Surface-Tailored Iron Oxide Magnetic Nanomaterials for Biomedical Applications

$30.00

Surface-Tailored Iron Oxide Magnetic Nanomaterials for Biomedical Applications

Shivani R. Pandya and Harjeet Singh

Iron Oxide Magnetic Nanomaterials (IOMNMs) are widely used biocompatible and FDA approved nanomaterials to develop numerous biomedical applications. However, bare IOMNMs have shown limited applications due to columbic forces that increase the agglomeration, resulting in increased size. Thus, modifying the surface charge and design of IOMNMs are of much interest while talking about their applications in highly developed medical technologies and biotechnologies inclusive of MRI (Magnetic Resonance Imaging) contrast agents, magnetic separation and immobilization of different proteins, antibodies, enzymes and several other biological substances. Usually, IOMNMs are modified with biocompatible functional groups like amine, carboxylic acid, hydroxyl group to enhance their bioavailability. The present article emphasizes possible synthetic approaches for tailored iron oxide nanoparticles and their surface chemistry, allowing both therapeutic and diagnostic applications (theranostic).

Keywords
Magnetic Nanomaterial, Biomedical Application, Theranostic, Synthesis, Drug Delivery

Published online , 40 pages

Citation: Shivani R. Pandya and Harjeet Singh, Surface-Tailored Iron Oxide Magnetic Nanomaterials for Biomedical Applications, Materials Research Foundations, Vol. 143, pp 1-40, 2023

DOI: https://doi.org/10.21741/9781644902332-1

Part of the book on Magnetic Nanoparticles for Biomedical Applications

References
[1] S.M. Moghimi, A.C.H. Hunter, J.C. Murray, Long-circulating and target-specific nanoparticles: theory to practice, Pharm Rev. 53 (2001) 283-318.
[2] J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein J. Nanotechnol. 9 (2018) 1050-1074. https://doi.org/10.3762/bjnano.9.98
[3] U. Riaz, T. Mehmood, S. Iqbal, M. Asad, R. Iqbal, U. Nisar, M.M. Akhtar, Historical Background, Development and Preparation of Nanomaterials, in: M.B. Tahir, M. Rafique, M. Sagir (Eds.), Nanotechnology and photocatalysis for environmental applications Nanotechnology, Springer, Singapore, 2021, https://doi.org/10.1007/978-981-15-9437-3_1
[4] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry. 12 (2019) 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
[5] A.R.L. Pimenta, NanopartículasMagnéticas para Nanomedicina, Dissertação para obtenção do Grau de Mestre emEngenharia de Materiais (2010), Thesis.
[6] W. Smith, J. Hashemi, Foundations of Materials Science and engineering, fourth ed., McGraw-Hill Higher Education, 2005.
[7] U. Wertmann, R. Cornell, Iron Oxides in the Laboratory, second ed., John Wiley & Sons, 2000.
[8] S.M. Dadfar, K. Roemhild, N.I. Drude, S. von Stillfried, R. Knüchel, F. Kiessling, T. Lammers, Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications, Advanced Drug Delivery Reviews. 138 (2019) 302-325. https://doi.org/10.1016/j.addr.2019.01.005
[9] Z. Peter, Magnetic nanoparticles: production and applications, Masaryk University, 2013.
[10] A. Bahari, Characteristics of Fe3O4, α -Fe2O3, and γ-Fe2O3 Nanoparticles as Suitable Candidates in the Field of Nanomedicine, J. Supercond. Nov. Magn. 30 (2017) 2165-2174. https://doi.org/10.1007/s10948-017-4014-8
[11] L.S. Ganapathe, M.A. Mohamed, R.M. Yunus, D.D. Berhanuddin, Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation, Magnetochemistry 6 (2020) 68. https://doi.org/10.3390/magnetochemistry6040068
[12] N. Ajinkya, X. Yu, P. Kaithal, H. Luo, P. Somani, S. Ramakrishna, Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future, Materials (Basel).13 (2020) 4644. https://doi.org/10.3390/ma13204644
[13] A. Ali, H. Zafar, M. Zia, I. ul Haq, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnol Sci. Appl. 19 (2016) 49-67. https://doi.org/10.2147/NSA.S99986
[14] M. Salvador, G. Gutiérrez, S. Noriega, A. Moyano, M.C. Blanco-López, M. Matos, Microemulsion Synthesis of Superparamagnetic Nanoparticles for Bioapplications, Int. J. Mol. Sci. 22 (2021) 427. https://doi.org/10.3390/ijms22010427
[15] S. Majidi, F.Z. Sehrig, S.M. Farkhani, M.S. Goloujeh, A. Akbarzadeh, Current methods for synthesis of magnetic nanoparticles, Artif. Cells Nanomed. Biotechnol. 44 (2016) 722-34. https://doi.org/10.3109/21691401.2014.982802
[16] J.A. Fuentes-García, A. Carvalho Alavarse, A.C. Moreno Maldonado, A. Toro-Córdova, M.R. Ibarra, G.F. Goya, Simple Sonochemical Method to Optimize the Heating Efficiency of Magnetic Nanoparticles for Magnetic Fluid Hyperthermia, ACS omega. 5 (2020) 26357-26364. https://doi.org/10.1021/acsomega.0c02212
[17] A. Ali, T. Shah, R. Ullah, P. Zhou, M. Guo, M. Ovais, Z. Tan, Y. Rui, Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications, Front Chem. 9 (2021) 629054. https://doi.org/10.3389/fchem.2021.629054
[18] S. Shukla, R. Khan, A. Daverey, Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: A review, Environmental Technology & Innovation. 24 (2021) 101924. https://doi.org/10.1016/j.eti.2021.101924
[19] A. Baki, N. Löwa, A. Remmo, F. Wiekhorst, R. Bleul, Micromixer Synthesis Platform for a Tuneable Production of Magnetic Single-Core Iron Oxide Nanoparticles, Nanomaterials. 10 (2020) 1-25. https://doi.org/10.3390/nano10091845
[20] A. Mota-Cobián, C. Velasco, J. Mateo, S. España, Optimization of purification techniques for lumen-loaded magnetoliposomes, Nanotechnology. 31 (2020) 145102. https://doi.org/10.1088/1361-6528/ab5f80
[21] L. Babes, B. Denizot, G. Tanguy, J.J Le Jeune, P. Jallet, Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study, J. Colloid Interface Sci. 212 (1999) 474-482. https://doi.org/10.1006/jcis.1998.6053
[22] H. Mohammadi, E. Nekobahr, J. Akhtari, M. Saeedi, J. Akbari, F. Fathi, Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity, Toxicology reports, 8 (2021) 331-336. https://doi.org/10.1016/j.toxrep.2021.01.012
[23] N.A. Yazid and Y.C. Joon, Co-precipitation Synthesis of Magnetic Nanoparticles for Efficient Removal of Heavy Metal from Synthetic Wastewater, 6th International Conference on Environment, 6 (2019) 1-11. https://doi.org/10.1063/1.5117079
[24] Y.K. Sun, M. Ma, Y. Zhang, N. Gu, Fe3O4@Pt nanoparticles with enhanced peroxidase-like catalytic activity, Colloids Surf. A. 105 (2013) 36-39. https://doi.org/10.1016/j.matlet.2013.04.020
[25] J.P. Jolivet, C. Chaneac, E. Tronc, Iron oxide chemistry. From molecular clusters to extended solid networks, Chem. Commun. 5 (2004) 481-483. https://doi.org/10.1039/B304532N
[26] R.K. Gautam, M.C. Chattopadhyaya, Functionalized Magnetic Nanoparticles: Adsorbents and Applications, in: R.K. Gautam, M.C. Chattopadhyaya (Eds.), Nanomaterials for Wastewater Remediation, Butterworth-Heinemann, 2016, pp. 139-159. https://doi.org/10.1016/B978-0-12-804609-8.00007-8
[27] U. Manzoor, F.T. Zahra, S. Rafique, MT. Moin, M. Mujahid, Effect of Synthesis Temperature, Nucleation Time, and Postsynthesis Heat Treatment of ZnO Nanoparticles and Its Sensing Properties, Journal of Nanomaterials. 18 (2015) 1-6. https://doi.org/10.1155/2015/189058
[28] R.M. Cornell, U. Schertmann, Iron Oxides in the Laboratory: Preparation and Characterization, VCH Publishers, Weinheim, Germany, 1991.
