Superconductors for Magnetic Imaging Resonance Applications

$30.00

Superconductors for Magnetic Imaging Resonance Applications

Ali Raza and S.S. Ali

Magnetic Resonance Imaging (MRI), a medical imaging technique is being widely used in diagnostic procedures. This technique is based on radiology and generates clear pictures of the anatomy and other physiological processes in the human body. A strong magnetic field is the key parameter for better resolution images provided it does not damage healthy tissues. The fundamental principle behind MRI is the response of the atomic nucleus against the magnetic field which is followed by the image creation based on the distribution of hydrogen nuclei in a specific organ under observation. Stronger magnetic fields produce improved images with higher resolutions, that is why several research groups around the globe are working to develop such MRI systems without putting harmful effects on the exposed organs.

Keywords
MgB2 Superconductors, Bi-2223, HTS Magnets, REBCO, Iron-Based Superconductors

Published online 10/5/2022, 26 pages

Citation: Ali Raza and S.S. Ali, Superconductors for Magnetic Imaging Resonance Applications, Materials Research Foundations, Vol. 132, pp 230-255, 2022

DOI: https://doi.org/10.21741/9781644902110-13

Part of the book on Superconductors

References
[1] P. A. Abetti and P. Haldar, One hundred years of superconductivity: science, technology, products, profits and industry structure, Int. J. Technol. Management, 48 (2009) 423-447. https://doi.org/10.1504/IJTM.2009.026688
[2] T. C. Cosmus and M. Parizh, Advances in whole-body MRI magnets, IEEE Trans. Appl. Supercond. 21 (2011) 2104 – 2109. https://doi.org/10.1109/TASC.2010.2084981
[3] Y. Iwasa, Case Studies in Superconducting Magnet 2nd ed., Springer, Berlin, 2009. https://doi.org/10.1007/b112047_1
[4] Y. Iwasa, Design and operational issues for 77 K superconducting magnets, IEEE Trans. Mag. 24 (1988) 1211. https://doi.org/10.1109/20.11452
[5] Y. Iwasa, A ‘permanent’ HTS magnet system: key design and operational issues, Advances in Superconductivity, Springer, Tokyo, 1998. https://doi.org/10.1007/978-4-431-66879-4_325
[6] B. J. Haid, A ‘permanent’ high-temperature superconducting magnet operated in thermal communication with a mass of solid nitrogen, Ph.D. Thesis, Department of Mechanical Engineering, MIT, Cambridge, 2001.
[7] B. J. Haid, H. Lee, Y. Iwasa, S. S. Oh, Y. K. Kwon, K. S. Ryu, A ‘permanent’ high-temperature superconducting magnet operated in thermal communication with a mass of solid nitrogen, Cryogenics 42 (2002) 229-244. https://doi.org/10.1016/S0011-2275(02)00022-X
[8] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature, 410 (2001) 63-64. https://doi.org/10.1038/35065039
[9] D. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, High-Tc superconducting materials for electric power applications. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (2011) 311-320. https://doi.org/10.1142/9789814317665_0046
[10] Y. Lvovsky, E. W. Stautner, and T. Zhang, Novel technologies and configurations of superconducting magnets for MRI, Supercond. Sci. Technol. 26 (2013) 93001. https://doi.org/10.1088/0953-2048/26/9/093001
[11] Y. Lvovsky and P. Jarvis, Superconducting systems for MRI-present solutions and new trends, IEEE Trans. Appl. Supercond. 15 (2005) 1317-1325. https://doi.org/10.1109/TASC.2005.849580
