Biomedical Applications

[1] P. M. Martins, A. C. Lima, S. Ribeiro, S. Lanceros-Mendez, P. Martins, Magnetic nanoparticles for biomedical applications: from the soul of the earth to deep history of ourselves, ACS Appl. Bio. Mater. 4 (2021) 5839-5870.
[2] L. Neel, Some theoretical aspects of rock-magnetism, Adv. Phys. 4 (1955) 191-243.
[3] T. I. Shabatina, O. I. Vernaya, V. P. Shabatin, M. Ya. Melnikov, Magnetic nanoparticles for biomedical purposes: Modern trends and prospects, Magnetochemistry 6 (2020) 30.
[4] S. H. Noh, S. H. Moon, T. H. Shin, Y. Lim, J. Cheon, Recent advances of magneto-thermal capabilities of nanoparticles: from design principles to biomedical applications, Nano Today 13 (2017) 61-76.
[5] S. Khizar, N. M. Ahmad, N. Line, N. Jaffrezic-Renault, A. Errachid-el-salhi, A. Elaissari, Magnetic nanoparticles: from synthesis to therapeutic applications, ACS Appl. Nano. Mater. 4 (2021) 4284-4306.
[6] Y. Lin, K. Zhang, R. Zhang, Z. She, R. Tan, Y. Fan, X. Li, Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives, J. Mater. Chem. B 8 (2020) 5973.
[7] D. Fan, Q. Wang, T. Zhu, H. Wang, B. Liu, Y. Wang, Z. Liu, X. Liu, D. Fan, X. Wang, Recent advances of magnetic nanomaterials in bone tissue repair, Front. Chem. 8 (2020) 745.
[8] P. Dong, K. P. Rakesh, H. M. Manukumar, Y. H. E. Mohammed, C. S. Karthik, S. Sumathi, P. Mallu, H. L. Qin, Innovative nano-carriers in anticancer drug delivery – a comprehensive review, Bioorganic Chem. 85 (2019) 325-336.
[9] K. Tofani, S. Tiari, Magnetic nanoparticle hyperthermia for cancer treatment: a review on nanoparticle types and thermal analyses, ASME of Medicinal Diagnostics 4(2021) 030801.
[10] D. D. Stueberm J. Villanova, I. Aponte, Z. Xiao, V. L. Colvin, Magnetic nanoparticles in biology and medicine: past, present and future trends, Pharmaceutics 13 (2021 943.
[11] R. K. Reddy, P. A. Reddy, C. V. Reddy, N. P. Shetti, B. Babu, K. Ravindranadh, M. V. Shankar, M. C. Reddy, S. Soni, S. Naveen, Chapter 10 – Functionalized magnetic nanoparticles/biopolymer hybrids: Synthesis methods, properties and biomedical applications, in V. Gurtler, A. S. Ball, S. Soni, Methods in Microbiology. Volume 46, Academic Press, 2019, pp. 227-254.
[12] K. K. Kefeni, T. A. M. Msagati, T. T. I. Nkambule, B. B. Mamba, Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity, Mater. Sci. Eng. C 107(2020) 110314.
[13] M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: Evolution of spinel ferrites for medical applications, Adv. Colloid. Interface Sci. 265(2019) 29-44.
[14] S. Y. Srinivasan, K. M. Paknikar, D. Bodas, V. Gajbhiye, Applications of cobalt ferrite nanoparticles in biomedical nanotechnology, Nanomedicine 13(2018) 1221-1238.
[15] M. V. Nikolic, V. Milovanovic, Z. Z. Vasiljevic, Z. Stamenkovic, Semiconductor gas sensors: Materials, Technology, Design and Application, Sensors, 20 (2020) 6694.
[16] A. Sutka, K. A. Gross, Spinel ferrite semiconductor gas sensors, Sens. Actuators B 222 (2016) 95-105.
[17] M. V. Nikolic, Z. Z. Vasiljevic, M. D. Lukovic, V. P. Pavlovic, J. B. Krstic, J. Vujancevic, N. Tadic, B. Vlahovic, V. B. Pavlovic, Investigation of ZnFe2O4 spinel ferrite nanocrystalline screen-printed thick films for application in humidity sensing, Int J. Appl. Ceram. Technol. 16 (2019) 981-993.
[18] D. Petrovic, M. Lazic, O. S. Aleksic, M. V. Nikolic, V. Ibrahimovic, M. Pajnic, Mn-Zn ferrite line EMI suppressor for power switching noise in the impulse/high current bias regime, Turkish J. Elec. Eng. & Comp. Sci., 26 (2018) 2426-2436.
[19] N. V. Blaz, M. D. Lukovic, M. V. Nikolic, O. S. Aleksic, Lj. D. Zivanov, Heterotube Mn-Zn ferrite bundle EMI suppressor with different magnetic coupling configurations, IEEE Trans. Magn. 50 (2014), 8000907.