[29] N.M. Gribanow, E.E. Bibik, O.V. Buzunov, V.N. Naumov, Physico-chemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation, J. Magn. Magn. Mater. 85(1990) 7-10. https://doi.org/10.1016/0304-8853(90)90005-B
[30] P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles, Handbook of Magnetic Materials, 2006. https://doi.org/10.1016/S1567-2719(05)16005-3
[31] V.K. LaMer, R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc. 72 (1950) 4847. https://doi.org/10.1021/ja01167a001
[32] F. Tourinho, R. Franck, R. Massart, R. Perzynski, Synthesis and mangeitc properties of managanese and cobalt ferrite ferrite ferrofluids, Prog. Colloid Polym. Sci. 79 (1989) 128-134. https://doi.org/10.1007/BFb0116198
[33] R. Weissleder, U.S. Patent, 5,492,814, 1996.
[34] H. Itoh, T. Sugimoto, Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles, J. Colloid. Interface Sci. 265 (2003) 283-295. https://doi.org/10.1016/S0021-9797(03)00511-3
[35] D. Thapa, V.R. Palkar, M.B. Kurup, S.K. Malik, Properties of magnetite nanoparticles synthesized through a novel chemical route, Mater. Lett. 58 (2004) 2692-2694. https://doi.org/10.1016/j.matlet.2004.03.045
[36] H. Pardoe, W. Chua-anusorn, T.G. St. Pierre, J. Dobson, Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol, J. Magn. Magn. Mater. 225 (2001) 41-46. https://doi.org/10.1016/S0304-8853(00)01226-9
[37] S.E. Khalafalla, G.W. Reimers, Preparation of dilution-stable aqueous magnetic fluids, IEEE Trans. Magn. 16 (1980), 178-183. https://doi.org/10.1109/TMAG.1980.1060578
[38] R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Trans. Magn. 17 (1981) 1247-1248. https://doi.org/10.1109/TMAG.1981.1061188
[39] R. Massart, V. Cabuil, Synthèseen milieu alcalin de magnétitecolloïdale: contrôle du rendement et de la taille des particules: Synthesis of colloid dal magnetite in alkaline medium: yield and particle size control, J. Chim. Phys. 84 (1987) 967-973. https://doi.org/10.1051/jcp/1987840967
[40] C. Iacovita, I. Fizeșan, A. Pop, L. Scorus, R. Dudric, G. Stiufiuc, N. Vedeanu, R. Tetean, F. Loghin, R. Stiufiuc, C.M. Lucaciu, In Vitro Intracellular Hyperthermia of Iron Oxide Magnetic Nanoparticles, Synthesized at High Temperature by a Polyol Process, Pharmaceutics. 12 (2020) 424. https://doi.org/10.3390/pharmaceutics12050424
[41] F. Arteaga-Cardona, N.G. Martha-Aguilar, J.O. Estevez, U. Pal, M.Á. Méndez-Rojas, U. Salazar-Kuri, Variations in magnetic properties caused by size dispersion and particle aggregation on CoFe2O4, SN Appl. Sci. 1 (2019) 412. https://doi.org/10.1007/s42452-019-0447-y
[42] B.I. Kharisov, H. Dias, O.V. Kharissova, A. Vázquez, Y.F. Peña, I. Gómez, Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends, RSC Advances. 4 (2014) 45354-45381. https://doi.org/10.1039/C4RA06902A
[43] R. Massart, J. Roger, V. Cabuil, New Trends in Chemistry of Magnetic Colloids: Polar and Non-Polar Magnetic Fluids, Emulsions, Capsules and Vesicles, Braz. J. Phys. 25 (1995) 135-141.
[44] S. Neveu-Prin, V. Cabuil, R. Massart, P. Escaffre, J. Dussaud, Encapsulation of magnetic fluids, J. Magn. Magn. Mater. 122 (1993) 42-45. https://doi.org/10.1016/0304-8853(93)91035-6
[45] J.P. Jolivet, P. Belleville, E. Tronc, J. Livage, Influence of Fe(II) on the formation of the Spinel iron oxide in alkaline medium, J. Clays Clay Miner. 40 (1992) 531-539. https://doi.org/10.1346/CCMN.1992.0400506
[46] E. Tronc, P. Belleville, J.P. Jolivet, J. Livage, Transformation of ferric hydroxide into spinel by iron(II) adsorption, Langmuir 8 (1992) 313-319. https://doi.org/10.1021/la00037a057
[47] M. Bustamante-Torres, D. Romero-Fierro, J. Estrella-Nuñez, B. Arcentales-Vera, E. Chichande-Proaño, E. Bucio, Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review, Polymers, 14 (2022) 752. https://doi.org/10.3390/polym14040752
[48] J.P. Jolivet, Metal Oxide Chemistry and Synthesis from Solution to Solid State, Wiley: Chichester, U.K., 2000.
