Emerging Nanomaterials in Drug Delivery and Therapy

$30.00

Emerging Nanomaterials in Drug Delivery and Therapy

Mahmuda Nargis, Raju Ahmed, Abu Bin Ihsan

Medical science has been influenced in a number of ways by the development of new tools for manipulating materials at the nanoscale. Physicochemical advantages like the greater surface area to mass ratio, ultra-small size, and high level of reactivity have set the nanomaterials apart from bulk materials with the same composition. Due to these unique characteristics, nanomaterials are massively used to get over the drawbacks of traditional medicinal and diagnostic drugs and offer outstanding panoramas. In this chapter, we will focus on the developments of nanomaterials in the fields of drug delivery and disease therapy, with their enormous potential and future prospects.

Keywords
Nanoparticles, Liposomes, Micelles, Hydrogel, Lipoprotein, Disease Control, Tumor, Medical Science, Diagnostic

Published online 11/15/2022, 27 pages

Citation: Mahmuda Nargis, Raju Ahmed, Abu Bin Ihsan, Emerging Nanomaterials in Drug Delivery and Therapy, Materials Research Foundations, Vol. 135, pp 125-151, 2023

DOI: https://doi.org/10.21741/9781644902172-6

Part of the book on Emerging Nanomaterials and Their Impact on Society in the 21st Century

References
[1] A. Manuja, B. Kumar, R.K. Singh, Nanotechnology developments: opportunities for animal health and production, Nanotechnol. Dev. 2,1 (2012) e4. https://doi.org/10.4081/nd.2012.e4
[2] M.S. Arayne, N. Sultana, F. Qureshi, Review: nanoparticles in delivery of cardiovascular drugs, Pak. J. Pharm. Sci. 20 (2007) 340-348.
[3] J.K. Patra, K-H. Baek, Green nanobiotechnology: factors affecting synthesis and characterization techniques, J. Nanomater. 2014 (2014) 417305. https://doi.org/10.1155/2014/417305
[4] R.R. Joseph, S.S. Venkatraman, Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine 12 (2017) 683-702. https://doi.org/10.2217/nnm-2016-0379
[5] A.Z. Mirza, F.A. Siddiqui, Nanomedicine and drug delivery: a mini review, Int. Nano. Lett. 4 (2014) 94. https://doi.org/10.1007/s40089-014-0094-7
[6] J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, M. K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein J. Nanotechnol. 9 (2018) 1050-1074. https://doi.org/10.3762/bjnano.9.98
[7] G.R. Rudramurthy, M.K. Swamy, U.R. Sinniah, A. Ghasemzadeh, Nanoparticles: alternatives against drug resistant pathogenic microbes, Molecules 21 (2016) 836. https://doi.org/10.3390/molecules21070836
[8] A. Jurj, C. Braicu, L-A. Pop, C. Tomuleasa, C.D. Gherman, I. Berindan- Neagoe, The new era of nanotechnology, an alternative to change cancer treatment, Drug Design Dev. Ther. 11 (2017) 2871-2890. https://doi.org/10.2147/DDDT.S142337
[9] S.C. Baetke, T. Lammers, F. Kiessling, Applications of nanoparticles for diagnosis and therapy of cancer, Br. J. Radiol. 88, 1054 (2015) 20150207. https://doi.org/10.1259/bjr.20150207
[10] A.I. Irimie, C. Braicu, R. Cojocneanu-Petric, I. Berindan-Neagoe, R. S. Campian. Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics, Acta. Odontol. Scand. 73, 3 (2015)161-168. https://doi.org/10.3109/00016357.2014.986754
[11] V. Ceña, P. Játiva, Nanoparticle crossing of blood-brain barrier: a road to new therapeutic approaches to central nervous system diseases, Nanomedicine (Lond). 13 (2018) 1513-1516. https://doi.org/10.2217/nnm-2018-0139
[12] Y. Zhou, Z. Peng, E.S. Seven, R.M. Leblanc, Crossing the blood-brain barrier with nanoparticles, J. Control. Release 270 (2018) 290-303. https://doi.org/10.1016/j.jconrel.2017.12.015
[13] N.K. Singh, S. K. Singh, D. Dash, P. Gonugunta, M. Misra, P. Maiti, CNT Induced β-phase in polylactide: unique crystallization, biodegradation, and biocompatibility, J. Phys. Chem. C. 117 (2013) 10163-10174. https://doi.org/10.1021/jp4009042
[14] D. Lombardo, M.A. Kiselev, M.T. Caccamo, Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine, J. Nanomater. 2019 (2019) 3702518. https://doi.org/10.1155/2019/3702518
[15] A. Mishra, S. K. Singh, D. Dash, V.K. Aswal, B. Maiti, M. Misra, P. Maiti, Self-assembled aliphatic chain extended polyurethane nanobiohybrids: Emerging hemocompatible biomaterials for sustained drug delivery, Acta. Biomater. 10 (2014) 2133-2146. https://doi.org/10.1016/j.actbio.2013.12.035
[16] D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht, S.R. Corrie, Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date, Pharm. Res. 33, 10 (2016) 2373-2387. https://doi.org/10.1007/s11095-016-1958-5
[17] S.M. Moghimi, A.C. Hunter, J.C. Murray, Nanomedicine: current status and future prospects, FASEB J. 19 (2005) 311-330. https://doi.org/10.1096/fj.04-2747rev