[20] M. P. Dojcinovic, Z. Z. Vasiljevic, V. P. Pavlovic, D. Barisic, D. Pajic, N. B. Tadic, M. V. Nikolic, Mixed Mg-Co spinel ferrites: structure, morphology, magnetic and photocatalytic properties, J. Alloys Compd. 855 (2021) 157429.
[21] K. K. Kefeni, B. B. Mamba, Photocatalytic application of spinel ferrite nanoparticles in wastewater treatment:review, SM&T 23(2020) e00140
[22] S. B. Somvanshi, P. B. Kharat, T. S. Saraf, S. B. Somwanshi, S. B. Shejul, K. M. Jadhav, Multifunctional nano-magnetic particles assisted viral RNA extraction protocol for potential detection of COVID-19, Mater. Res. Innov. 25 (2021) 3.
[23] C. M. B. Henderson, J. M. Charnok, D. A. Plant, Cation occupancies in Mg, Co, Ni, Zn, Al ferrite spinels: a multi-element EXAFS study, J. Phys.: Condens. Matter. 19 (2007) 076214.
[24] V. Kusigerski, G. Illes, J. Blanusa, S. Gyergyek, M. Boskovic, M. Perovic, V. Spasojevic, Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method, J. Magn. Magn. Mater. 475 (2019) 470-478.
[25] Y. Wang, Y. Miao, M. Su, X. Chen, H. Zhang, Y. Zhang, W. Jiao, Y. He, J. Yi, X. Liu, H. Fan, Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications, Mater. Today Adv. 8 (2020) 100119.
[26] K. Momma, F. Izumi, VESTA 3 for three dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1271-1276.
[27] P. Saha, R. Rakshut, K. Mandal, Enhanced magnetic properties of Zn doped Fe3O4 nano hollow spheres for better bio-medical applications, J. Magn. Magn. Mater. 475 (2019) 130-136.
[28] F. Sharifiankjazi, M. Meradi, N. Parvin, A. Nemati, A. J. Rad, N. Sheysi, A. Abouuchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, et al Magnetic CoFe2O4 nanoparticles doped with metal ions: a review, Ceram. Int. 46 (2020) 18391-18412.
[29] S. Iqbal, M. Fakhar-e-Alam, M. Atif, N. Amin, K. S. Alimgeer, A. Ali, Aqrab-ulAhmad, A. Harif, W. Aslam Farooq, Structural, morphological, antimicrobial and in vitro photodynamic therapeutic assessments of novel Zn2+ substituted cobalt ferrite nanoparticles, Results Phys. 15 (2019) 102529.
[30] M. A. Almessiere, Y. Slimani, A. D. Korkmaz, S. Guner, M. Sertkal, S. E. Shirsath, A. Baykal, Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach, Ultrason. Sonochem. 54 (2019) 1-10.
[31] M. Hashimi, M. Raghasundra, S. S. Meena, J. Shah, S. E. Shirsath, S. Kumar, D. Ravinder, P. Bhatt, Alimuddin, R. Kumar, R. K. Kotnala, Influence of rare earth doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites, J. Magn. Magn. Mater. 449 (2018) 319-327.
[32] A. Manohar, V. Vijayakanth, K. H. Kim, Influence of Ca doping on ZnFe2O4 nanoparticles magnetic hyperthermia and cytotoxicity study, J. Alloys Compd. 886 (2021) 161276.
[33] G. Gazzola, M. Ambrosetti, M. C. Mozzati, B. Albini, P. Galinetto, M. Bini, Tuning the superparamagnetic effect in ZnFe2O4 nanoparticles with Mg, Ga doping, Mater. Chem. Phys. 273 (2021) 125069.
[34] M. Bini, C. Tondo, D. Capsoni, M. C. Mazzati, B. Albini, P. Galinetto, Superparamagnetic ZnFe2O4 nanoparticles: the effect of Ca and Gd doping, Mater. Chem. Phys. 204 (2018) 72-82.
[35] L. B. de Mello, L. C. Varanda, F. A. Sigoli, I. O. Mazali, Co-precipitation synthesis of (Zn-Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia, J. Alloys Compd. 779 (2019) 698-705.
[36] A. Manohar, K. Chintagumpala, K. H. Kim, Mixed Zn-Ni spinel ferrites: structure, magnetic hyperthermia and photocatalytic properties, Ceram. Int. 47 (2021) 7052-7061.
[37] A. I. Tovstolytkin, M. M. Kulyk, V. M. Kalita, S. M. Ryabchenko, V. O. Zamorskyi, O. P. Fedorchuk, S. O. Solopan, A. G. Belous, Nickel-zinc spinel nanoferrites: magnetic characterization and prospects of the use in self-controlled magnetic hyperthermia, J. Magn. Magn. Mater. 473 (2019) 422-427.