[49] X. Qui, Synthesis and characterization of magnetic nanoparticles. Chin. J. Chem. 18 (2000) 834-837. https://doi.org/10.1002/cjoc.20000180607
[50] R.F. Ziolo, E.P. Giannelis, B.A. Weinstein, M.P. O’Horo, B.N. Ganguly, V. Mehrotra, M.W. Russell, D.R. Huffman, Matrix-Mediated Synthesis of Nanocrystalline γ-Fe2O3: A New Optically Transparent Magnetic, Mater. Sci. 257 (1992) 219-223. https://doi.org/10.1126/science.257.5067.219
[51] L.F. Shen, P.E. Laibinis, T.A. Hatton, Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces, Langmuir. 15 (1999) 447-453. https://doi.org/10.1021/la9807661
[52] A. Ali, H. Zafar, M. Zia, I. ul Haq, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnology, Science and Applications. 9 (2016) 49-67. https://doi.org/10.2147/NSA.S99986
[53] B. Mao, Z. Kang, E. Wang, S. Lian, L. Gao, C. Tian, C. Wang, Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method, Mater. Res. Bull. 41 (2006) 2226-2231. https://doi.org/10.1016/j.materresbull.2006.04.037
[54] H. Zhu, D. Yang, L. Zhu, Hydrothermal growth and characterization of magnetite (Fe3O4) thin films, Surf. Coat. Technol. 201 (2007) 5870-5874. https://doi.org/10.1016/j.surfcoat.2006.10.037
[55] S. Giri, S. Samanta, S. Maji, S. Ganguli, A. Bhaumik, Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method, J. Magn. Magn. Mater. 285 (2005) 296-302. https://doi.org/10.1016/j.jmmm.2004.08.007
[56] M.A. Willard, L.K. Kurihara, E.E. Carpenter, S. Calvin, V.G Harris, H. Nalwa, Encyclopedia of Nanoscience and Nanotechnology, fifth ed., vol. 1, American Scientific Publishers, Valencia, CA, 2004, 815.
[57] D. Chen, R. Xu, Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders, Mater. Res. Bull. 33 (1998) 1015-1021. https://doi.org/10.1016/S0025-5408(98)00073-7
[58] Y.H. Zheng, Y. Cheng, F. Bao, Y.S. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles, Mater. Res. Bull. 41 (2006) 525-529. https://doi.org/10.1016/j.materresbull.2005.09.015
[59] F.C. Meldrum, B.R. Heywood, S. Mann, Magnetoferritin: in vitro synthesis of a novel magnetic protein, Science 257 (1992) 522. https://doi.org/10.1126/science.1636086
[60] D.P.E. Dickson, S.A. Walton, S. Mann, K. Wong, Properties of magnetoferritin: a novel biomagnetic nanoparticle. Nanostruct. Mater. 9 (1997) 595-598. https://doi.org/10.1016/S0965-9773(97)00133-5
[61] A.M. Abu-Dief, S.M. Abdel-Fatah, Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis, Beni-Suef University Journal of Basic and Applied Sciences, 7 (2018) 55-67. https://doi.org/10.1016/j.bjbas.2017.05.008
[62] T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process, J. Am. Chem. Soc. 123 (2001) 12798-12801. https://doi.org/10.1021/ja016812s
[63] S. Sato, T. Murakata, H. Yanagi, F. Miyasaka, S. Iwaya, Hydrothermal synthesis of fine perovskite PbTiO3 powders with a simple mode of size distribution, J. Mater. Sci. 29 (1994) 5657-5663. https://doi.org/10.1007/BF00349961
[64] K. Woo, J. Hong, J.P. Ahn, Synthesis and surface modification of hydrophobic magnetite to processible magnetite@silica-propylamine, J. Magn. Magn. Mater. 293 (2005) 177-181. https://doi.org/10.1016/j.jmmm.2005.01.058
[65] S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li. Monodisperse MFe2O4 (M= Fe, Co, Mn) Nanoparticles, J. Am. Chem. Soc. 126 (2004), 273-279. https://doi.org/10.1021/ja0380852
[66] J. Park, E. Lee, N.M. Hwang, M. Kang, S.C. Kim, J.G. Hwang, G. Park, H.J. Noh, J.H. Kim, J. Park, H. Hyeron, One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles, Angew. Chem. Int. Ed. 44 (2005) 2873-2877. https://doi.org/10.1002/anie.200461665
[67] N.R. Jana, Y. Chen, X. Peng, Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach, Chem. Mater. 16 (2004) 3931-3935. https://doi.org/10.1021/cm049221k
[68] J. Park, K. An, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park N.M. Hwang, J.H. Hyeron, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater. 3 (2004) 891-895. https://doi.org/10.1038/nmat1251
[69] Z. Li, H. Chen, H.B. Bao, M.Y. Gao, One-Pot Reaction to Synthesize Water-Soluble Magnetite, Nanocrystals Chem. Mater. 16 (2004) 1391-1393. https://doi.org/10.1021/cm035346y
[70] J. Wan, W. Cai, J. Feng, X. Meng, E. Liu, In-situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols, J. Mater. Chem. 17 (2007) 1188. https://doi.org/10.1039/b615527h
[71] Z. Li, Q. Sun, M. Gao, Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe3O4, Angew. Chem. Int. Ed. 44 (2004) 123-126. https://doi.org/10.1002/anie.200460715
[72] Z. Li, L. Wei, M. Gao, H. Lei, One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles, Adv. Mater. 8 (2005) 1001-1005. https://doi.org/10.1002/adma.200401545
[73] Y.W. Jun, Y.M. Huh, J.S. Choi, J.H. Lee, H.T. Song, S. Kim, S. Yoon, K.S. Kim, J.S. Shin, J.S. Suh, J. Cheon, Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging, J. Am. Chem. Soc. 127 (2005) 5732-5733. https://doi.org/10.1021/ja0422155
[74] J. Wan, W. Cai, X. Meng, E. Liu, Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging, Chem. Commun. 47 (2007) 5004-5006. https://doi.org/10.1039/b712795b
[75] D. Maity, S.N. Kale, R. Kaul-Ghanekar, J. Xue, J. Ding, Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri (ethylene glycol), J. Magn. Magn. Mater. 321 (2009) 3093-3098. https://doi.org/10.1016/j.jmmm.2009.05.020
[76] X.Q. Liu, S.W. Tao, Y.S. Shen, Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process, Sens. Acuators. A. 40 (1997) 161-165. https://doi.org/10.1016/S0925-4005(97)80256-0
[77] K.M.M. Kojima, F. Mizukami, K. Madea, Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing, J. Sol-Gel Sci. Technol. 8 (1997) 77-81. https://doi.org/10.1007/BF02436821
[78] C. Ortiz, G. Lim, M.M. Chen, G. Castillo, Physical properties of spinel iron oxide thin films, J. Mat. Res. 3 (1988) 344-350. https://doi.org/10.1557/JMR.1988.0344
[79] C. Cannas, D. Gatteschi, A. Musinu, G. Piccaluga, C. Sangregorio, Structural and magnetic properties of Fe2O3 nanoparticles dispersed over a silica matrix, J. Phys. Chem. 102 (1998) 7721-7726. https://doi.org/10.1021/jp981355w
[80] C.J. Brinker, G.W. Sherrer, Sol-Gel Science. Academic Press, New York, 1990.
[81] U. Schwertmann, R.M. Cornell, Iron oxides in the laboratory: preparation and characterization, VCH, New York, 1991.