[18] J.L. Markman, A. Rekechenetskiy, E. Holler, J.Y. Ljubimova, Nanomedicine therapeutic approaches to overcome cancer drug resistance, Adv. Drug Deliv. Rev. 65 (2013)1866-1879. https://doi.org/10.1016/j.addr.2013.09.019
[19] G. Kapusetti, N. Misra, V. Singh, S. Srivastava, P. Roy, K. Dana, P. Maiti, Bone cement based nanohybrid as a super biomaterial for bone healing, J. Mater. Chem. B 2 (2014) 3984-3997. https://doi.org/10.1039/C4TB00501E
[20] A. Sharma, U.S. Sharma, Liposomes in drug delivery: progress and limitations, Int. J. Pharm. 154 (1997) 123-140. https://doi.org/10.1016/S0378-5173(97)00135-X
[21] K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices, J. Control. Release 70 (2001) 1-20. https://doi.org/10.1016/S0168-3659(00)00339-4
[22] J.K. Patra, G. Das, L.F. Fraceto, E.V.R.C.M. del P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grilo, M.K. Swamy, S. Sharma, S. Habtemariam, H-S. Shin, Nano based drug delivery systems: recent developments and future prospects, J. Nanobiotechnology 16 (2018) 71. https://doi.org/10.1186/s12951-018-0392-8
[23] A. Biswas, A. Shukla, P. Maiti, Biomaterials for interfacing cell imaging and drug delivery: An overview, Langmuir 35, 38, (2019) 12285-12305. https://doi.org/10.1021/acs.langmuir.9b00419
[24] N.V. Beloglazova, O.A. Goryacheva, E.S. Speranskaya, T. Aubert, P.S. Shmelin, V.R. Kurbangaleev, I.Yu. Goryacheva, S.De. Saeger, Silica-coated liposomes loaded with quantum dots as labels for multiplex fluorescent immunoassay, Talanta 134 (2015) 120-125. https://doi.org/10.1016/j.talanta.2014.10.044
[25] A. Bunker, Poly(ethylene glycol) in drug delivery, why does it work, and can we do better? All atom molecular dynamics simulation provides some answers, Phys. Procedia. 34 (2012) 24-33. https://doi.org/10.1016/j.phpro.2012.05.004
[26] F. Danhier, O. Feron, V. Préat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery, J. Control Release 148, 2 (2010) 135-146. https://doi.org/10.1016/j.jconrel.2010.08.027
[27] L. Tao, A. Faig, K.E. Uhrich, Liposomal stabilization using a sugar- based, PEGylated amphiphilic macromolecule, J. Colloid Interface Sci. 431 (2014) 112-116. https://doi.org/10.1016/j.jcis.2014.06.004
[28] I. Sugiyama, Y. Sadzuka, Enhanced antitumor activity of different double arms polyethyleneglycol-modified liposomal doxorubicin, Int. J. Pharm. 441 (2013) 279-284. https://doi.org/10.1016/j.ijpharm.2012.11.032
[29] G. Bozzuto, A. Molinari, Liposomes as nanomedical devices, Int. J. Nanomed. 10 (2015) 975-999. https://doi.org/10.2147/IJN.S68861
[30] G.H. Shin, J.T. Kim, H.J. Park. Recent developments in nanoformulations of lipophilic functional foods, Trends Food Sci. Technol. 46, 1 (2015)144-157. https://doi.org/10.1016/j.tifs.2015.07.005
[31] L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood, S. Hua, Advances and challenges of liposome assisted drug delivery, Front. Pharm. 6 (2015) 286. https://doi.org/10.3389/fphar.2015.00286
[32] N.G. Kotla, B. Chandrasekar, P. Rooney, G. Sivaraman, A. Larrañaga, K.V. Krishna, A. Pandit, Y. Rochev, Biomimetic lipid-based nanosystems for enhanced dermal delivery of drugs and bioactive agents, ACS Biomater. Sci. Eng. 3 (2017) 1262-1272. https://doi.org/10.1021/acsbiomaterials.6b00681
[33] A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S.W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, K. Nejati-Koshki, Liposome: classification, preparation, and applications, Nanoscale Res. Lett. 8 (2013) 102. https://doi.org/10.1186/1556-276X-8-102
[34] B.K. Lee, Y.H. Yun, K. Park, Smart nanoparticles for drug delivery: boundaries and opportunities, Chem. Eng. Sci. 125 (2015) 158-164. https://doi.org/10.1016/j.ces.2014.06.042
[35] J.S. Refuerzo, J.F. Alexander, F. Leonard, M. Leon, M. Longo, B. Godin, Liposomes: a nanoscale drug carrying system to prevent indomethacin passage to the fetus in a pregnant mouse model, Am. J. Obstet. Gynecol. 212, 4 (2015) 508.e1-e7. https://doi.org/10.1016/j.ajog.2015.02.006
[36] M. Rawat, D. Singh, S. Saraf, S. Saraf. Nanocarriers: promising vehicle for bioactive drugs, Biol. Pharm. Bull. 29, 9 (2006) 1790-1798. https://doi.org/10.1248/bpb.29.1790
[37] M.L. Adams, A. Lavasanifar, G.S. Kwon, Amphiphilic block copolymers for drug delivery, J. Pharm. Sci. 92, 7 (2003) 1343-55. https://doi.org/10.1002/jps.10397
[38] E.V. Batrakova, T.Y. Dorodnych, E.Y. Klinskii, E.N. Kliushnenkova, O.B. Shemchukova, O.N. Goncharova, S.A. Arjakov, V.Y. Alakhov, A.V. Kabanov, Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity, Br. J. Cancer. 74, 10 (1996) 1545-1552. https://doi.org/10.1038/bjc.1996.587