[38] T. Tatarchuk, M. Myslin, I. Mironyuk, M. Bououdina, A. T. Pedziwatr, R. Grgula, B. F. Bogacz, P. Kurzydio, Synthesis, morphology, crystallite size and adsorption properties of nanostructured Mg-Zn ferrites with enhanced porous structure, J. Alloys Compd. 819 (2020) 152945.
[39] A. Nigan, S. J. Pawar, Structural, magnetic and antimicrobial properties of zinc-doped magnesium ferrite for drug delivery applications, Ceram. Int. 46 (2020) 4058-4064.
[40] A. Manohar, V. Vijayakanth, M. R. Pallavolu, K. H. Kim, Effects of Ni- substitution on structural, magnetic, hyperthermia, photocatalytic and cytotoxicity study of MgFe2O4 nanoparticles, J. Alloys Compd. 879 (2021) 160515.
[41] S. Jung, J. G. Jung, H. Choi, M. Kim, I. B. Shim, C. S. Kim, Magnetic, Moessbauer and hyperthermia properties of Co1-xMnxFe2O4 nanoparticles, J. Radioanal. Nucl. Ch. 330 (2021) 433-437.
[42] C. Gomez-Polo, V. Recarte, L. Cervera, J. J. Beato-Lopez, J. Lopez-Garcia, J. A. Rodriguez-Velamazan, M. D. Ugarte, E. C. Mendonca, J. G. S. Duque, Tailoring the structural and magnetic properties of Co-Zn nanosized ferrites for hyperthermia applications, J. Magn. Magn. Mater. 465 (2018) 211-219.
[43] R. Ramadan, M. K. Ahmed, V. Uskokovic, Magnetic, microstructural and photoactivated antibacterial features of nanostructured Co-Zn ferrites of different chemical and phase compositions, J. Alloys Compd. 856 (2021) 157013.
[44] M. Ansari, A. Bigham, S. A. Hassanzadeh-Tabrizi, H. A. Ahangar, Copper-substituted spinel Zn-Mg ferrite nanoparticles as potential heating agents for hyperthermia, J. Am. Ceram. Soc. 101 (2018) 3649-3661.
[45] M. Ansari, A. Bigham, H. A. Ahangar, Super-paramagnetic nanostructured CuZnMg mixed spinel ferrite for bone tissue regeneration, Mater. Sci. Eng. C 105 (2019) 110084.
[46] R. Sharma, P. Thakur, M. Kumar, P. B. Barman, P. Sharma, V. Sharma, Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg-Zn ferrites as heating source in hyperthermic applications, Ceram. Int. 43 (2017) 13661-13669.
[47] R. Yang, X. Yu, V. Li, C. Wang, C. Wu, W. Zhang, W. Guo, Effect of Mg doping on magnetic induction heating of Zn-Co ferrite nanoparticles, J. Alloys Compd. 851 (2021) 156907.
[48] J. N. P. K. Chintala, M. C. Varma, G. S. V. R. K. Choudary, K. H. Rao, Control of coercivity and magnetic anisotropy through cobalt substitution in Ni-Zn ferrite, J. Supercond. Nov. Magn. 34 (2021) 2357-2370.
[49] N. J. Labus, Z. Z. Vasiljevic, O. S. Aleksic, M. D. Lukovic, S. Markovic, V. B. Pavlovic, S. V. Mentus, M. V. Nikolic, Characterization of Mn0.63Zn0.37Fe2O4 powders after intensive milling and subsequent thermal treatment, Sci. Sintering 49 (2017) 455-467.
[50] X. Zhu, C. Cao, S. Su, A. Xia, H. Zhang, H. Li, Z. Liu, C. Jiu, A comparative study of spinel ZnFe2O4 ferrites obtained via a hydrothermal and a ceramic route: Structural and magnetic properties, Ceram. Int. 47 (2021) 15173-15179.
[51] M. M. Milutinov, M. V. Nikolic, S. G. Lukovic, N. V. Blaz, N. J. Labus, O. S. Aleksic, Lj. D. Zivanov, Influence of starting powder milling on magnetic properties of Mn-Zn ferrite, Proc. Appl. Ceram. 11 (2017) 160-169.
[52] K. Pemartin, C. Solans, J. Alvarez-Quintala, M. Sanchez-Domingues, Synthesis of Mn-Zn ferrite nanoparticles by the oil-in-water microemulsion reaction method, Colloids Surf. A: Physicochem. Eng. Asp. 451 (2014) 161-171.
[53] D. S. Matthew, R. S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chem. Eng. J. 129 (2007) 51-65.
[54] E. Elayakumar, A. Mandikandan, A. Dinesh, K. Thanrasu, K. Kanimani Raja, R. Thilak Kumar, Y. Slimani, S. K. Jaganathan, A. Baykal, Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized bu sol-gel method, J. Magn. Magn. Mater. 478 (2019) 140-147.