[82] H.Z. Qi, B.A. Yan, W. Lu, C.K. Li, Y.H.A. Yang, A nonalkoxide sol-gel method for the preparation of magnetite (Fe) nanoparticles, Curr. Nanosci. 7 (2011) 381-88. https://doi.org/10.2174/157341311795542426
[83] Y. Zhang, C.P. Chay, Y.J. Luo, L. Wang, G.P. Li, Synthesis structure and electromagnetic properties Fe3O4 aerogels by sol-gel method, J. Mater. Sci. Eng. B. 188 (2014) 13-19. https://doi.org/10.1016/j.mseb.2014.06.002
[84] O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Sol-gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties, SuperlatticMicrost. 52 (2012) 793-799. https://doi.org/10.1016/j.spmi.2012.07.009
[85] A. Hasanpour, M. Niyaifar, M.E. Asan, J. Amighian, Synthesis and characterization of Fe3O4 and ZnO nanocomposites by the sol-gel method, J. Magn . Magn. Mater. 334 (2013) 41-44. https://doi.org/10.1016/j.jmmm.2013.01.016
[86] H.T. Cui, Y. Liu, W.Z. Ren, Structure switch between alpha-Fe2O3, gamma-Fe2O3 and Fe3O4 during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles, Adv. Powder Technol. 24 (2013) 93-97. https://doi.org/10.1016/j.apt.2012.03.001
[87] S. Sertel, T. Eichhorn, P.K. Plinkert, T. Efferth, Chemical composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells, Anticancer. Res. 31 (2011) 185-1891.
[88] W.W. Wang, Y.J. Zhu, Microwave-assisted synthesis of magnetite nano sheets in mixed solvents of ethylene glycol and water, Curr. Nano. Sci. 3 (2007) 171-176. https://doi.org/10.2174/157341307780619233
[89] Y.B. Khollam, S.R. Dhage, H.S. Potdar, S.B. Deshpande, P.P. Bakare, S.D. Kulkarni, S.K. Date, Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders, Mater. Lett. 56 (2002) 571-577. https://doi.org/10.1016/S0167-577X(02)00554-2
[90] H.Y. Hu, H. Yang, P. Huang, D.X. Cui, Y.Q. Peng, J.C. Zhang, F.Y. Lu, J. Lian, D.L. Shi, Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles, Chem. Commun. 46 (2010) 3866-3868. https://doi.org/10.1039/b927321b
[91] W.C. Xiao, H.C. Gu, D. Li, D.D. Chen, X.Y. Deng, Z. Jiao, J. Lin, Microwave-assisted synthesis of magnetite nanoparticles for MR blood pool contrast agents, J. Magn. Magn. Mater. 324 (2012) 488-494. https://doi.org/10.1016/j.jmmm.2011.08.029
[92] S. Komarneni, W.W. Hu, Y.D. Noh, A. Van Orden, S.H. Feng, C.Z. Wei, H. Pang, F. Gao, Q.Y. Lu, H. Katsuki, Magnetite syntheses from room temperature to 150 degrees C with and without microwaves, Ceram Int. 38 (2012) 2563-2568. https://doi.org/10.1016/j.ceramint.2011.11.027
[93] A. Nan, R. Turcu, I. Crăciunescu, O. Pana, H. Scharf, J. Liebscher, Microwave-Assisted Graft Polymerization of epsilon-caprolactone on to magnetite, J. Poly. Sci. Part A: Poly. Chem. 47 (2009) 5397-5404. https://doi.org/10.1002/pola.23589
[94] M. Gobe, K. Konno, K. Kandori, A. Kitahara, Preparation and characterization of monodisperse magnetite sols in W/O microemulsion, J. Coll. Inter. Sci. 93 (1983) 293-295. https://doi.org/10.1016/0021-9797(83)90411-3
[95] T. Lu, J.H. Wang, J. Yin, A.Q. Wang, X.D. Wang, T. Zhang, Surfactant effects on the microstructures of Fe3O4 nanoparticles synthesized by microemulsion method, J. Coll. Surf. A. 436 (2013) 675-683. https://doi.org/10.1016/j.colsurfa.2013.08.004
[96] M.T. Reetz, W. Helbig, Size selective synthesis of nanostructured transition metal clusters, J. Am. Chem. Soc. 116 (1994) 7401-7402. https://doi.org/10.1021/ja00095a051
[97] C. Pascal, J.L. Pascal, F. Favier, M.A.E. Moubtassin, C. Payen, Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size, Morphology, Microstructure and Magnetic Behaviour, Chem. Mater. 11 (1999) 141-147. https://doi.org/10.1021/cm980742f
[98] B.S. Vasile, O.R. Vasile, C. Ghitulica, E. Andronescu, R. Dobranis, E. Dinu, R. Trusca, Yttria, Totally stabilized zirconia nanoparticles obtained through the pyrosol method, Phys. Status Solid. A. 207 (2010) 2499-2504. https://doi.org/10.1002/pssa.200925623
[99] W.S.A. Thongsuwan, P. Singjai, Preparation of iron oxide nanoparticles by a pyrosol technique, Key Eng. Mater. 353-358 (2007) 2175-2178 https://doi.org/10.4028/www.scientific.net/KEM.353-358.2175
[100] A. Ito, K. Ino, K. Shimizu, H. Honda, M. Kamihira, Fabrication of 3D tissue-like structure using magnetite nanoparticles and magnetic force, IEEE International Symposium on Micro-Nano Mechatronics and Human Sci. 1 (2006) 256-261. https://doi.org/10.1109/MHS.2006.320291
[101] T.K. Indira. P.K. Lakshmi, Magnetic Nanoparticles – A Review, Int. J. Pharm. 3 (2010) 1035-1042. https://doi.org/10.37285/ijpsn.2010.3.3.1
[102] S. Mann, R.B. Frankel, R.P. Blakemore, Structure, morphology and crystal growth of bacterial magnetite, Nature. 310 (1984) 405-407. https://doi.org/10.1038/310405a0
[103] D.A. Bazylinski, R.B. Frankel, H.W. Jannasch, Anaerobic magnetite production by a marine, magnetotactic bacterium, Nature. 334 (1988) 518-519. https://doi.org/10.1038/334518a0
[104] S. Mann, N.H.C. Sparks, R.B. Frankel, D.A. Bazylinski, H.W. Jannasch, Biomineralization of ferrimagnetic greigite (Fe3O4) and iron pyrite (FeS2) in a magnetotactic bacterium, Nature. 343 (1990) 258-260. https://doi.org/10.1038/343258a0
[105] H. Lee, A.M. Purdon, V. Chu, R.M. Westervelt, Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using micro electromagnets arrays, Nano. Lett. 4 (2004) 995-998. https://doi.org/10.1021/nl049562x
[106] C. Lang, D. Schuler, Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes, J. Phys. Cond. Matt. 18 (2006) 2815-2828. https://doi.org/10.1088/0953-8984/18/38/S19
[107] J.H. Fendler, Nanoparticles and nanostructured films: preparation, characterization and applications, John Wiley & Sons, 1998. https://doi.org/10.1002/9783527612079