[39] H. Hatakeyama, H. Akita, K. Kogure, M. Oishi, Y. Nagasaki, Y. Kihira, M. Ueno, H. Kobayashi, H. Kikuchi, H. Harashima, Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid, Gene Ther. 14, 1 (2007) 68-77. https://doi.org/10.1038/sj.gt.3302843
[40] H. Hatakeyama, H. Akita, H. Harashima, A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma, Adv. Drug. Deliv. Rev. 63, 3 (2011) 152-160. https://doi.org/10.1016/j.addr.2010.09.001
[41] T. Jiang, Z. Zhang, Y. Zhang, H. Lv, J. Zhou, C. Li, L. Hou, Q. Zhang, Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery, Biomaterials 33 (2012) 9246-9258. https://doi.org/10.1016/j.biomaterials.2012.09.027
[42] X. Guo, F.C. Szoka, Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG−diortho ester−lipid conjugate, Bioconjug. Chem. 12 (2001) 291-300. https://doi.org/10.1021/bc000110v
[43] J.G. Reynolds, E. Geretti, B.S. Hendriks, H. Lee, S.C. Leonard, S.G. Klinz, C.O. Noble, P.B. Lücker, P.W. Zandstra, D.C. Drummond, K.J. Olivier Jr, U.B. Nielsen, C. Niyikiza, S.V. Agresta, T.J. Wickham, HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity, Toxicol. Appl. Pharmacol. 262, 1 (2012)1-10. https://doi.org/10.1016/j.taap.2012.04.008
[44] T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Development of the polymer micelle carrier system for doxorubicin, J. Control Release 74, 1 (2001) 295-302. https://doi.org/10.1016/S0168-3659(01)00341-8
[45] I.A. Khalil, K. Kogure, H. Akita, H. Harashima, Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery, Pharmacol. Rev. 58, 1 (2006) 32-45. https://doi.org/10.1124/pr.58.1.8
[46] G. Kibria, H. Hatakeyama, H. Harashima, Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system, Arch. Pharm. Res. 37 (2013) 4-15. https://doi.org/10.1007/s12272-013-0276-2
[47] Y. Sakurai, T. Hada, H. Harashima, Preparation of a cyclic RGD: Modified liposomal SiRNA formulation for use in active targeting to tumor and tumor endothelial cells, Methods Mol. Biol. 1364 (2016) 63-69. https://doi.org/10.1007/978-1-4939-3112-5_6
[48] M.N. Hossen, K. Kajimoto, H. Akita, M. Hyodo, H. Harashima, Vascular-targeted nanotherapy for obesity: Unexpected passive targeting mechanism to obese fat for the enhancement of active drug delivery, J. Control Release 163 (2012) 101-110. https://doi.org/10.1016/j.jconrel.2012.09.002
[49] M.N. Hossen, K. Kajimoto, H. Akita, M. Hyodo, T. Ishitsuka, H. Harashima, Therapeutic assessment of cytochrome C for the prevention of obesity through endothelial cell-targeted nanoparticulate system, Molecular Therapy 21, 3 (2013) 533-541. https://doi.org/10.1038/mt.2012.256
[50] M. Nargis, Development of an innovative drug delivery system targeted to adipose vessel utilizing novel nucleic acid aptamer for control of obesity, Hokkaido University Collection of Scholarly and Academic Papers. (2014) DOI: 10.14943/doctoral.k11558.
[51] K. Kajimoto, M.N. Hossen, H. Harashima, Antiangiogenic nanotherapy for the control of obesity, Nanomedicine (Lond), 8, 5 (2013) 671-673. https://doi.org/10.2217/nnm.13.27
[52] A. Akhter, Y. Hayashi, Y. Sakurai, N. Ohga, K. Hida, H. Harashima, A liposomal delivery system that targets liver endothelial cells based on a new peptide motif present in the ApoB-100 sequence, Int. J. Pharm. 456, 1 (2013) 195 -201. https://doi.org/10.1016/j.ijpharm.2013.07.068
[53] A. Akhter, Y. Hayashi, Y. Sakurai, N. Ohga, K. Hida, H. Harashima, Ligand density at the surface of a nanoparticle and different uptake mechanism: two important factors for successful siRNA delivery to liver endothelial cells, Int. J. Pharm. 475 (2014) 227-237. https://doi.org/10.1016/j.ijpharm.2014.08.048
[54] K. Hashiba, Y. Sato, H. Harashima, pH-labile PEGylation of siRNA-loaded lipid nanoparticle improves active targeting and gene silencing activity in hepatocytes, J. Control Release 262 (2017) 239-246. https://doi.org/10.1016/j.jconrel.2017.07.046
[55] G. Gaucher, M-H Dufresne, V. P. Sant, N. Kang, D. Maysinger, J-C Leroux, Block copolymer micelles: preparation, characterization and application in drug delivery, J. Control. Release 109 (2005) 169-188. https://doi.org/10.1016/j.jconrel.2005.09.034
[56] Z. Ahmad, A. Shah, M. Siddiq, H.-B. Kraatz, Polymeric micelles as drug delivery vehicles, RSC Adv. 4 (2014) 17028-17038. https://doi.org/10.1039/C3RA47370H
[57] K. Kataoka, A. Harada, Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance, Adv. Drug Deliv. Rev. 64 (2012) 37-48. https://doi.org/10.1016/j.addr.2012.09.013
[58] Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res. 46 (1986) 6387-6392.