[55] M. A. Almessiere, A. V. Trukhanov, F. A. Khan, Y. Slimani, N. Tashkandi, V. A. Turchenko, T. I. Zubar, D. I. Tishkevich, S. V. Trukhanov, L. V. Panina, A. Baykal, Correlation between microstructure parameters and anti-cancer activity of the [Mn0.5Zn0.5](EuxNdxFe2-2x)O4 nanoferrites produced by modified sol-gel and ultrasonic methods, Ceram. Int. 46 (2020) 7346-7354.
[56] A. Sutka, G. Mezinskis, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials, Front. Mater. Sci. 6 (2012) 128-141.
[57] S. V. Bhandare, R. Kumar, A. V. Anupama, H. K. Choudhary, V. M. Jali, B. Sahoo, Annealing temperature dependent structural and magnetic properties of MnFe2O4 nanoparticles grown by sol-gel auto-combustion, J. Magn. Magn. Mater. 433 (2017) 29-34.
[58] M. Milutinov, M. V. Nikolic, M. D. Lukovic, N. Blaz, N. Labus, Lj. D. Zivanov, O. S. Aleksic, Influence of starting powder milling on structural properties, complex impedance, electrical conductivity and permeability of Mn-Zn ferrite, J. Mater. Sci.: Mater. Electron., 27 (2016) 11856-11865.
[59] S. Slimani, C. Meneghini, A. Abdolrahimi, A. Talone, J. P. Murillo, G. Barucca, N. Yacacoub, P. Imperetori et al. Spinel iron oxide by the co-precipitation method: effect of the reaction atmosphere, Appl. Sci. 11 (2021) 5433.
[60] I. Danielsson, B. Lindman, The definition of microemulsions, Collods Surf. A 3 (1981) 391-392.
[61] S. Jovanovic, M. Spreitzer, M. Otonicar, J. H. Jeon, D. Suvorov, pH control of magnetic properties in precipitation-hydrothermal derived CoFe2O4, J. Alloys Compd. 589 (2014) 271-277.
[62] M. Rafienia, A. Bigham, S. A. Hassanzadeh-Tabrizi, Solvothermal synthesis of magnetic spinel ferrites, J. Med. Signals Sens. 8 (2018) 108-118.
[63] T. Gaudisson, S. Nowak, Z. Nehme, N. Menguy, N. Yaacoub, J.-M. Greneche, S. Ammar, Polyol-made spinel ferrite nanoparticles – local structure and operating conditions: NiFe2O4 as a case study, Front. Mater. 8 (2021) 668994.
[64] A. Omelyanchik, K. Levada, S. Pshenichnikov, M. Abdolrahim, M. Baricic, A. Kapitunova, A. Galieva, S. Sukhikh et al. Green synthesis of Co-Zn spinel ferrite nanoparticles: magnetic and intrinsic antimicrobial properties, Materials 13 (2020) 5014.
[65] T. Tatarchuk, A. Shyichuk, Z. Sojka, J. Grybos, Mh. Nanshad, V. Kotsynbynski, M. Kowalska, S. Kwiatowska-Marks, N. Danylink, Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications J. Mol. Liq. 328 (2021) 115375.
[66] E. P. Muniz, L. S. D. De Assuncao, L. M. deSouza, J. J. K. Ribeiro, W. P. Marquez, R. D. Perreira, P. S. S. Porto, J. R. C. Proreti, E. C. Passamani, On cobalt ferrite production by sol-gel from orange fruit residue by three related procedures and its application in oil removal, J. Cleaner Prod. 265 (2020) 121712.
[67] S. Banifatemi, E. Davar, B. Aghabaran, J. A. Segura, F. J. Alonso, S. M. Ghoreishi, Green synthesis of CoFe2O4 nanoparticles using olive leaf extract and characterization of their magnetic properties, Ceram. Int. 47 (2021) 19198-19204.
[68] H. N. Chaudhari, P. N. Dhruv, C. Singh, S. S. Meena, S. Kavita, R. B. Jotania, Effect of heating temperature on structural, magnetic and dielectric properties of magnesium ferrites prepared in the presence of Solanum lycopersicum fruit extract, J. Mater. Sci.: Mater. Electron. 31 (2020) 18445-18463.
[68] V. Socoliuc, D. Peddis, V. I. Petrenko, M. V. Avdeev, D. Susan-Resiga, T. Szabo, R. Turcu, E. Tombacz, L. Vekas, Magnetic nanoparticle systems for nanomedicine – A materials science perspective, Magnetochemistry 6(2020) 2.
[70] M. R. Phadatare, V. M. Khot, A. B. Salukhe, N. D. Tharat, S. H. Pamar, Studies on polyethylene glycol coating on NiFe2O4 nanoparticles for biomedical applications, J. Magn. Magn. Mater. 324 (2012) 770-772.
[71] S. Jovanovic, M. Spreitzer, M. Tramsek, Z. Trontelj, D. Suvorov, Effect of oleic acid concentration on the physicochemical properties of cobalt ferrite nanoparticles, J. Phys. Chem. C 118 (2014) 13844-13856.
