Lanthanide-based Superconductor and its Applications


Lanthanide-based Superconductor and its Applications

Godlisten N. Shao

Superconductors are materials that conduct electricity with no resistance below its critical temperature (Tc). To date, pure metals, metal alloys, oxides, hydrides and super hydrides are among structures that have been reported to exhibit excellent superconducting properties due to their unique electronic properties and lattice structure. Most researchers have widely reported on the fabrication, structure, properties and applications of cuprate and iron-based superconducting materials. The modification of cuprate-based and iron-based superconducting materials using lanthanides have shown to massively improve their physico-chemical properties and applications. Investigations on lanthanide superhydride superconductors which contain hydrogen framework structures such as LaH10 and YbH10 are a recent adventure in the field of superconductors. Lanthanide-based structures are considered as potential high temperature superconductors (HTSC) and can be used in high performance applications. The current chapter outlines the advances and prospects observed in lanthanide-based superconductors (LBSC) as modern and fascinating functional materials. There is some literature that has been dedicated to providing a review on superconductors but very few have reported on LBSC. This review chapter provides a general insight of the development of LBSC and their potential technological applications.

Superconductivity, Critical Temperature, High-Temperature Superconductors, Lanthanide-based Superconductors

Published online 10/5/2022, 11 pages

Citation: Godlisten N. Shao, Lanthanide-based Superconductor and its Applications, Materials Research Foundations, Vol. 132, pp 97-107, 2022