[59] T.-Y. Kim, D-W Kim, J-Y. Chung, S. G. Shin, S-C. Kim, D. S. Heo, N. K. Kim, Y-J. Bang, Phase I and pharmacokinetic study of Genexol-PM, a cremophor- free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies, Clin. Cancer Res. 10 (2004) 3708-3716. https://doi.org/10.1158/1078-0432.CCR-03-0655
[60] D. Vetvicka, M. Hruby, O. Hovorka, T. Etrych, M. Vetrik, L. Kovar, M. Kovar, K. Ulbrich, B. Rihova, Biological evaluation of polymeric micelles with covalently bound doxorubicin, Bioconjugate Chem. 20 (2009) 2090-2097. https://doi.org/10.1021/bc900212k
[61] M. Watanabe, K. Kawano, M. Yokoyama, P. Opanasopit, T. Okano, Y. Maitani, Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability, Int. J. Pharm. 308 (2006) 183-189. https://doi.org/10.1016/j.ijpharm.2005.10.030
[62] P. Kumari, O.S. Muddineti, S.V. Rompicharla, P. Ghanta, B.B.N.A. Karthik, B. Ghosh, S. Biswas, Cholesterol-conjugated poly(D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy, Drug Deliv. 24 (2017) 209-223. https://doi.org/10.1080/10717544.2016.1245365
[63] R. N. Gilbreth, S. Novarra, L. Wetzel, S. Florinas, H. Cabral, K. Kataoka, J. Rios-Doria, R. J. Christie, M. Baca, Lipid- and polyion complex-based micelles as agonist platforms for TNFR superfamily receptors, J. Control Release 234 (2016) 104-114. https://doi.org/10.1016/j.jconrel.2016.05.041
[64] A. Mandal, R. Bisht, I.D. Rupenthal, A.K. Mitra, Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies, J. Control Release 248 (2017) 96-116. https://doi.org/10.1016/j.jconrel.2017.01.012
[65] Q. Li, K.L. Lai, P.S. Chan, S.C. Leung, H.Y. Li, Y. Fang, K.K. To, C.H.J. Choi, Q.Y. Gao, T.W. Lee, Micellar delivery of dasatinib for the inhibition of pathologic cellular processes of the retinal pigment epithelium, Coll. Surf. B 140 (2016) 278-286. https://doi.org/10.1016/j.colsurfb.2015.12.053
[66] S. Su, Y. Ding, Y. Li, Y. Wu, G. Nie, Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers che- mosensitivity in triple-negative breast cancer, Biomaterials 80 (2016) 169-178. https://doi.org/10.1016/j.biomaterials.2015.11.058
[67] R. Miyazaki, M. Nargis, A.B. Ihsan, N. Nakajima, M. Hamada, Y. Koyama, Effects of glycon and temperature on self-assembly behaviors of α-galactosyl ceramide in water, Langmuir 37 (2021) 7936-7944. https://doi.org/10.1021/acs.langmuir.1c00545
[68] M. Nargis, A.B. Ihsan, Y. Koyama, Thermo-responsive structure and dye-encapsulation of micelles comprising bolaamphiphilic quercetin polyglycoside, Langmuir 36 (2020) 10764-10771. https://doi.org/10.1021/acs.langmuir.0c01564
[69] M. Nargis, A.B. Ihsan, Y. Koyama, Impact of sugar chain length on micellization of quercetin-3-o -glycosides, Chem. Lett. 49, 8 (2020) 896-899. https://doi.org/10.1246/cl.200270
[70] M. Nargis, A.B. Ihsan, Y. Koyama, Bolaamphiphilic properties and pH-dependent micellization of quercetin polyglycoside, RSC Adv. 9 (2019) 33674-33677. https://doi.org/10.1039/C9RA05711K
[71] A.B. Ihsan, M. Nargis, Y. Koyama, Effects of the hydrophilic-lipophilic balance of alternating peptides on self-assembly and thermo-responsive behaviors, Int. J. Mol. Sci. 20 (2019) 4604-4614. https://doi.org/10.3390/ijms20184604
[72] A.B. Ihsan, Y. Koyama, Impact of polypeptide sequence on thermal properties for diblock, random, and alternating copolymers containing a stoichiometric mixture of glycine and valine, Polymer 161 (2019) 197-204. https://doi.org/10.1016/j.polymer.2018.12.021
[73] A.B. Ihsan, Y. Koyama, T, Taira, T. Imura, Thermo-responsive structure and surface activity of kinetically stabilized micelle composed of fluorinated alternating peptides in organic solvent, ChemistrySelect 3 (2018) 4173-4178. https://doi.org/10.1002/slct.201800590
[74] Y. Koyama, A. B. Ihsan, T. Taira, T. Imura, Fluorinated polymer surfactants bearing alternating peptide skeleton prepared by three-component polycondensation, RSC Adv. 8 (2018) 7509-7513. https://doi.org/10.1039/C8RA00581H
[75] T.-S. Nguyen, P.M.M. Weers, V. Raussens, Z. Wang, Amphotericin B induces interdigitation of apolipoprotein stabilized nanodisk bilayers, Biochim. Biophys. Acta. 1778 (2008) 303-312. https://doi.org/10.1016/j.bbamem.2007.10.005
[76] H. Huang, W. Cruz, J. Chen, G. Zheng, Learning from biology: synthetic lipoproteins for drug delivery, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(3) (2015) 298-314. https://doi.org/10.1002/wnan.1308
[77] M. Su, W. Chang, K. Shi, D. Wang, M. Wang, T. Xu, W. Yan, Preparation and activity analysis of recombinant human high-density lipoprotein, Assay Drug Dev. Technol. 10(5) (2012) 485-91. https://doi.org/10.1089/adt.2012.467
[78] B.A. Kingwell, M.J. Chapman, A. Kontush, N.E. Miller, HDL-targeted therapies: progress, failures and future, Nat. Rev. Drug Discov. 13 (2014) 445-464. https://doi.org/10.1038/nrd4279
[79] T. Gordon, W.P. Castelli, M.C. Hjortland, W.B. Kannel, T.R. Dawber, High density lipoprotein as a protective factor against coronary heart disease, Am. J. Med. 62 (1977) 707-714. https://doi.org/10.1016/0002-9343(77)90874-9
[80] G.J. Miller, N.E. Miller, Plasma-high-density-lipoprotein concentration and development of ischæmic heart-disease, Lancet 305 (1975) 16-19. https://doi.org/10.1016/S0140-6736(75)92376-4
[81] J. Jia, Y. Xiao, J. Liu, W. Zhang, H. He, L. Chen, M. Zhang, Preparation, characterizations, and in vitro metabolic processes of paclitaxel-loaded discoidal recombinant high-density lipoproteins, J. Pharm. Sci. 101,8 (2012) 2900-2908. https://doi.org/10.1002/jps.23210