[108] C. Yee, G. Kataby, A. Ulman, T. Prozorov, H. White, A. King, M. Rafailovich, J. Sokolov, A. Gedanken, Self-assembled monolayers of alkanesulfonic and phosphonicacids on amorphous iron oxide nanoparticles, J. Lang. 15 (1999) 7111-7115. https://doi.org/10.1021/la990663y
[109] Y. Sahoo, H. Pizem, T. Fried, D. Golodnitsky, L. Burstein, C.N. Sukenik, G. Markovich, Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids, J. Lang. 17 (2001) 7907-7911. https://doi.org/10.1021/la010703+
[110] D. Portet, B. Denizot, E. Rump, J. Lejeune, P. Jallet, Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents, J. Coll. Int. Sci. 238 (2001) 37-42. https://doi.org/10.1006/jcis.2001.7500
[111] B. Denizot, G. Tanguy, F. Hindre, E. Rump, J. Jeune, P. Jallet, Phosphorylcholine coating of iron oxide nanoparticles, J. Coll. Int. Sci. 209 (1999) 66-71. https://doi.org/10.1006/jcis.1998.5850
[112] C.C. Berry, S. Wells, S. Charles, A.S.G. Curtis, Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro, J. Bioma. 24 (2003) 4551-4557. https://doi.org/10.1016/S0142-9612(03)00237-0
[113] J. Ugelstad, P. Stenstad, L. Kilaas, W.S. Prestvik, R. Herje, A. Bererge, E. Hornes, Monodisperse magneticpolymer particles. New biochemical and biomedical applications, Blood. Purif. 11 (1993) 349-369. https://doi.org/10.1159/000170129
[114] H. Kawaguchi, K. Fujimoto, Y. Nakazawa, M. Sakagawsa, Y. Ariyoshi, M. Shidara, H. Okazaki, Y. Ebisawa, Modification and functionalization of hydrogel microspheres, J. Coll. Surf. A. Phy. Eng. Asp. 109 (1996) 147-154. https://doi.org/10.1016/0927-7757(95)03482-X
[115] F. Sauzedde, A. Elaïssari, C. Pichot, Hydrophilic magnetic polymer latexes 1. Adsorption of magneticiron oxide nanoparticles onto various cationic latexes, J. Coll. Poly. Sci. 277 (1999) 846-855. https://doi.org/10.1007/s003960050461
[116] K. Furusawa, K. Nagashima, C. Anzai, Synthetic process to control the total size and component distribution of multilayer magnetic composite particles, J. Coll. Poly. Sci. 272 (1994) 1104-1110. https://doi.org/10.1007/BF00652379
[117] J. Lee, T. Isobe, M. Senna, Preparation of ultrafine Fe particles by precipitation in the presence of PVA at high pH, J. Coll. Int. Sci. 177 (1996) 490-494. https://doi.org/10.1006/jcis.1996.0062
[118] G. Kataby, A. Ulman, R. Prozorov, A. Gedanken, Coating of amorphous iron nanoparticles by long-chain alcohols, J. Lang. 14 (1998) 1512-1515. https://doi.org/10.1021/la970978i
[119] A.K. Gupta, A.S.G. Curtis, Lactoferrin and ceruloplasmin derivatized superparamagneticiron oxide nanoparticles for targeting cell surface receptors, J. Biomat. 25 (2004) 3029-3040. https://doi.org/10.1016/j.biomaterials.2003.09.095
[120] A.T. Florence, The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual, J. Pharm. Res. 14 (1997) 259-266. https://doi.org/10.1023/A:1012029517394
[121] M. Chen, S. Yamamuro, D. Farrell, S.A. Majetich, Gold-coated iron nanoparticles for biomedical applications, J. Appl. Phys. 93 (2003) 7551-7553. https://doi.org/10.1063/1.1555312
[122] J. Lin, W. Zhou, A. Kumbhar, J. Fang, E.E. Carpenter, C.J. Connor, Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization and magnetic field-induced self-assembly, J. Sol. Stat. Chem. 159 (2001) 26-31. https://doi.org/10.1006/jssc.2001.9117
[123] E.E. Carpenter, Iron nanoparticles as potential magnetic carriers, J. Magn. Magn. Mat. 225 (2001) 17-20. https://doi.org/10.1016/S0304-8853(00)01222-1
[124] W.L. Zhou, E.E. Carpenter, J. Lin, A. Kumbhar, J. Sims, C.J. Connor, Nanostructures of gold coated iron core-shell nanoparticles and the nanobands assembled under magnetic field, Eur. Phys. J.D. 16 (2001) 289-292. https://doi.org/10.1007/s100530170112
[125] P. Mulvaney, L.M. Liz-Marzan, M. Giersig, T. Ung, Silica encapsulation of quantum dots and metal clusters, J. Mater. Chem. 10 (2000) 1259-1270. https://doi.org/10.1039/b000136h
[126] P. Tartaj, T. Gonzalez-Carreno, C.J. Serna, Synthesis of nanomagnets dispersed in colloidal silica cages with applications in chemical separation, J. Lang. 18 (2002) 4556-4558. https://doi.org/10.1021/la025566a
[127] P. Tartaj, T. Gonzalez-Carreno, C.J. Serna, Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties, J. Adv. Mat. 13 (2001) 1620-1624. https://doi.org/10.1002/1521-4095(200111)13:21<1620::AID-ADMA1620>3.0.CO;2-Z
[128] A.M. Morawski, P.M. Winter, K.C. Crowder, S.D. Caruthers, R.W. Fuhrhop, M.J. Scott, J.D. Robertson, D.R. Abendschein, G.M. Lanza, S.A. Wickline, Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI, J. Magn. Res. Med. 51 (2004) 480-486. https://doi.org/10.1002/mrm.20010
[129] P.G. Shepherd, J. Popplewell, S.W. Charles, A method of producing ferrofluid with gadolinium particles, J. Phy. D. App. Phy. 3 (1970) 1985-1986. https://doi.org/10.1088/0022-3727/3/12/430
[130] S.L. Tie, Y.Q. Lin, H.C. Lee, Y.S. Bae, C. Lee, Amino acid-coated nano-sized magnetite particles prepared by two-step transformation, Colloids. Surf. A. 273 (2006) 75-83. https://doi.org/10.1016/j.colsurfa.2005.08.027
[131] D. Evoy, M. Lieberman, T.J. Fahey, M.J. Daly, Immunonutrition: the role of arginine, Nutrition. 14 (1998) 611-617. https://doi.org/10.1016/S0899-9007(98)00005-7
[132] R.C. Winterhalder, F.R. Hirsch, G. K. Kotantoulas, W. A. Franklin, & P. A. Bunn Jr., Chemoprevention of lung cancer–from biology to clinical reality. Ann Oncol. 15 (2004) 185-196. https://doi.org/10.1093/annonc/mdh051
[133] M. Zafarullaha, W.Q. Lia, J. Sylvstera, M. Ahmad, Cell Molecular mechanisms of N-acetylcysteine actions, Mol. Lif Sci. 60 (2003) 6-20. https://doi.org/10.1007/s000180300001
[134] X. Hong, W. Guo, H. Yuan, J. Li, Y. Liu, L. Ma, Y. Bai, T. Li, Periodate oxidation of nanoscaled magnetic dextran composites, Journal of Magnetism and Magnetic Materials, 269 (2004) 95-100. https://doi.org/10.1016/S0304-8853(03)00566-3