[72] P. B. Kharat, S. B. Somvanshi, P. P. Khirade, K. M. Jadhav, Induction heating analysis of surface functionalized nanoscale CoFe2O4 for magnetic fluid hyperthermia toward noninvasive cancer treatment, ACS Omega 5 (2020) 233778-23384.
[73] S. B. Somvanshi, S. R. Patade, D. D. Andhare, S. A. Jadhav, M. V. Khedkar, P. B. Kharat, P. P. Khirade, K. M. Jadhav, Hyperthermic evaluation of olic acid coated nano-spinel magnesium ferrite: Enhancement via hydrophobic -to-hydrophylic surface transformation, J. Alloys. Compd. 835 (2020) 155422.
[74] S. B. Somvanshi, P. B. Kharat, M. V. Khedkar, K. M. Jadhav, Hydrophobic to hydrophylic surface transformation of nano-scale zinc-ferrite via oleic acid coating: Magnetic hyperthermia study towards biomedical applications, Ceram. Int. 46 (2020) 7642-7653
[75] M. Ognjanovic, D. M. Stankovic, Z. K. Jacimovic, M. Kosovic-Perutovic, B. Dojcinovic, The effect of surface-modifier of magnetite nanoparticles on electrochemical detection of dopamine and heating efficiency in magnetic hyperthermia, J. Alloys Compd. 884 (2021) 161075.
[76] P. V. Ramana, K. S. Rao, K. R. Kumar, G. Kapusetti, M. Choppadandi, J. N. Kiran, K. H. Rao, A study of uncoated and coated nickel-zinc ferrite nanoparticles for magnetic hyperthermia, Mater. Chem. Phys. 266 (2021) 124546.
[77] H. Etemadi, P. G. Pleiger, Improvements in the organic-phase hydrothermal synthesis of monodisperse MxFe3-x¬O4 (M = Fe, Mg, Zn) spinel nanoferrites for magnetic fluid hyperthermia application, ACS Omega 5 (2020) 18091-18104.
[78] B. Dutta, S. Checker, K. C. Barick, H. G. Salunke, V. Gota, Malic acid grafted Fe3O4 nanoparticles for controlled drug delivery and efficient heating source for hyperthermia, J. Alloys Compd. 883 (2021) 160950.
[79] S. Kalia, S. Kanoo, A. Kumar, Y. Haldorai, B. Kumari, R. Kumar, Magnetic polymer nanocomposites for environmental and biomedical applications, Colloid Polym. Sci. 292 (2014) 2025-2052.
[80] E. C. S. Santos, J. A. Cunha, M. G. Martins, B. M. Galeana-Villar, R. J. Carballo-Vivas, P. B. Leite, A. L. Rossi, F. Garcia, P. V. Finotelli, H. C. Farraz, Curcuminoids-conjugated multicore magnetic nanaoparticles: design and characterization of a potential theranostic platform, J. Alloys. Compd. 879 (2021) 160448.
[81] M. Perez-Garnes, V. Morales, R. Sanz, R. A. Garcia-Munoz, Cytostatic and cytotoxic effects of hollow-shell mesoporous silica nanoparticles containing magnetic iron oxide, Nanomaterials, 11 (2021) 2455.
[82] A. Bigham, A. H. Aghajanian, S. Behzadzadeh, Z. Sokhani, S. Shojaei, Y. Kaviani, S. A. Hassanzadeh-Tabrizi, Nanostructured magnetic Mg2SiO4-CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration, Mater. Sci. Eng. C 99 (2019) 83-95.
[83] A. Bigham, A. H. Aghajanian, S. Allahdaneh, S. A. Hassanzadeh-Tabrizi, Multifunctional mesoporous magnetic Mg2SiO4-CuFe2O4 core-shell nanocomposite for simultaneous bone cancer therapy and regeneration, Ceram. Int. 45 (2019) 19481-19488.
[84] A. Bigham, A. H. Aghajanian, A. Sandi, M. Rafienia, Hierarchical porous Mg2SiO4-CoFe2O4 nanomagnetic scaffold for bone cancer therapy and regeneration: surface modification and in vitro studies, Mater. Sci. Eng. C 109 (2020) 110579.
[85] S. A. Hassanzadeh-Tabrizi, N. Norbaksh, R. Pournajaf, M. Tayebi, Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications, Ceram. Int. 47 (2021) 18167-18176.
[86] R. T. Gordon, J. R. Hines, D. Gordon, Intracellular hyperthermia: a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations, Med. Hypothesis 5 (1979) 83-102.
[87] D. Chang, M. Lim, J. A. C. M. Goos, R. Qiao, X. Y. Ng, F. M. Mansfeld, M. Jackson, T. P. Davis, M. Kavallaris, Front. Pharmacol. 9 (2018) 831.
[88] P. Das, M. Colombo, D. Prosperi, Recent advances in magnetic fluid hyperthermia for cancer therapy, Colloids Surf. B 174 (2019) 42-55.
