Nanocatalysts for the Photodegradation of Organic Pollutants

$30.00

Nanocatalysts for the Photodegradation of Organic Pollutants

Md. Yeasin Pabel, Md. Fardin Ehsan, Muhammed Shah Miran, and Md. Mominul Islam

Industrial and other anthropogenic activities lead to increase in persistent organic pollutants (POPs) in natural water bodies. POPs are harmful to not only the aquatic ecosystem but also human health. Researchers around the globe have been working to develop efficient, cost-effective, environmentally-friendly methods for the treatment of contaminated waters. The chapter basically focuses on the removal of POPs by catalytic advanced oxidation processes (AOPs) using nontoxic metal oxides of d-block elements such as TiO2, ZnO, MnO2 and iron oxides nanomaterials and composites with different counterparts. An insight into the fundamentals of photocatalysis is highlighted. This chapter would bestow an opportunity to evaluate the underlying prospects of the methods involving AOPs used for the degradation of POPs dissolved in water.

Keywords
Advanced Oxidation Process, Oxide Catalysts, Persistent Organic Pollutants, Photocatalysis, Degradation, Dyes

Published online 2/1/2023, 23 pages

Citation: Md. Yeasin Pabel, Md. Fardin Ehsan, Muhammed Shah Miran, and Md. Mominul Islam, Nanocatalysts for the Photodegradation of Organic Pollutants, Materials Research Foundations, Vol. 141, pp 101-123, 2023