[135] M. Mahmoudi, A. Simchi, M. Imani, A.S. Milani, P. Stroeve, Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging, J. Phys. Chem. B. 112 (2008) 14470-14481. https://doi.org/10.1021/jp803016n
[136] T.K. Jain, S.P. Foy, B. Erokwu, S. Dimitrijevic, C.A. Flask, V. Labhasetwar, Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice, Biomat. 30 (2009) 6748-6756. https://doi.org/10.1016/j.biomaterials.2009.08.042
[137] D. Arndt, V. Zielasek, W. Dreher, M. Bäumer, Ethylene diamine-assisted synthesis of iron oxide nanoparticles in high-boiling polyolys, Journal of Colloid and Interface Science, 417 (2014) 188-198. https://doi.org/10.1016/j.jcis.2013.11.023
[138] H.J. Chung, H. Lee, K.H. Bae, Y. Lee, J. Park, S.W. Cho, J.Y. Hwang, H. Park, R. Langer, D. Anderson, T.G. Park, Facile synthetic route for surface-functionalized magnetic nanoparticles: Cell labeling and magnetic resonance imaging studies, ACS Nano, 5 (2011) 4329-4336. https://doi.org/10.1021/nn201198f
[139] M. Babic, D. Horák, M. Trchová, Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling, Bioconjugate Chemistry. 19 (2008) 740-750. https://doi.org/10.1021/bc700410z
[140] C. Schweiger, C. Pietzonka, J. Heverhagen, T. Kissel, Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging, Int. J. Pharm. 408 (2011)130-137. https://doi.org/10.1016/j.ijpharm.2010.12.046
[141] H.S. Lee, K.E. Hee, H. Shao, K.B. Kook, Synthesis of SPIO-chitosan microspheres for MRI-detectable embolotherapy, J. Magn. Magn. Mater. 293 (2005) 102-105. https://doi.org/10.1016/j.jmmm.2005.01.049
[142] L. Lartigue, P. Hugounenq, D. Alloyeau, S.P. Clarke, M. Lévy, J.C. Bacri, Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents, ACS Nano. 6 (2012)10935-10949. https://doi.org/10.1021/nn304477s
[143] H.T.R. Wiogo, M. Lim, V. Bulmus, L. Gutiérrez, R.C. Woodward, R. Amal, Insight into serum protein interactions with functionalized magnetic nanoparticles in biological media, Langmuir. 28 (2012) 4346-4356. https://doi.org/10.1021/la204740t
[144] Bar-Shir, L. Avram, S. Yariv-Shoushan, D. Anaby, S. Cohen, N. Segev-Amzaleg, Alginate-coated magnetic nanoparticles for noninvasive MRI of extracellular calcium, NMR Biomed. 27 (2014) 774-783. https://doi.org/10.1002/nbm.3117
[145] F. Hu, K.W. Macrenaris, E.A. Waters, E.A. Schultz-Sikma, A.L. Eckermann, T.J. Meade, Highly dispersible, superparamagnetic magnetite nanoflowers for magnetic resonance imaging, Chem. Commun. 46 (2010) 73-75. https://doi.org/10.1039/B916562B
[146] B. Sivakumar, R.G. Aswathy, Y. Nagaoka, M. Suzuki, T. Fukuda, Y. Yoshida, Multifunctional carboxymethyl cellulose-based magnetic nanovector as a theragnostic system for folate receptor targeted chemotherapy, imaging, and hyperthermia against cancer, Langmuir. 29 (2013) 3453-3466. https://doi.org/10.1021/la305048m
[147] G. Wang, X. Zhang, A. Skallberg, Y. Liu, Z. Hu, X. Mei, One-step synthesis of water dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging, Nanoscale. 6 (2014) 2953-2963. https://doi.org/10.1039/c3nr05550g
[148] E. Illes, M. Szekeres, E. Kupcsik, E. Kupsick, I.Y. Toth, K. Farkas, A. Jedlovszky-Hajdu, PEGylation of surfacted magnetite core-shell nanoparticles for biomedical application, Colloids Surf. A. 460 (2014) 429-440. https://doi.org/10.1016/j.colsurfa.2014.01.043
[149] Z. Chen, B. Li, J. Zhang, L. Qin, D. Zhou, Y. Han, Z. Du, Z. Guo, Y. Song, R. Yang, Quorum sensing affects virulence associated proteins F1, LcrV, KatYand pH6 etc. of Yersinia pestis as revealed by protein microarray-based antibody profiling, Microbes Infect. 8 (2006) 2501-2508. https://doi.org/10.1016/j.micinf.2006.06.007
[150] K.J. Widder, A.E. Senyei, D.F. Ranney, Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumour agents, J. Adv. Pharmacol. Chemother. 16 (1979) 213-271. https://doi.org/10.1016/S1054-3589(08)60246-X
[151] G. Unsoy, U. Gunduz, O. Oprea, D. Ficai, M. Sonmez, M. Radulescu, M. Alexie, A. Ficai, Magnetite: from synthesis to applications. Curr Top Med Chem., 15(2015) 1622-1640. https://doi.org/10.2174/1568026615666150414153928
[152] P. Theamdee, R. Traiphol, B. Rutnakornpituk, U. Wichai, M. Rutnakornpituk, Surface modification of magnetite nanoparticle with azobenzene-containing water dispersible polymer, J. Nano. Part. Res. 13 (2011) 4463-4477. https://doi.org/10.1007/s11051-011-0399-7
[153] D. Dorniani, A.U. Kura, S.H. Hussein-Al-Ali, M.Z. Bin Hussein, S. Fakurazi, A.H. Shaari, Z. Ahmad, Release Behavior and Toxicity Profiles towards Leukemia (WEHI-3B) Cell Lines of 6-Mercaptopurine-PEG-Coated Magnetite Nanoparticles Delivery System, Sci. World J. 2014 (2014) 1-11. https://doi.org/10.1155/2014/972501
[154] A.F. Wang, W.X. Qi, N. Wang, J.Y. Zhao, F. Muhammad, K. Cai, H. Ren, F.X. Sun, L. Chen, Y.J. Guo, M.Y. Guo, G.S. Zhu, A smart nanoporoustheranostic platform for simultaneous enhanced MRI and drug delivery, Micropor. Mesopor. Mat. 180 (2013) 1-7. https://doi.org/10.1016/j.micromeso.2013.06.015
[155] N.K. Verma, K. Crosbie-Staunton, A. Satti, S. Gallagher, K.B. Ryan, T. Doody, C. McAtamney, R. MacLoughlin, P. Galvin, C.S. Burke, Y. Volkov, Y.K. Gun’ko, Magnetic core-shell nanoparticles for drug delivery by nebulization, J. Nanobiotechnol. 11 (2013) 1-12. https://doi.org/10.1186/1477-3155-11-1
[156] Q. Yuan, R. Venkatasubramanian, S. Hein, R.D.K. Misra, A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer, Acta. Biomater. 4 (2008) 1024-1037. https://doi.org/10.1016/j.actbio.2008.02.002