[82] R.G. Parmar, M. Busuek, E.S. Walsh, K.R. Leander, B.J. Howell, L. Sepp-Lorenzino, E. Kemp, L.S. Crocker, A. Leone, C.J. Kochansky, B.A. Carr, R.M. Garbaccio, S.L. Colletti, W. Wang, Endosomolytic bioreducible poly(amido amine disulfide) polymer conjugates for the in vivo systemic delivery of siRNA therapeutics. Bioconjug. Chem. 24, 4 (2013) 640-647. https://doi.org/10.1021/bc300600a
[83] T. Murakami, W. Wijagkanalan, M. Hashida, K. Tsuchida, Intracellular drug delivery by genetically engineered high-density lipoprotein nanoparticles. Nanomedicine, 5 (2010) 867-879. https://doi.org/10.2217/nnm.10.66
[84] K. Suda, T. Murakami, N. Gotoh, R. Fukuda, Y. Hashida, M. Hashida, A. Tsujikawa, N. Yoshimura, High-density lipoprotein mutant eye drops for the treatment of posterior eye diseases, J. Control. Release 266 (2017) 301-309. https://doi.org/10.1016/j.jconrel.2017.09.036
[85] N. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, Eur. J. Pharm. Biopharm. 50 (2000) 27-46. https://doi.org/10.1016/S0939-6411(00)00090-4
[86] X. Su, M. J. Tan, Z. Li, M. Wong, L. Rajamani, G. Lingam, X. J. Loh, Recent progress in using biomaterials as vitreous substitutes, Biomacromolecules 16 (2015) 3093-3102. https://doi.org/10.1021/acs.biomac.5b01091
[87] S.R.V. Tomme, G. Storm, W.E. Hennink, In situ gelling hydrogels for pharmaceutical and biomedical applications, Int. J. Pharm. 355 (2008) 1-18. https://doi.org/10.1016/j.ijpharm.2008.01.057
[88] N. Peppas, R. Langer, New challenges in biomaterials, Science 263 (1994) 1715-1720. https://doi.org/10.1126/science.8134835
[89] A.S. Hoffman, B.D. Ratner, Synthetic hydrogels for biomedical applications. In Hydrogels for Medical and Related Applications (ed. ACS Symposium Series) 1-36 (American Chemical Society, Washington, DC, USA, 1976). https://doi.org/10.1021/bk-1976-0031.ch001
[90] C.-C. Lin, A.T. Metters, Hydrogels in controlled release formulations: network design and mathematical modeling, Adv. Drug Deliv. Rev. 58 (2006) 1379-1408. https://doi.org/10.1016/j.addr.2006.09.004
[91] A.S. Hoffman, Hydrogels for biomedical applications, Adv. Drug Deliv. Rev. 64 (2012), 18-23. https://doi.org/10.1016/j.addr.2012.09.010
[92] W. Zhao, Y. Li, X. Zhang, R. Zhang, Y. Hu, C. Boyer, F. J. Xu, Photo-responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing, J. Controlled Release 323 (2020) 24-35. https://doi.org/10.1016/j.jconrel.2020.04.014
[93] L. Shi, Y. Zhao, Q. Xie, C. Fan, J. Hilborn, J. Dai, D.A. Ossipov, Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: Design, fabrication, and biomedical applications, Adv. Healthc. Mater. 7 (2018) 1-9. https://doi.org/10.1002/marc.201800837
[94] J. Cho, S.H. Kim, B. Yang, J. M. Jung, I. Kwon, D.S. Lee, Albumin affibody-outfitted injectable gel enabling extended release of urate oxidase-albumin conjugates for hyperuricemia treatment, J. Controlled Release 324 (2020) 532-544. https://doi.org/10.1016/j.jconrel.2020.05.037
[95] Y.-Y. Chen, H.-C. Wu, J.-S. Sun, G.-C. Dong, T.-W. Wang, Injectable and thermoresponsive self-assembled nanocomposite hydrogel for long-term anticancer drug delivery, Langmuir 29 (2013) 3721-3729. https://doi.org/10.1021/la400268p
[96] X. Qi, W. Wei, J. Li, Y. Liu, X. Hu, J. Zhang, L. Bi, W. Dong, Fabrication and characterization of a novel anticancer drug delivery system: salecan/poly(methacrylic acid) semi-interpenetrating polymer network hydrogel, ACS Biomater. Sci. Eng. 1 (2015) 1287-1299. https://doi.org/10.1021/acsbiomaterials.5b00346
[97] H. Jang, K. Zhi, J. Wang, H. Zhao, B. Li, X. Yang, Enhanced therapeutic effect of paclitaxel with a natural polysaccharide carrier for local injection in breast cancer, Int. J. Biol. Macromol. 148 (2020) 163-172. https://doi.org/10.1016/j.ijbiomac.2020.01.094
[98] J. Yu, W. Ha, J.-N. Sun, Y.-P. Shi, Supramolecular hybrid hydrogel based on host-guest interaction and its application in drug delivery, ACS Appl. Mater. Interfaces 6 (2014) 19544-19551. https://doi.org/10.1021/am505649q
[99] M. Rasoulzadeh, H. Namazi, Carboxymethyl cellulose/graphene oxide bio- nanocomposite hydrogel beads as anticancer drug carrier agent, Carbohydr. Polym. 168 (2017) 320-326. https://doi.org/10.1016/j.carbpol.2017.03.014
[100] J. Naskar, G. Palui, A. Banerjee, Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH, J. Phys. Chem. B 113 (2009) 11787-11792. https://doi.org/10.1021/jp904251j
[101] F. Alvarez-Rivera, A. Concheiro, C. Alvarez-Lorenzo, Eur. J. Pharm. Biopharm. 122 (2018) 126-136. https://doi.org/10.1016/j.ejpb.2017.10.016
[102] S. Deepthi, J. Jose, Novel hydrogel-based ocular drug delivery system for the treatment of conjunctivitis, Int. Ophthalmol. 39, 6 (2019) 1355-1366. https://doi.org/10.1007/s10792-018-0955-6
[103] B.V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, N. A. Peppas, Hydrogels in regenerative medicine. Adv Mater. 21 (2009) 3307-3329. https://doi.org/10.1002/adma.200802106
[104] K.J. Walker, S.V. Madihally, Anisotropic temperature sensitive chitosan-based injectable hydrogels mimicking cartilage matrix, J. Biomed. Mater. Res. B. Appl. Biomater. 103 (2015) 1149-1160. https://doi.org/10.1002/jbm.b.33293
[105] R. Jin, L.S.M. Teixeira, P.J. Dijkstra, M. Karperien, C.A. van Blitterswijk, Z.Y. Zhong, J. Feijen, Injectable chitosan-based hydrogels for cartilage tissue engineering, Biomaterials 30 (2009) 2544-2551. https://doi.org/10.1016/j.biomaterials.2009.01.020