[89] O. Polozhentsev, A. V. Soldatov, Efficiency of heating magnetite nanoparticles with different surface morphologies for the purpose of hyperthermia, J. Surf. Investig. 15 (2021) 799-805.
[90] Y. Tang, R. C. C. Flesch, T. Jin, Y. Gao, M. Ho, Effect of nanoparticle shape on therapeutic temperature distribution during magnetic hyperthermia, J. Phys. D: Appl. Phys. 54 (2021) 165401.
[91] A. J. Rajan, N. K. Sahu, Hydrophobic-tohydrophylic transition of Fe3O4 nanorods for magnetically induced hyperthermia, ACS Appl. Nano. Mater. 4 (2021) 4642-4653.
[92] A. Manohar, D. D. Geleta, C. Krishnamoorthi, J. Lee, Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles, Ceram. Int. 46 (2020) 28035-28041.
[93] S. Kumari, M. K. Maglam, L. K. Pradhan, L. Kumar, J. P. Borah, M. Kar, Modification in crystal structure of copper ferrite fiber by annealing and its hyperthermia application, Appl. Phys. A 127 (2021) 273.
[94] D. Kouzoudis, G. Samourgkanidis, A. Kolokithos-Ntoukas, G. Zoppellaro, K. Spiliotopoulos, Magnetic hyperthermia in the 400-1100 kHz frequency range using MIONs of condensed colloidal nanocrystal clusters, Front. Mater. 8 (2021) 131.
[95] A. Manohar, C. Krishnamoorthi, Synthesis and magnetic hyperthermia studies on high susceptible Fe1-x¬MgxFe2O4 superparamegnetic nanospheres, J. Magn. Magn. Mater. 443 (2017) 267-274.
[96] W. Montha, W. Maneeprakorn, N. Buatong, I. M. Tang, W. Pon-On, Synthesis of doxorubicin-PLGA loaded chitosan stabilized (Mn,Zn)Fe2O4 nanoparticle bilogocal activity and pH response drug release, Mater. Sci. Eng. C 59 (2016) 235-240.
[97] W. Montha, W. Maneeprakorn, I. M. Tang, W. Ponon, Hyperthermia evaluation and drug/propetin controlled release during alternating magnetic field stimuli-reponse Mn-Zn particles, RSC Adv. 10 (2020) 40206.
[98] W. Jia, Y. Qi, Z. Hu, Z. Xlong, Z. Luo, Z. Xiang, J. Hu, W. Lu, Facile fabrication of monodisperse CoFe2O4 nanocrystals@dopamine@DOX hybrids for magnetic response on-demand cancer theranostic applications, Adv. Comp. Hybrid Mater. 4 (2021) 989-1001.
[99] Z. Shi, Y. Zeng, X. Chen, F. Zhou, L. Zheng, G. Wang, J. Gao, Y. Ma, L. Zheng, B. Fu, R. Yu, Mesoporous superparamegnetic cobalt ferrite nanoclusters: synthesis, characterization and application in drug delivery, J. Magn. Magn. Mater. 498 (2020) 166222.
[100] R. Eivazzadeh-Keihan, E. B. Noruzi, K. K. Chenab, A. Jafari, F. Radinekiyan, S. M. Hashemi, F. Ahmadpour, A. Behboudi, S. M. Hashemi, F. Ahmadpour, J. Mosafer, A. Mokhtarzadeh, A. Maleki, M. R. Hamblin, Metal-based nanoparticles for bone tissue engieering, J. Tissue Eng. Regen. Med. 14 (2020) 1687-1714.
[101] F. Heidari, M. E. Bahrololoom, D. Vashaee, L. Tayebi, In situ preparation of iron oxide nanoparticles in natural hydroxyapatite chitosan matrix for bone tissue engineering application, Ceram. Int. 41 (2015) 3094-3100.
[102] B. Ghiasi, Y. Sefidbakht, S. Mozaffari-Jorin, B. Gharehcheloo, M. Mehrarya, A. Khodadadi, M. Rezai, S. Omid, R. Siadat, V. Uskokovic, Hydroxyapatite as a biomaterial – a gift that keeps on giving, Drug. Dev. Ind. Pharm. 46 (2020) 1035-1062.
[103] E. Ahmadzadeh, F. T. Rowsham, M. Hosseini, A biological method for in-situ synthesis of hydroxyapatite-coated magnetite nanoparticles using Enterobacter aerogenes: Characterization and acute toxicity assessments, Mater. Sci. Eng. C 73 (2017) 220-224.
[104] N. Castro, M. M. Fernandes, C. Ribeiro, V. Correira, R. Minguez, S. Lanceros-Mendez, Magnetic bioreactor for magneto-, mechano- and electroactive tissue engineering, Sensors 20 (2020) 3340.
[105] S. Kopyl, R. Surmenev, M. Surmeneva, Y. Fetisov, H. Kholkin, Magnetoelectric effect: principles and applications in biology and medicine – a reviw, Materials Today Bio 12 (2021) 100149.