[157] G. Unsoy, S. Yalcin, R. Khodadust, P. Mutlu, O. Onguru, U. Gunduz, Chitosan magnetic nanoparticles for pH responsive Bortezomib release in cancer therapy, Biomed. Pharma. 68 (2014) 641-648. https://doi.org/10.1016/j.biopha.2014.04.003
[158] G. Unsoy, R. Khodadust, S. Yalcin, P. Mutlu, U. Gunduz, Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery, Eur. J Pharm. Sci. 62 (2014) 234-250. https://doi.org/10.1016/j.ejps.2014.05.021
[159] M. Konishi, Y. Tabata, M. Kariya, H. Hosseinkhani, A. Suzuki, K. Fukuhara, M. Mandai, A. Takakura, S. Fujii, In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel, J. Cont. Rel. 103 (2005) 7-19. https://doi.org/10.1016/j.jconrel.2004.11.014
[160] J.H. Kim, Y.S. Kim, K. Park, S. Lee, H.Y. Nam, K.H. Min, H.G. Jo, J.H. Park, K. Choi, S.Y. Jeong, R.W. Park, I.S. Kim, K. Kim, I.C. Kwon, Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice, J. Cont. Rel. 127 (2008) 41-49. https://doi.org/10.1016/j.jconrel.2007.12.014
[161] X.Y. Zhang, L. Xue, J. Wang, Q. Liu, J.Y. Liu, Z. Gao, W.L. Yang, Effects of surface modification on the properties of magnetic nanoparticles/PLA composite drug carriers and in vitro controlled release study, Colloid Surface A. 431 (2013) 80-86. https://doi.org/10.1016/j.colsurfa.2013.04.021
[162] S. Sieben, C. Bergemann, A. Lukbbe, B. Brockmann, D. Rescheleit, Comparison of different particles and methods for magnetic isolation of circulating tumor cells, J. Magn. Magn. Mat. 225 (2001) 175-179. https://doi.org/10.1016/S0304-8853(00)01248-8
[163] Y.Q. Zhang, L.L. Li, F. Tang, J. Ren, Controlled Drug Delivery System Based on Magnetic Hollow Spheres/Polyelectrolyte Multilayer Core-Shell Structure, J. Nanosci. Nanotech. 6 (2006) 3210-3214. https://doi.org/10.1166/jnn.2006.469
[164] L. Li, D. Chen, Y. Zhang, Z. Deng, X. Ren, X. Meng, F. Tang, J. Ren, L. Zhang, Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system, Nanotech. 18 (2007) 102-108. https://doi.org/10.1088/0957-4484/18/40/405102
[165] S.H. Hu, C.H. Tsai, C.F. Liao, D.M. Liu, S.Y. Chen, Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery, Langmuir, 24 (2008) 11811-11818. https://doi.org/10.1021/la801138e
[166] M.C. Urbina, S. Zinoveva, T. Miller, C.M. Sabliov, W.T. Monroe, C.S.S.R. Kumar, Investigation of Magnetic Nanoparticle−Polymer Composites for Multiple-controlled Drug Delivery, J. Phy. Chem. C. 112 (2008) 11102-11108. https://doi.org/10.1021/jp711517d
[167] Q. He, Y. Tian, Y. Cui, H. Möhwald, J. Li, Layer-by-layer assembly of magnetic polypeptide nanotubes as a DNA carrier, J. Mat. Chem. 18 (2008) 748-754. https://doi.org/10.1039/b715770c
[168] P.V. Finotelli, D. Da Silva, M. Sola-Penna, A.M. Rossi, M. Farina, L.R. Andrade, A.Y. Takeuchi, M.H. Rocha-Leao, Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin, J. Colloids and Surfaces B: Biointerfaces. 81 (2010) 206-211. https://doi.org/10.1016/j.colsurfb.2010.07.008
[169] S.S. Banerjee, D.H. Chen, Cyclodextrin-conjugated nanocarrier for magnetically guided delivery of hydrophobic drugs, J. Nano. Res. 11 (2009) 2071-2078. https://doi.org/10.1007/s11051-008-9572-z
[170] B. Chen, H. Zhang, C. Zhai, N. Du, C. Sun, J. Xue, D. Yang, H. Huang, B. Zhang, Q. Xie, Y. Wu, Carbon nanotube-based magnetic-fluorescent nanohybrids as highly efficient contrast agents for multimodal cellular imaging, J. Mat. Chem. 20 (2010) 9895-9902. https://doi.org/10.1039/c0jm00594k
[171] B. Koppolu, M. Rahimi, S. Nattama, A. Wadajkar, K.T. Nguyen, Development of multiple-layer polymeric particles for targeted and controlled drug delivery, Nanomedicine: Nanotech, Bio, and Med. 6 (2010) 355-361. https://doi.org/10.1016/j.nano.2009.07.008
[172] S. Purushotham, R.V. Ramanujan, Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy, Acta Biomaterialia. 6 (2010) 502-510. https://doi.org/10.1016/j.actbio.2009.07.004
[173] P.Y. Chen, H.L. Liu, M.Y. Hua, H.W. Yang, C.Y. Huang, P.C. Chu, L.A. Lyu, I.C. Tseng, L.Y. Feng, H.C. Tsai, S.M. Chen, Y.J. Lu, J.J. Wang, T.C. Yen, Y.H. Ma, T. Wu, J.P. Chen, J.I. Chuang, J.W. Shin, C. Hsueh, K.C. Wei, Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment, Neuro-Oncology. 12 (2010) 1050-1060. https://doi.org/10.1093/neuonc/noq054
[174] K. Katagiri, M. Nakamura, K. Koumoto, Preparation of hybrid hollow capsules formed with Fe3O4 and polyelectrolytes via the layer-by-layer assembly and the aqueous solution process, American Chem. Soc. 2 (2010) 768-773. https://doi.org/10.1016/j.jcis.2009.09.014
[175] A. Shkilnyy, E. Munnier, K. Hervé, M. Soucé, R. Benoit, S. Cohen-Jonathan, P. Limelette, M. Saboungi, P. Dubois, I. Chourpa, Synthesis and Evaluation of Novel Biocompatible Superparamagnetic Iron Oxide Nanoparticles as Magnetic Anticancer Drug Carrier and Fluorescence Active Label, Phy. Chem. C. 114 (2010) 5850-5858. https://doi.org/10.1021/jp9112188
[176] S. Shen, J. Ren, J. Chen, X. Lu, C. Deng, X. J. Jiang, Development of magnetic multiwalled carbon nanotubes combined with near-infrared radiation-assisted desorption for the determination of tissue distribution of doxorubicin liposome injects in rats, Chromatography A. 1218 (2011) 4619-4626. https://doi.org/10.1016/j.chroma.2011.05.060
[177] M.M. Yallapu, S.F. Othman, E.T. Curtis, B.K. Gupta, M. Jaggi, S.C. Chauhan, Synthesis of pH responsive hydrogel-silver nanocomposite for use as biomaterials, Biomat. 32 (2011) 1890-1905. https://doi.org/10.1016/j.biomaterials.2010.11.028
[178] H.W. Yang, M.Y. Hua, H.L. Liu, C.Y. Huang, K.C. Wei, Potential of magnetic nanoparticles for targeted drug delivery, Nanotech Sci. and App. 5 (2012) 73-86. https://doi.org/10.2147/NSA.S35506
[179] A.L. Glover, J.B. Bennett, J.S. Pritchett, S.M. Nikles, D.E. Nikles, J.A. Nikles, C.S. Brazel, Magnetic heating of iron oxide nanoparticles and magnetic micelles for cancer therapy, IEEE Trans. Magn. 49 (2013) 231-235. https://doi.org/10.1109/TMAG.2012.2222359