DOI: https://doi.org/10.21741/9781644902295-5

Part of the book on Emerging Applications of Nanomaterials

References
[1] Hagetorn, C., Mc Coy, E. L., and Rahe, T. M. (1981). The potential for ground water contamination from septic effluents. Journal of Environmental Quality, 10(1), 1-8. https://doi.org/10.2134/jeq1981.00472425001000010001x
[2] Honeycutt, M., & Shirley, S. (2014). Dieldrin. Encyclopedia of Toxicology: Third Edition, 1100-1102. https://doi.org/10.1016/B978-0-12-386454-3.00132-9
[3] Sonkusare V.N., Chaudhary R.G., Bhusari G.S., Mondal A., Potbhare A.K., Mishra R.K., Juneja H.D., and Abdala A.A., Mesoporous octahedron-shaped tricobalt tetroxide nanoparticles for photocatalytic degradation of toxic dyes, ACS Omega.2020, 5, 7823-7835. https://doi.org/10.1021/acsomega.9b03998
[4] Hossain, M., Pabel, M., & Islam, M. (2022). Fenton-like processes for the removal of cationic dyes. In Advanced Oxidation Processes in Dye-Containing Wastewater (pp. 29-89). Springer, Singapore. https://doi.org/10.1007/978-981-19-0882-8_2
[5] Deb, A. K., Miran, M. S., & Mollah, M. Y. A. (2013). Active carbon prepared from vegetable wastes for the treatment of Pb (II) in aqueous medium. Bangladesh Journal of Scientific and Industrial Research, 48(2), 97-104. https://doi.org/10.3329/bjsir.v48i2.15739
[6] Sonkusare V.N., Chaudhary R.G., Bhusari G., Rai A.R., and Juneja H.D., Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3 microflowers/novel γ-Bi2O3 microspindles, Nano-Struct. Nano-Objects,2018,13, 121-131. https://doi.org/10.1016/j.nanoso.2018.01.002
[7] Sousa, M. A., Gonçalves, C., Pereira, J. H., Vilar, V. J., Boaventura, R. A., & Alpendurada, M. F. (2013). Photolytic and TiO2-assisted photocatalytic oxidation of the anxiolytic drug lorazepam (Lorenin® pills) under artificial UV light and natural sunlight: A comparative and comprehensive study. Solar Energy, 87, 219-228. https://doi.org/10.1016/j.solener.2012.10.013
[8] J. Jacob (2013). A Review of the accumulation and distribution of persistent organic pollutants in the environment. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(6), 657-661. https://doi.org/10.7763/IJBBB.2013.V3.297
[9] Yasmina, M., Mourad, K., Mohammed, S. H., & Khaoula, C. (2014). Treatment heterogeneous photocatalysis; factors influencing the photocatalytic degradation by TiO2. Energy Procedia, 50, 559-566. https://doi.org/10.1016/j.egypro.2014.06.068
[10] Dehghani, M., Nadeem, H., Singh Raghuwanshi, V., Mahdavi, H., Banaszak Holl, M. M., & Batchelor, W. (2020). ZnO/cellulose nanofiber composites for sustainable sunlight-driven dye degradation. ACS Applied Nano Materials, 3(10), 10284-10295. https://doi.org/10.1021/acsanm.0c02199
[11] Zhang, K. L., Liu, C. M., Huang, F. Q., Zheng, C., & Wang, W. D. (2006). Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Applied Catalysis B: Environmental, 68(3-4), 125-129. https://doi.org/10.1016/j.apcatb.2006.08.002
[12] Vela, N., Calín, M., Yáñez-Gascón, M. J., el Aatik, A., Garrido, I., Pérez-Lucas, G., Fenoll, J., & Navarro, S. (2019). Removal of pesticides with endocrine disruptor activity in wastewater effluent by solar heterogeneous photocatalysis using ZnO/Na2S2O8. Water, Air, & Soil Pollution, 230(6), 1-11. https://doi.org/10.1007/s11270-019-4185-y
[13] Ashkarran, A. A., Fakhari, M., Hamidinezhad, H., Haddadi, H., & Nourani, M. R. (2015). TiO2 nanoparticles immobilized on carbon nanotubes for enhanced visible-light photo-induced activity. Journal of Materials Research and Technology, 4(2), 126-132. https://doi.org/10.1016/j.jmrt.2014.10.005
[14] Chouke, P.B.; Dadure, K.M.; Potbhare, A.K.; Bhusari, G.S.; Mondal A.; Chaudhary, K.; Singh, V.; Desimone, M.F.; Chaudhary, R.G.; Masram, D.T. Biosynthesized δ-Bi2O3 Nanoparticles from Crinum viviparum Flower Extract for Photocatalytic Dye Degradation and Molecular Docking, ACS Omega 2022, 7, 24, 20983-20993. https://doi.org/10.1021/acsomega.2c01745
[15] Sun, W., Meng, Q., Jing, L., Liu, D., & Cao, Y. (2013). Facile synthesis of surface-modified nanosized α-Fe2O3 as efficient visible photocatalysts and mechanism insight. The Journal of Physical Chemistry C, 117(3), 1358-1365. https://doi.org/10.1021/jp309599d
[16] Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. Journal of Hazardous Materials, 170(2-3), 520-529. https://doi.org/10.1016/j.jhazmat.2009.05.039