[106] Y. Wei, Y. Hu, W. Hao, Y. Han, G. Meng, D. Zhang, Z. Wu, H. Wang, A novel injectable scaffold for cartilage tissue engineering using adipose-derived adult stem cells, J. Orthop. Res. 26 (2008) 27-33. https://doi.org/10.1002/jor.20468
[107] H. Dashtdar, M.R. Murali, A.A. Abbas, A.M. Suhaeb, L. Selvaratnam, L.X. Tay, PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects, Knee Surg. Sports Traumatol. Arthrosc. 23 (2015) 1368-1377. https://doi.org/10.1007/s00167-013-2723-5
[108] B.G. Cooper, R.C. Stewart, D. Burstein, B.D. Snyder, M.W. Grinstaff, A tissue-penetrating double network restores the mechanical properties of degenerated articular cartilage, Angew. Chem. 55 (2016) 4226-4230. https://doi.org/10.1002/anie.201511767
[109] A.B. Ihsan, T.L. Sun, S. Kuroda, M.A. Haque, T. Kurokawa, T. Nakajima, J.P. Gong, A phase diagram of neutral polyampholyte – From solution to tough hydrogel, J. Mat. Chem. B 1 (2013) 4555-4562. https://doi.org/10.1039/c3tb20790k
[110] T.L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki, K. Sato, M.A. Haque, T. Nakajima, J.P. Gong Physical Hydrogels Composed of Polyampholytes Demonstrate High Toughness and Viscoelasticity, Nat. Mater. 12 (2013) 932-937. https://doi.org/10.1038/nmat3713
[111] A.B. Ihsan, T.L. Sun, T. Kurokawa, S.N. Karobi, T. Nakajima, T. Nonoyama, C.K. Roy, F. Luo, J.P. Gong, Self-healing behaviors of tough polyampholyte hydrogels, Macromolecules 49 (2016) 4245-4252. https://doi.org/10.1021/acs.macromol.6b00437
[112] F. Luo, T.L Sun, T. Nakajima, T. Kurokawa, Y. Zhao, K. Sato, A.B. Ihsan, X. Li, H. Guo, J.P Gong, Oppositely charged polyelectrolytes form tough, self-healing and rebuildable hydrogels, Adv. Mater 27 (2015) 2722-2727. https://doi.org/10.1002/adma.201500140
[113] F. Luo, T.L. Sun, T. Nakajima, T. Kurokawa, A.B. Ihsan, X. Li, H. Guo, J.P. Gong, Free reprocessability of tough and self-healing hydrogels based on polyion complex, ACS Macro. Lett. 4 (2015) 961-964. https://doi.org/10.1021/acsmacrolett.5b00501
[114] F. Luo, T.L. Sun, T. Nakajima, D.R. King, T. Kurokawa, Y. Zhao, A.B. Ihsan, X. Li, H. Guo, J.P. Gong, Strong and tough polyion-complex hydrogels from oppositely charged polyelectrolytes: A comparative study with polyampholyte hydrogels, Macromolecules 49 (2016) 2750-2760. https://doi.org/10.1021/acs.macromol.6b00235
[115] F. Luo, T.L. Sun, T. Nakajima, T. Kurokawa, Y. Zhao, A.B. Ihsan, H. Guo, X. Li, J. P. Gong Crack blunting and advancing behaviors of tough and self-healing polyampholyte hydrogel, Macromolecules 47 (2014) 6037-6046. https://doi.org/10.1021/ma5009447
[116] C.K. Roy, H. Guo, T.L. Sun, A.B. Ihsan, T. Kurokawa, M. Takahata, T. Nonoyama, T. Nakajima, J.P. Gong, Self-adjustable adhesion of polyampholyte hydrogels, Adv. Mater. 27 (2015) 7344-7348. https://doi.org/10.1002/adma.201504059
[117] D.A. Tomalia, Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry, Prog. Polym. Sci. 30 (2005) 294-324. https://doi.org/10.1016/j.progpolymsci.2005.01.007
[118] P.G. de Gennes, H. Hervet, Statistics of « starburst » polymers, J. Phys. Lett. (1983) 44, 351-360. https://doi.org/10.1051/jphyslet:01983004409035100
[119] A.W. Bosman, H.M. Janssen, E.W. Meijer, About Dendrimers: Structure, physical properties, and applications, Chem. Rev. 99 (1999) 1665-1688. https://doi.org/10.1021/cr970069y
[120] G.R. Newkome, Z. Yao, G.R. Baker and V.K. Gupta, Cascade molecules: a new approach to micelles, A Arborol. J. Org. Chem. 50 (1985) 2003-2004. https://doi.org/10.1021/jo00211a052
[121] E. Buhleier, W. Wehner, F. Vogtle, Cascade and Nonskid-Chain-Like Syntheses of Molecular Cavity Topologies, Synthesis 2 (1978) 155-158. https://doi.org/10.1055/s-1978-24702
[122] C.J. Hawker and J.M.J. Fréchet, Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules, J. Am. Chem. Soc. 112 (1990) 7638-7647 https://doi.org/10.1021/ja00177a027
[123] K.L. Wooley, C.J. Hawker, J.M.J. Fréchet, Hyperbranched macromolecules via a novel double-stage convergent growth approach, J. Am. Chem. Soc. 113 (1991) 4252-4261. https://doi.org/10.1021/ja00011a031
[124] J.M.J. Fréchet, Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy, Science 263, 5154 (1994) 1710-1715. https://doi.org/10.1126/science.8134834
[125] D.A. Tomalia, Starburst/cascade dendrimers: fundamental building blocks for a new nanoscopic chemistry set, Advanced Materials 6, 7-8 (1994) 529-539. https://doi.org/10.1002/adma.19940060703
[126] M. El-Sayed, M. Ginski, C. Rhodes, H. Ghandehari, Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers, J. Control Release 81, 3 (2002) 355-365. https://doi.org/10.1016/S0168-3659(02)00087-1
[127] N. Vijayalakshmi, A. Ray, A. Malugin, H. Ghandehari, Carboxyl-terminated PAMAM-SN38 conjugates: synthesis, characterization, and in vitro evaluation, Bioconjugate Chem. 21, 10 (2010) 1804-1810. https://doi.org/10.1021/bc100094z
[128] D.S. Wilbur, P.M. Pathare, D.K. Hamlin, K.R. Buhler, R.L. Vessella, Biotin reagents for antibody pretargeting. 3. Synthesis, radioiodination, and evaluation of biotinylated starburst dendrimers, Bioconjugate Chem. 9, 6 (1998) 813-825. https://doi.org/10.1021/bc980055e
[129] N.A. Peppas, Star polymers and dendrimers: prospects of their use in drug delivery and pharmaceutical applications, Controlled Release Society Newsletter, 12 (1995) 12-13.