[180] M. Kawashita, M. Tanaka, T. Kokubo, Y. Inoue, T. Yao, S. Hamada, T. Shinjo, Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer, J. Bio. Mat. 26 (2005) 2231-2238. https://doi.org/10.1016/j.biomaterials.2004.07.014
[181] D.H. Kim, S.H. Lee, K.N. Kim, K.M. Kim, I.B. Shim, Y.K. Lee, Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application, J. Mang. Mang. Mater. 293 (2005) 287-292. https://doi.org/10.1016/j.jmmm.2005.02.078
[182] C.C. Berry, A.S.G. Curtis, Functionalisation of magnetic nanoparticles for applications in biomedicine, J. Phys. D. 36 (2003) R198-R206. https://doi.org/10.1088/0022-3727/36/13/203
[183] S.V.S. Mornet, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem. 14 (2004) 2116-2175. https://doi.org/10.1039/b402025a
[184] E. Andronescu, M. Ficai, G. Voicu, D. Ficai, M. Maganu, A. Ficai, Synthesis and characterization of collagen/hydroxyapatite: magnetite composite material for bone cancer treatment, J. Mater.Sci. Mater. M. 21 (2010) 2237-2242. https://doi.org/10.1007/s10856-010-4076-7
[185] D.H. Kim, S.H. Lee, K.N. Kim, K.M. Kim, I.B. Shim, Y.K. Lee, Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application, J. Mang. Mang. Mater, 293 (2005) 287-292. https://doi.org/10.1016/j.jmmm.2005.02.078
[186] F.Q. Hu, K.W. MacRenaris, E.A. Waters, E.A. Schultz-Sikma, A.L. Eckermann, T.J. Meade, Highly dispersible, superparamagnetic magnetite nanoflowers for magnetic resonance imaging, Chem. Commun. 46 (2010) 73-75. https://doi.org/10.1039/B916562B
[187] L.H. Shen, J.F. Bao, D. Wang, Y.X. Wang, Z.W. Chen, L. Ren, X. Zhou, X.B Ke, M. Chen, A.Q. Yang, One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bio-application, Nanoscale. 5 (2013) 2133-2141. https://doi.org/10.1039/c2nr33840h
[188] U.O. Hafeli, G.J. Pauer, In vitro and in vivo toxicity of magnetic microspheres, J. Mang. Mang. Mater. 194 (1999) 76-82. https://doi.org/10.1016/S0304-8853(98)00560-5
[189] J.M. Qu, G. Liu, Y.M. Wang, R.Y. Hong, Preparation of Fe3O4 chitosan nanoparticles used for hyperthermia, Adv. Powder. Technol. 21 (2010) 461-467. https://doi.org/10.1016/j.apt.2010.01.008
[190] Z. Liu, M. Li, X.J. Yang, M.L. Yin, J.S. Ren, X.G. Qu, The use of multifunctional magnetic mesoporous core/shell heteronanostructures in a biomolecule separation system, Biomater. 32 (2011) 4683-4690. https://doi.org/10.1016/j.biomaterials.2011.03.038
[191] B. Rittich, A. Spanova, SPE and purification of DNA using magnetic particles, J. Sep. Sci. 36 (2013) 2472-2485. https://doi.org/10.1002/jssc.201300331
[192] H.L. Hsu, R. Selvin, J.W. Cao, L.S. Roselin, M. Bououdina, Facile Synthesis of Magnetically Separable Nanozeolites for Bio-Applications, Sci. Adv. Mater. 3 (2011) 939-943. https://doi.org/10.1166/sam.2011.1221
[193] K. Aguilar-Arteaga, J.A. Rodriguez, E. Barrado, Magnetic solids in analytical chemistry: A review, Anal. Chim. Acta, 674 (2010) 157-165. https://doi.org/10.1016/j.aca.2010.06.043
[194] Z. Liu, M. Li, F. Pu, J.S. Ren, X.J. Yang, X.G. Qu, Hierarchical magnetic core-shell nanoarchitectures: non-linker reagent synthetic route and applications in a biomolecule separation system, J. Mater. Chem. 22 (2012) 2935-2942. https://doi.org/10.1039/C1JM14088D
[195] S. Panseri, C. Cunha, T. Dalessandro, M. Sandri, G. Giavaresi, M. Marcacci, C.T. Hung, A. Tampieri, Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behavior, J. Nanobiotechnol. 10 (2012) 1-10. https://doi.org/10.1186/1477-3155-10-32
[196] T. Kito, R. Shibata, M.H.I. Suzuki, T. Himeno, Y. Kataoka, T. Murohara, iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis, Scientific Report. 3 (2013) 1418. https://doi.org/10.1038/srep01418
[197] M.E.A. Konczol, Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-kappa B, Chem. Res. Toxicol. 24 (2011) 1460-1475. https://doi.org/10.1021/tx200051s
[198] W. Kai, X. Xiaojun, P. Ximing, H. Zhenqing, Z. Qiqing, Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells, Nanoscale Res. Lett. 6 (2011) 480. https://doi.org/10.1186/1556-276X-6-480
[199] M. Ishii, R. Shibata, Y. Numaguchi, T. Kito, H. Suzuki, K. Shimizu, A. Ito, H. Honda, T. Murohara, Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method, Arterioscler. Thromb.Vasc. Biol. 31 (2011) 2210-2215. https://doi.org/10.1161/ATVBAHA.111.231100
[200] A. Ito, K. Ino, M. Hayashida, T. Kobayashi, H. Matsunuma, H. Kagami, M. Ueda, H. Honda, Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force, Tissue Eng. 11 (2005) 1553-1561. https://doi.org/10.1089/ten.2005.11.1553
[201] A. Ito, M. Hayashida, H. Honda, K. Hata, H. Kagami, M. Ueda, T. Kobayashi, Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force, Tissue Eng. 10 (2004) 873-880. https://doi.org/10.1089/1076327041348446
[202] K.C. Barick, S. Singh, D. Bahadur, M.A. Lawande, D.P. Patkar, P.A. Hassan, Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia, J. Colloid Interf. Sci. 418 (2014) 120-125. https://doi.org/10.1016/j.jcis.2013.11.076
[203] E.H. Kim, H.S. Lee, B.K. Kwak, B.K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent, J. Mang. Mang. Mater. 289 (2005) 328-330. https://doi.org/10.1016/j.jmmm.2004.11.093
[204] A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth Charact. Mater. 55 (2009) 22-45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
[205] M. Faraji, Y. Yamini, E. Tahmasebi, A. Saleh, F. Nourmohammadian, Cetyltrimethyl ammonium Bromide-Coated Magnetite Nanoparticles as Highly Efficient Adsorbent for Rapid Removal of Reactive Dyes from the Textile Companies Wastewaters, J. Iran Chem. Soc. 7 (2010) S130-S144. https://doi.org/10.1007/BF03246192