[17] Jangid, N. K., Jadoun, S., Yadav, A., Srivastava, M., & Kaur, N. (2021). Polyaniline-TiO2-based photocatalysts for dyes degradation. Polymer Bulletin, 78(8), 4743-4777. https://doi.org/10.1007/s00289-020-03318-w
[18] Sraw, A., Kaur, T., Pandey, Y., Sobti, A., Wanchoo, R. K., & Toor, A. P. (2018). Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water. Journal of Environmental Chemical Engineering, 6(6), 7035-7043. https://doi.org/10.1016/j.jece.2018.10.062
[19] Amiri, H., Nabizadeh, R., Martinez, S. S., Shahtaheri, S. J., Yaghmaeian, K., Badiei, A., Nazmara, S., & Naddafi, K. (2018). Response surface methodology modeling to improve degradation of chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicology and Environmental Safety, 147, 919-925. https://doi.org/10.1016/j.ecoenv.2017.09.062
[20] Ananpattarachai, J., & Kajitvichyanukul, P. (2015). Photocatalytic degradation of p, p′-DDT under UV and visible light using interstitial N-doped TiO2. Journal of Environmental Science and Health, Part B, 50(4), 247-260. https://doi.org/10.1080/03601234.2015.999592
[21] Chalasani, R., & Vasudevan, S. (2013). Cyclodextrin-functionalized Fe3O4@TiO2: Reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS Nano, 7(5), 4093-4104. https://doi.org/10.1021/nn400287k
[22] Topkaya, E., Konyar, M., Yatmaz, H. C., & Öztürk, K. (2014). Pure ZnO and composite ZnO/TiO2 catalyst plates: a comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions. Journal of Colloid and Interface Science, 430, 6-11. https://doi.org/10.1016/j.jcis.2014.05.022
[23] Khan, S. H., Pathak, B., & Fulekar, M. H. (2018). Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe:ZnO nanocomposite material. Nanotechnology for Environmental Engineering, 3(1), 1-14. https://doi.org/10.1007/s41204-018-0041-3
[24] Yadav, S., Kumar, N., Kumari, V., Mittal, A., & Sharma, S. (2019). Photocatalytic degradation of triclopyr, a persistent pesticide by ZnO/SnO2 nano-composites. Materials Today: Proceedings, 19, 642-645. https://doi.org/10.1016/j.matpr.2019.07.746
[25] Shao, P., Ren, Z., Tian, J., Gao, S., Luo, X., Shi, W., Boyin, Y., Li, J., & Cui, F. (2017). Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin α-Fe2O3 nanosheets with highly exposed (1 1 0) facets: a superior photocatalyst for degradation of bisphenol S. Chemical Engineering Journal, 323, 64-73. https://doi.org/10.1016/j.cej.2017.04.069
[26] Koli, P. B., Kapadnis, K. H., & Deshpande, U. G. (2019). Transition metal decorated Ferrosoferric oxide (Fe3O4): An expeditious catalyst for photodegradation of Carbol Fuchsin in environmental remediation. Journal of Environmental Chemical Engineering, 7(5), 103373. https://doi.org/10.1016/j.jece.2019.103373
[27] Choi, K. H., Min, J., Park, S. Y., Park, B. J., & Jung, J. S. (2019). Enhanced photocatalytic degradation of tri-chlorophenol by Fe3O4@TiO2@Au photocatalyst under visible-light. Ceramics International, 45(7), 9477-9482. https://doi.org/10.1016/j.ceramint.2018.09.104
[28] Cao, H., & Suib, S. L. (1994). Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts. Journal of the American Chemical Society, 116(12), 5334-5342. https://doi.org/10.1021/ja00091a044
[29] Kim, E. J., Oh, D., Lee, C. S., Gong, J., Kim, J., & Chang, Y. S. (2017). Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: Crystal phase-dependent behavior. Catalysis Today, 282, 71-76. https://doi.org/10.1016/j.cattod.2016.03.034
[30] Shohel, M., Miran, M. S., Susan, M.H. & Mollah, M. Y. A. (2016). Calcination temperature-dependent morphology of photocatalytic ZnO nanoparticles prepared by an electrochemical-thermal method. Research on Chemical Intermediates, 42(6), 5281-5297. https://doi.org/10.1007/s11164-015-2358-x
[31] Hassan, F., Miran, M. S., Simol, H. A., Susan, M. H., & Mollah, M. Y. A. (2015). Synthesis of ZnO nanoparticles by a hybrid electrochemical-thermal method: Influence of calcination temperature. Bangladesh Journal of Scientific and Industrial Research, 50(1), 21-28. https://doi.org/10.3329/bjsir.v50i1.23806
[32] Mishra, M., & Chun, D. M. (2015). α-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General, 498, 126-141. https://doi.org/10.1016/j.apcata.2015.03.023