[130] A. Pérez-Anes, G. Spataro, Y. Coppel, C. Moog, M. Blanzat, C.-O. Turrin, A.-M. Caminade, I. Rico-Lattes, J.-P. Majoral, Phosphonate terminated PPH dendrimers: influence of pendant alkyl chains on the in vitro anti-HIV-1 properties, Org. Biomol. Chem. 7 (2009) 3491-3498. https://doi.org/10.1039/b908352a
[131] M.T. Morgan, M.A. Carnahan, C.E. Immoos, A.A. Ribeiro, S. Finkelstein, S.J. Lee, M.W. Grinstaff, Dendritic molecular capsules for hydrophobic compounds, J. Am. Chem. Soc. 125 (2003) 15485-15489. https://doi.org/10.1021/ja0347383
[132] N. Nishiyama, H.R. Stapert, G-D. Zhang, D. Takasu, D-L. Jiang, T. Nagano, T. Aida, K. Kataoka, Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy, Bioconjugate Chem. 14 (2003) 58-66. https://doi.org/10.1021/bc025597h
[133] C. Yiyun, N. Man, T. Xu, R. Fu, X. Wang, X. Wang, L. Wen, Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers, J. Pharm. Sci. 96 (2007) 595-602. https://doi.org/10.1002/jps.20745
[134] W. Zhang, Z. Zhang, Y. Zhang, The application of carbon nanotubes in target drug delivery systems for cancer therapies, Nanoscale Res. Lett. 6 (2011) 555-576. https://doi.org/10.1186/1556-276X-6-555
[135] S. Iijima, Helical microtubules of graphitic carbon, Nature (London) 354 (1991) 56-58. https://doi.org/10.1038/354056a0
[136] S.K.S Kushwaha, S. Ghoshal, A.K. Rai, S. Singh, Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review, Braz. J. Pharm. Sci. 49, 4 (2013) 629-643. https://doi.org/10.1590/S1984-82502013000400002
[137] C. Gherman, M.C. Tudor, B. Constantin B, T. Flaviu, R. Stefan, B. Maria, S. Chira, C. Braicu, L. Pop, R. C. Petric, I. Berindan-Neagoeet, Pharmacokinetics evalua- tion of carbon nanotubes using FTIR analysis and histological analysis, J. Nanosci. Nanotechnol. 15, 4 (2015) 2865-2869. https://doi.org/10.1166/jnn.2015.9845
[138] B.V. Farahani, G.R. Behbahani, N. Javadi, Functionalized multi walled carbon nanotubes as a carrier for doxorubicin: drug adsorption study and statistical optimization of drug loading by factorial design methodology, J. Braz. Chem. Soc. 27, 4 (2016) 694-705. https://doi.org/10.5935/0103-5053.20150318
[139] C.D.M. Fletcher, J.A. Bridge, P. Hogendoorn, F. Mertens, 2013. WHO classification of tumours of soft tissue and bone. (4th ed.) Lyon: IARC Press.