Part of the book on Superconductors

[1] H. Hosono, A. Yamamoto, H. Hiramatsu, Y. Ma, Recent advances in iron-based superconductors toward applications, Mater. Today, 21 (2018) 278-302.
[2] D. Larbalestier, A. Gurevich, D.M. Feldmann, A. Polyanskii, High-Tc superconducting materials for electric power applications, Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature (2011) 311-320.
[3] X. Geng, J. Yi, The development of high-temperature superconductors and 2D iron-based superconductors, in: Nano-sized multifunctional materials, Elsevier (2019) 117-144.
[4] Y. Lvovsky, P. Jarvis, Superconducting systems for MRI-present solutions and new trends, IEEE Trans. Appl. Supercond. 15 (2005) 1317-1325.
[5] M. Schmelz, R. Stolz, V. Zakosarenko, S. Anders, L. Fritzsch, H. Roth, H.G. Meyer, Highly sensitive miniature SQUID magnetometer fabricated with cross-type Josephson tunnel junctions, Physica C Supercond. 476 (2012) 77-80.
[6] Y. Wu, T. van Ree, Introduction: Energy technologies and their role in our life, in: Metal Oxides in Energy Technologies, Elsevier (2018) 1-16.
[7] S. Matsuishi, T. Hanna, Y. Muraba, S.W. Kim, J.E. Kim, M. Takata, S.-i. Shamoto, R.I. Smith, H. Hosono, Structural analysis and superconductivity of CeFeAsO1− xHx, Phys. Rev. B. 85 (2012) 014514.
[8] G. Biswal, K. Mohanta, A recent review on iron-based superconductor, Mater. Today: Proc. 35 (2021) 207-215.
[9] J.G. Bednorz, K.A. Müller, Possible high T c superconductivity in the Ba− La− Cu− O system, Phys. B: Condens Matter. 64 (1986) 189-193.
[10] H. Hosono, K. Tanabe, E. Takayama-Muromachi, H. Kageyama, S. Yamanaka, H. Kumakura, M. Nohara, H. Hiramatsu, S. Fujitsu, Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides, Sci. Technol. Adv. Mater. (2015).
[11] M.R. Koblischka, S. Roth, A. Koblischka-Veneva, T. Karwoth, A. Wiederhold, X.L. Zeng, S. Fasoulas, M. Murakami, Relation between crystal structure and transition temperature of superconducting metals and alloys, Met. 10 (2020) 158.
[12] A. Drozdov, P. Kong, V. Minkov, S. Besedin, M. Kuzovnikov, S. Mozaffari, L. Balicas, F. Balakirev, D. Graf, V. Prakapenka, Superconductivity at 250 K in lanthanum hydride under high pressures, Nature. 569 (2019) 528-531.
[13] M.-K. Wu, J.R. Ashburn, C. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y. Wang, a. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett. 58 (1987) 908.
[14] A. Schilling, M. Cantoni, J. Guo, H. Ott, Superconductivity above 130 k in the Hg-Ba-Ca-Cu-O system, Nature. 363 (1993) 56-58.
[15] M. Somayazulu, M. Ahart, A.K. Mishra, Z.M. Geballe, M. Baldini, Y. Meng, V.V. Struzhkin, R.J. Hemley, Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures, Phys. Rev. Lett. 122 (2019) 027001.
[16] P. Baker, S. Giblin, F. Pratt, R. Liu, G. Wu, X. Chen, M. Pitcher, D. Parker, S. Clarke, S. Blundell, Heat capacity measurements on FeAs-based compounds: a thermodynamic probe of electronic and magnetic states, New J. Phys.11 (2009) 025010.
[17] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-based layered superconductor La [O1-x Fx]FeAs (x= 0.05− 0.12) with T c= 26 K, J. Am. Chem. Soc. 130 (2008) 3296-3297.
[18] H. Song, Z. Zhang, T. Cui, C.J. Pickard, V.Z. Kresin, D. Duan, High T c Superconductivity in Heavy Rare Earth Hydrides, Chin. Phys. Lett. 38 (2021) 107401.
[19] H. Song, Z. Zhang, T. Cui, C.J. Pickard, V.Z. Kresin, D. Duan, High Tc superconductivity in heavy Rare Earth Hydrides: correlation between the presence of the f states on the Fermi surface, nesting and the value of Tc, (2020) p. arXiv:2010.12225
[20] H.R. Ott, Ten years of superconductivity: 1980-1990, Springer Science & Business Media, 7 (2012).
[21] Z.C. Wang, C.Y. He, S.-Q. Wu, Z.T. Tang, Y. Liu, A. Ablimit, Q. Tao, C.M. Feng, Z.A. Xu, G.-H. Cao, Superconductivity at 35 K by self doping in RbGd2Fe4As4O2, J. Phys. Condens. Matter. 29 (2017) 11LT01.
[22] S.Q. Wu, Z.C. Wang, C.Y. He, Z.T. Tang, Y. Liu, G.-H. Cao, Superconductivity at 33-37 K in A L n 2 Fe 4 As 4 O 2 (A= K and Cs; L n= lanthanides), Phys. Rev. Mater. 1 (2017) 044804.
[23] R. Hott, R. Kleiner, T. Wolf, G. Zwicknagl, Superconducting materials-A topical overview, Fron. Supercond. Mater. (2005) 1-69.
[24] Z.M. Geballe, H. Liu, A.K. Mishra, M. Ahart, M. Somayazulu, Y. Meng, M. Baldini, R.J. Hemley, Synthesis and stability of lanthanum superhydrides, Angew. Chem. 130 (2018) 696-700.
[25] H. Liu, I.I. Naumov, Z.M. Geballe, M. Somayazulu, S.T. John, R.J. Hemley, Dynamics and superconductivity in compressed lanthanum superhydride, Phys. Rev. B. 98 (2018) 100102.
[26] Y. Qi, J. Guo, H. Lei, Z. Xiao, T. Kamiya, H. Hosono, Superconductivity in noncentrosymmetric ternary equiatomic pnictides LaMP (M= Ir and Rh; P= P and As), Phys. Rev. B. 89 (2014) 024517.
[27] J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, X. Chen, Superconductivity in the iron selenide K x Fe2Se2 (0≤ x≤ 1.0), Phys. Rev. B. 82 (2010) 180520.
[28] Y. Guo, X. Wang, J. Li, Y. Sun, Y. Tsujimoto, A.A. Belik, Y. Matsushita, K. Yamaura, E. Takayama-Muromachi, Continuous critical temperature enhancement with gradual hydrogen doping in LaFeAsO 0.85 H x (x= 0-0.85), Phys. Rev. B. 86 (2012) 054523.
[29] S. Iimura, S. Matsuishi, H. Sato, T. Hanna, Y. Muraba, S.W. Kim, J.E. Kim, M. Takata, H. Hosono, Two-dome structure in electron-doped iron arsenide superconductors, Nat. Commun. 3 (2012) 1-7.
[30] D. Zhou, D.V. Semenok, D. Duan, H. Xie, W. Chen, X. Huang, X. Li, B. Liu, A.R. Oganov, T. Cui, Superconducting praseodymium superhydrides, Sci. Adv. 6 (2020) eaax6849.
[31] A.M. Shipley, M.J. Hutcheon, M.S. Johnson, R.J. Needs, C.J. Pickard, Stability and superconductivity of lanthanum and yttrium decahydrides, Phys. Rev. B. 101 (2020) 224511.
[32] C.J. Kim, Applications of Superconductors, in: Superconductor Levitation, Springer, (2019) 213-236.
[33] P. Komarek, Advances in large scale applications of superconductors, Supercond. Sci. Technol. 13 (2000) 456.
[34] T. Hanna, Y. Muraba, S. Matsuishi, N. Igawa, K. Kodama, S. Shamoto, H. Hosono, Hydrogen in layered iron arsenides: Indirect electron doping to induce superconductivity, Phys. Rev. B. 84 (2011) 024521.