[33] Crittenden, J. C., Zhang, Y., Hand, D. W., Perram, D. L., & Marchand, E. G. (1996). Solar detoxification of fuel‐contaminated groundwater using fixed‐bed photocatalysts. Water Environment Research, 68(3), 270-278. https://doi.org/10.2175/106143096X127703
[34] Mafra, G., Brognoli, R., Carasek, E., López-Lorente, Á. I., Luque, R., Lucena, R., & Cárdenas, S. (2021). Photocatalytic cellulose-paper: Deepening in the sustainable and synergic combination of sorption and photodegradation. ACS Omega, 6(14), 9577-9586. https://doi.org/10.1021/acsomega.1c00128
[35] Saad, A. M., Abukhadra, M. R., Ahmed, S. A. K., Elzanaty, A. M., Mady, A. H., Betiha, M. A., Shim, J., & Rabie, A. M. (2020). Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce-ZnO nano-flowers under visible light. Journal of Environmental Management, 258, 110043. https://doi.org/10.1016/j.jenvman.2019.110043
[36] Banerjee, A., & Bandopadhyay, R. (2016). Use of dextran nanoparticle: A paradigm shift in bacterial exopolysaccharide based biomedical applications. International Journal of Biological Macromolecules, 87, 295-301. https://doi.org/10.1016/j.ijbiomac.2016.02.059
[37] Prasanna, S. S., Balaji, K., Pandey, S., & Rana, S. (2019). Metal oxide based nanomaterials and their polymer nanocomposites. In Nanomaterials and Polymer Nanocomposites (pp. 123-144). Elsevier. https://doi.org/10.1016/B978-0-12-814615-6.00004-7
[38] Hasanpour, M., Motahari, S., Jing, D., & Hatami, M. (2021). Numerical modeling for the photocatalytic degradation of methyl orange from aqueous solution using cellulose/zinc oxide hybrid aerogel: Comparison with experimental data. Topics in Catalysis, 1-14. https://doi.org/10.1007/s11244-021-01451-y
[39] Sboui, M., Lachheb, H., Bouattour, S., Gruttadauria, M., La Parola, V., Liotta, L. F., & Boufi, S. (2021). TiO2/Ag2O immobilized on cellulose paper: A new floating system for enhanced photocatalytic and antibacterial activities. Environmental Research, 198, 111257. https://doi.org/10.1016/j.envres.2021.111257
[40] Thomas, M., Naikoo, G. A., Sheikh, M. U. D., Bano, M., & Khan, F. (2016). Effective photocatalytic degradation of congo red dye using alginate/carboxymethyl cellulose/TiO2 nanocomposite hydrogel under direct sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 327, 33-43. https://doi.org/10.1016/j.jphotochem.2016.05.005
[41] Farhadian, N., Akbarzadeh, R., Pirsaheb, M., Jen, T. C., Fakhri, Y., & Asadi, A. (2019). Chitosan modified N, S-doped TiO2 and N, S-doped ZnO for visible light photocatalytic degradation of tetracycline. International Journal of Biological Macromolecules, 132, 360-373. https://doi.org/10.1016/j.ijbiomac.2019.03.217
[42] Sarkar, S., Chakraborty, S., & Bhattacharjee, C. (2015). Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR). Ecotoxicology and Environmental Safety, 121, 263-270. https://doi.org/10.1016/j.ecoenv.2015.02.035
[43] Kosera, V. S., Cruz, T. M., Chaves, E. S., & Tiburtius, E. R. (2017). Triclosan degradation by heterogeneous photocatalysis using ZnO immobilized in biopolymer as catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 344, 184-191. https://doi.org/10.1016/j.jphotochem.2017.05.014
[44] Kansal, S. K., Singh, M., & Sud, D. (2008). Studies on TiO2/ZnO photocatalysed degradation of lignin. Journal of Hazardous materials, 153(1-2), 412-417. https://doi.org/10.1016/j.jhazmat.2007.08.091
[45] Manea, F., & Orha, C. (2018). Carbon-/zeolite-supported TiO2 for sorption/photocatalysis applications in water treatment. In Photocatalysts-Applications and Attributes. IntechOpen. https://doi.org/10.5772/intechopen.80803
[46] Mohamed, A., Salama, A., Nasser, W. S., & Uheida, A. (2018). Photodegradation of ibuprofen, cetirizine, and naproxen by PAN-MWCNT/TiO2-NH2 nanofiber membrane under UV light irradiation. Environmental Sciences Europe, 30(1), 1-9. https://doi.org/10.1186/s12302-018-0177-6
[47] Behnajady, M. A., Modirshahla, N., & Hamzavi, R. (2006). Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst. Journal of Hazardous Materials, 133(1-3), 226-232. https://doi.org/10.1016/j.jhazmat.2005.10.022
[48] Alaton, I. A., Balcioglu, I. A., & Bahnemann, D. W. (2002). Advanced oxidation of a reactive dyebath effluent: Comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, 36(5), 1143-1154. https://doi.org/10.1016/S0043-1354(01)00335-9