[106] E. O. Carvalho, C. Ribeiro, D. M. Correira, G. Botello, S. Lanceros-Mendez, Biodegradeable hydrogels loaded with magnetically responsive microspheres as 2D and 3D scaffolds, Nanomaterials 10 (2020) 2421.
[107] M. M. Fernandez, D. M. Correia, C. Ribeiro, N. Castro, V. Correira, S. Lanceros-Mendez, Bioinsipred three-dimensional magnetoactive scaffolds for bone tissue engineering, ACS Appl. Mater. Interfaces 11 (2019) 45265-45275.
[108] A. Reizabal, R. Brito-Pereirra, M. M. Fernandes, N. Castro, V. Correira, C. Ribeiro, C. M. Costa, L. Perez, J. L. Vilas, S. Lanceros-Mendez, Silk fibroin magnetoactive nanocomposite films and membranes for dynamic bone tissue engineering strategies, Materialia 12 (2020) 100709.
[109] B. Tang, X. Shen, Y. Yang, Z. Xu, J. Yi, Y. Yao, M. Cao, Y. Zhang, H. Xia, Enhanced cellular osteogenic differentiation on CoFe2O4/P(VDF-TrFE) nanocomposite coatings under static magnetic field, Colloids Surf. B 198 (2021) 111473.
[110] J. R. Melamed, R. S. Edelstein, E. S. Day, Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy, ACS Nano 9 (2015) 6-11.
[111] J. Esterrich, M. A. Busquets, Iron oxide nanoparticles in photothermal therapy, Molecules 23 (2018) 1567.
[112] K. Wang, P. Yang, R. Guo, X. Yao, W. Yang, Photothermal performance of MFe2O4 nanoparticles, Chinese Chem. Lett. 30 (2019) 2013-2016.
[113] M. Gorgizadeh, N. Azarpira, N. Sattarahmady, In vitro and in vivo tumor annihilation by near-infrared photothermal effect, Colloids Surf. B 170 (2018) 393-400.
[114] K. Deng, Y. Chen, C. Li, X. Deng, Z. Hou, Z. Cheng, Y. Han, B. Xing, J. Lin, 808 nm light reposnsive nanotheranostic agents based near-infrared dye functionalized manganese ferrite for magnetic targeted and imaging-guided photodynamic/photothermal therapy, J. Mater. Chem. B. 5 (2017) 1803.
[115] B. Zhou, Q. Wu, M. Wang, A. Hoover, X. Wang, F. Zhou, R. A. Towner, N. Smith, D. Aunders, J. Song, J. Qu, W. R. Chen, Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment, Chem. Eng. J. 396 (2020) 125239.
[116] Z. Yang, J. Yao, J. Wang, C. Zhang, Y. Cao, L. Hao, C. Yang, C. Wu, J. Zhang, Z. Wang, H. Ran, Y. Tian, Ferrite-encapsulated nanoparticles with stable photothermal performance for multimodal imaging-guided atherosclerotic plaque neovascularization, Biomater. Sci. 9 (2021) 5652.
[117] S. Hatamie, P. J. Shih, B. W. Chen, I. J. Wang, T. H. Young, D. J. Yao, Synergic effect of novel WS2 carriers holding spherical cobalt ferrite@cubic Fe3O4 (WS2-CoFe2O4@c-Fe3O4) nanocomposites in magnetic resonance imaging and photothermal therapy for ocular treatments and investigation of corneal endothermal cell migration, Nanomaterials 10 (2020) 2555.
[118] O. Akhavan, A. Meidanchi, E. Ghaderi, S. Khoei, Zinc-ferrite spinel graphene in magneto-photothermal therapy of cancer, J. Mater. Chem. B 2 (2014) 3306.
[119] M. J. Hajipour, O. Akhavan, A. Meidanchi, S. Laurent, M. Mahmoudi, Hyperthermia-induced protein corona improves the therapeutic effects of zinc ferrite spinel graphene sheets against cancer, RSC Adv. 4 (2014) 62557-62565.
[120] M. Gorgizadeh, M. Behzadpour, F. salehi, F. Daneshvar, R. Dehdari Vais, R. Nazari-Vanani, N. Azarpira, M. Lotfi, N. Sattarahmady, A MnFe2O4/C nanocomposite as a novel thernaostic agent in MRI, sonodynamic therapy and photothermal therapy of a melanomic cancer model, J. Alloys Compd. 816 (2020) 152597.
[121] T. S. Ardakani, A. Meidanchi, A. Shokri, A. Shakeri-Zadeh, Fe3O4@Au reduced graphene oxide nanostructures: combinatorial effects of radiotherapy and photothermal therapy on oral squamous carcinoma KB cell line, Ceram. Int. 46 (2020) 28676-28685.