[140] J.M. Worle-Knirsh, K. Pulskamp, H.F. Krug, Oops they did it again! Carbon nanotubes hoax scientists in viability assays, Nano Lett. 6, 6 (2006) 1261-8. https://doi.org/10.1021/nl060177c
[141] N.W.S. Kam, T.C. Jessop, P.A. Wender, H. Dai Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells, J. Am. Chem. Soc. 126 (2004) 6850-6851. https://doi.org/10.1021/ja0486059
[142] N.W. Kam, H. Dai, Carbon nanotubes as intracellular protein transporters: generality and bio- logical functionality, J. Am. Chem. Soc. 127 (2005) 6021-6026. https://doi.org/10.1021/ja050062v
[143] J.Y. Chen, S. Chen, X. Zhao, L.V. Kuznetsova, S.S. Wong, I. Ojima, Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor targeted drug delivery, J. Am. Chem. Soc. 130 (2008) 16778-85. https://doi.org/10.1021/ja805570f
[144] Z. Liu, X.M. Sun, N. Nakayama-Ratchford, H.J. Dai, Supramolecular chemistry on water soluble carbon nanotubes for drug loading and delivery, ACS Nano. 1 (2007) 50-56. https://doi.org/10.1021/nn700040t
[145] Q.X. Mu, D.L. Broughton, B. Yan, Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake, Nano Lett. 9 (2009) 4370-4375. https://doi.org/10.1021/nl902647x
[146] N.W.S. Kam, H. Dai, Carbon nanotubes as intracellular protein transporters: generality and bio- logical functionality, J. Am. Chem. Soc. 127, 16 (2005) 6021-6026. https://doi.org/10.1021/ja050062v
[147] S. Deb, H.K. Patra, P. Lahiri, A.Kr. Dasgupta, K. Chakrabarti, U. Chaudhuri, Multistability in platelets and their response to gold nanoparticles, Nanomedicine 7 (2011) 376-384. https://doi.org/10.1016/j.nano.2011.01.007
[148] S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Analysis of nanoparticle delivery to tumours, Nat. Rev. Mater. 1 (2016) 16014. https://doi.org/10.1038/natrevmats.2016.14
[149] E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat. Biotechnol. 33 (2015) 941-951. https://doi.org/10.1038/nbt.3330
[150] M.D. McSweeney, T. Wessler, L.S.L. Price, E. C. Ciociola, L.B. Herity, J.A. Piscitelli, W.C. Zamboni, M. G. Forest, Y. Cao, S.K. Lai. A minimal physiologically based pharmacokinetic model that predicts anti-PEG IgG-mediated clearance of PEGylated drugs in human and mouse, J. Control. Rel. 284 (2018) 171-178. https://doi.org/10.1016/j.jconrel.2018.06.002
[151] L. Hosta-Rigau, B. Städler, Shear stress and its effect on the interaction of myoblast cells with nanosized drug delivery vehicles, Mol. Pharm. 10 (2013) 2707-2712. https://doi.org/10.1021/mp4001298
[152] M. Cooley, A. Sarode, M. Hoore, D.A. Fedosov, S. Mitragotri, A.S. Gupta, Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale, Nanoscale 10 (2018) 15350-15364. https://doi.org/10.1039/C8NR04042G
[153] C. von Roemeling, W. Jiang, C.K. Chan, I.L. Weissman, B.Y.S. Kim, Breaking down the barriers to precision cancer nanomedicine, Trends Biotechnol. 35 (2017) 159-171. https://doi.org/10.1016/j.tibtech.2016.07.006
[154] Q. Zhong, O.M. Merkel, J.J. Reineke, S.R.P. da Rocha, Effect of the route of administration and PEGylation of poly(amidoamine) dendrimers on their systemic and lung cellular biodistribution, Mol. Pharm. 13 (2016) 1866-1878. https://doi.org/10.1021/acs.molpharmaceut.6b00036
[155] L. Battaglia, P.P. Panciani, E. Muntoni, M.T. Capucchio, E. Biasibetti, P. De Bonis, S. Mioletti, M. Fontanella, S. Swaminathan, Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery, Expert Opin. Drug Deliv. 15 (2018) 369-378. https://doi.org/10.1080/17425247.2018.1429401
[156] Y. Dölen, M. Valente, O. Tagit, E. Jäger, E.A.W. Van Dinther, N.K. van Riessen, M. Hruby, U. Gileadi, V. Cerundolo, C.G. Figdor. Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses, Oncoimmunology 9 (2020) 1738813. https://doi.org/10.1080/2162402X.2020.1738813
[157] D.N. McLennan, C.J.H. Porter, S.A. Charman, Subcutaneous drug delivery and the role of the lymphatics, Drug Discov. Today Technol. 2 (2005) 89-96. https://doi.org/10.1016/j.ddtec.2005.05.006
[158] C. Saraiva, C. Praça, R. Ferreira, T. Santos, L. Ferreira, L. Bernardino, Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases, J. Control. Release 235 (2016) 34-47. https://doi.org/10.1016/j.jconrel.2016.05.044
[159] Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang, Y. Piao, Z. Zhou, Q. Yu, J. Tang, X. Liu, Z. Gan, R. Mo, Z. Gu, Y. Shen, Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14 (2019) 799-809. https://doi.org/10.1038/s41565-019-0485-z
[160] S. Sindhwani, A.M. Syed, J. Ngai, B.R. Kingston, L. Maiorino, J. Rothschild, P. MacMillan, Y. Zhang, N.U. Rajesh, T. Hoang, J.L.Y. Wu, S. Wilhelm, A. Zilman, S. Gadde, A. Sulaiman, B. Ouyang, Z. Lin, L. Wang, M. Egeblad, W.C.W. Chan, The entry of nanoparticles into solid tumours, Nat. Mater. 19 (2020) 566-575. https://doi.org/10.1038/s41563-019-0566-2
[161] L.M. Ensign, R. Cone, J. Hanes, Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers, Adv. Drug Deliv. Rev. 64 (2012) 557-570. https://doi.org/10.1016/j.addr.2011.12.009
[162] N. Oliva, M. Carcole, M. Beckerman, S. Seliktar, A. Hayward, J. Stanley, N.M. Parry, E.R. Edelman, N. Artzi, Regulation of dendrimer/dextran material performance by altered tissue microenvironment in inflammation and neoplasia, Sci. Transl. Med. 7 (2015) 272ra11. https://doi.org/10.1126/scitranslmed.aaa1616
[163] Y. Zan, Z. Dai, L. Liang, Y. Deng, L. Dong, Co-delivery of plantamajoside and sorafenib by a multi-functional nanoparticle to combat the drug resistance of hepatocellular carcinoma through reprograming the tumor hypoxic microenvironment, Drug Deliv. 26 (2019) 1080-1091. https://doi.org/10.1080/10717544.2019.1654040
[164] Q. Dai, S. Wilhelm, D. Ding, A.M. Syed, S. Sindhwani, Y. Zhang, Y.Y. Chen, P. MacMillan, W.C.W. Chan, Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors, ACS Nano 12 (2018) 8423-8435. https://doi.org/10.1021/acsnano.8b03900
[165] J. Witten, K. Ribbeck, The particle in the spider’s web: transport through biological hydrogels, Nanoscale 9 (2017) 8080-8095. https://doi.org/10.1039/C6NR09736G
[166] Z. Tang, X. Zhang, Y. Shu, M. Guo, H. Zhang, W. Tao, Insights from nanotechnology in COVID-19 treatment, Nano Today 36 (2021) 101019. https://doi.org/10.1016/j.nantod.2020.101019