[122] R. Sun, Y. H. Ge, H. Liu, P. He, W. Song, X. Zhang, Erythrocyte membrane-encapsulated glucose oxidase and manganese/ferrite nanocomposite as a bimemtric “All in One” nanoplatform for cancer therapy, ACS Appl. Bio. Mater. 4 (2021) 701-710.
[123] M. Vincius-Araujo, N. Shrivastava, A. A. Sousa-Junior, S. A. Mendanha, R. C. De Santana, A. F. Bakuzis, ZnxMn1-x¬Fe2O4@SiO2:Nd3+ core-shell nanoparticles for low-field magnetic hyperthermia and enhanced photothermal therapy with the potential for nanothermometry, ACS Appl. Nano. Mater. 4 (2021) 2190-2210.
[124] Y. Li, H. Zhang, Fe3O4-based nanotheranostics for magnetic resonance imaging – synergized multifunctional cancer management, Nanomedicine 14 (2019) 1493-1512.
[125] S. Y. Srinivasan, K. M. Paknikar, D. Bodas, V. Gajbhiye, Applications of cobalt ferrite nanoparticles in biomedical nanotechnology, Nanomedicine 13 92018) 1221-1238
[126] J. Huang, X. Zhong, L. Wang, L. Yang, H. Mao, Improving the magnetic responance imaging contrast and detection method with engineered magnetic nanoparticles, Theranostics 2 (2012) 86-102
[127] A. M. Demin, A. G. Pershina, A. S. Minin, A. V. Mekhaev, V. V. Ivanov, S. P. Lezhava, A. A. Zakharova, I. V. Byzov, M. A. Uimin, V. P. Krasnov, L. M. Ogorodova, PMIDA-modified Fe3O4 magnetic nanoparticles: synthesis and application for liver MRI, Langmuir 34 (2018) 3449-3458.
[128] D. M. A. Neto, L. S. Da Costa, F. L. De Menezes, L. M. U. D. Fechine, R. M. Freire, J. C. Denardin, M. Banober-Lopez, I. F. Vasconcelos, T. S. Ribeiro, L. K. A. M. Leal, J. A. C. De Souza, J. Gallo, P. B. A. Fechine, A novel aminophosphate-coated magnetic nanoparticle as MRI contrast agent, Appl. Surf. Sci. 543 (2021) 148824.
[129] V. Zheltova, A. Vlasova, N. Bobrysheva, I. Abdullin, V. Semenov, M. Osmolowsky, M. Vozhesenskiy, O. Osmolovskaya, Fe3O4@HAp core shell nanoparticles as MRI contrast agent: synthesis, characterization and theoretical and experimental study of shell impact on magnetic properties, Appl. Surf. Sci. 532 (2020) 147352.
[130] J. Li, J. Zhang, Z. Guo, H. Jiang, H. Zhang, X. Wang, Self-assembly fabrication of honeycomb-like magnetic-fluorescent Fe3O4-QDs nanocomposites for bimodal imaging, Langmuir 36 (2020) 14471-14477.
[131] H. Fatima, K. S. Kim, Magnetic nanoparticles for bioseparation, Korean J. Chem. Eng. 34 (2017) 589-599.
[132] Q. Yang, Y. Dong, Y. Qiu, X. Yang, H. Cao, Y. Wu, Design of functional nanocomposites for bioseparation, Colloids Surf. B 191 (2020) 111014.
[133] E. Sahin, E. Turan, H. Tumturk, G. Demirel, Core-shell magnetic nanoparticles: a comparative study based on silica and polydopamine coating for magnetic bio-separation platforms, Analysts 137 (2012) 5654.
[134] G. S. An, D. H. Choi, J. U. Hur, A. H. Oh, H. H. Choi, S. C. Choi, Y. S. Oh, Y. G. Jung, Hollow structured Fe3O4@SiO2 nanoparticles novel synthesis and enhanced adsorbents for purification of plasmid DNA, Ceram. Int. 44 (2018) 18791-18795.
[135] J. S. Han, G. S. An, Preparation of dual-layered core shell Fe3O4@SiO2 nanoparticles and their properties of plasmid DNA purification, Nanomaterials 11(2021) 3422.
[136] S. A. Adams, J. L. Hauser, A. L. C. Allen, K. P. Lindquist, A. P. Ramirez, S. Oliver, J. Z. Zhang, Fe3O4@SiO2 nanoparticles functionalized with gold and poly(vinylpyrolidone) for bio-separation and sensing applications, ACS Appl. Nano Mater. 1 92018) 1406-1412
[137] M. S. Kim, B. C. Park, Y. J. Kim, J. H. Lee, T. M. Koo, M. J. Ko, Y. K. Kim, Design of magnetic-plasmonic nanoparticle assemblies via interface engineering of plasmonic shells for targeted cancer cell imaging and separation, Small 16 (2020) 2001103.
[138] K. Cetin, Magnetic nanoparticles embedded microcryogels for bilirubin removal, Process Biochem. 112 (2022) 203-208.