[12] C. Spencer, P. A. Sanger and M. Young, The temperature and magnetic field dependence of superconducting critical current densities of multifilamentary Nb3Sn and NbTi composite wires, IEEE Trans. Magn. 15 (1979) 76-79. https://doi.org/10.1109/TMAG.1979.1060146
[13] W. Nuttall, R. Clarke and B. Glowacki, The Future of Helium as a Natural Resource 1st ed, Routledge, Abingdon, UK, 2014.
[14] Z. Cai, R. H. Clarke, B. A. Glowacki, W. J. Nuttall, and N. Ward, Ongoing ascent to the helium production plateau- insights from system dynamics, Resour. Policy, 35 (2010) 77-89. https://doi.org/10.1016/j.resourpol.2009.10.002
[15] M. A. Espy, P. E. Magnelind, A. N. Matlashov, S. G. Newman, H. J. Sandin, L. J. Schultz, R. Sedillo, A. V. Urbaitis and P. L. Volegov, Progress toward a deployable SQUID based ultra-low field MRI system for anatomical imaging, IEEE Trans. Appl. Supercond. 25 (2015) 1-5. https://doi.org/10.1109/TASC.2014.2365473
[16] H. Morita, M. Okada, K. Tanaka, J. Sato, H. Kitaguchi, H. Kumakura, K. Togano, K. Itoh, and H. Wada, 10 T conduction-cooled Bi-2212/Ag HTS solenoid magnet system, IEEE Trans. Appl. Supercond. 11 (2001) 2523-2526. https://doi.org/10.1109/77.920379
[17] T. Baig, Z. Yao, D. Doll, M. Tomsic, and M. Martens, Conduction cooled magnet design for 1.5 T, 3.0 T, and 7.0 T MRI systems, Supercond. Sci. Technol. 27 (2014) 125012. https://doi.org/10.1088/0953-2048/27/12/125012
[18] H. Miyazaki, S. Iwai, T. Tosaka, K. Tasaki, S. Hanai, M. Urata, S. Ioka, and Y. Ishii, Development of a 5.1 T conduction-cooled YBCO coil composed of a stack of 12 single Pancakes, Physica C, 484 (2013) 287-291. https://doi.org/10.1016/j.physc.2012.02.041
[19] M. A. Young, J. A. Demko, M. J. Gouge, M. O. Pace, J. W. Lue, and R. Grabovickic, Measurements of the performance of BSCCO HTS tape under magnetic fields with a cryocooled test rig, IEEE Trans. Appl. Supercond. 13 (2003) 2964-2967. https://doi.org/10.1109/TASC.2003.812076
[20] Q. Wang, S. Song, Y. Lei, Y. Dai, B. Zhang, C. Wang, S. Lee and K. Kim, Design and fabrication of a conduction-cooled high-temperature superconducting magnet for 10 kJ superconducting magnetic energy storage system, IEEE Trans. Appl. Supercond. 16 (2006) 570-573. https://doi.org/10.1109/TASC.2005.869683
[21] S. L. Budko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C. Canfield, Boron isotope effect in superconducting MgB2 Phys. Rev. Lett. 86 (2001) 1877-1880. https://doi.org/10.1103/PhysRevLett.86.1877
[22] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature 410 (2001) 63-64. https://doi.org/10.1038/35065039
[23] J. Ling, J. Voccio, Y. Kim, S. Hahn, J. Bascunan, D. K. Park and Y. Iwasa, Monofilament wire for a whole-body MRI magnet: superconducting joints and test coils, IEEE Trans. Appl. Supercond. 23 (2013) 6200304. https://doi.org/10.1109/TASC.2012.2234183
[24] M. Tomsic, M. Rindfleisch, J. Yue, K. McFadden, J. Phillips, M. D. Sumption, M. Bhatia, S. Bohnenstiehl and E. W. Collings, Overview of MgB2 superconductor applications, Int. J. Appl. Ceram. Technol. 4 (2007) 250-259. https://doi.org/10.1111/j.1744-7402.2007.02138.x
[25] S. Mine, M. Xu, S. Buresh, W. Stautner, C. Immer, E. T. Laskaris, K. Amm, and G. Grasso, Second test coil for the development of a compact 3 T magnet, IEEE Trans. Appl. Supercond. 23 (2013) 4601404. https://doi.org/10.1109/TASC.2012.2232692
[26] Yao, Weijun, J. Bascunan, W-S. Kim, S. Hahn, H. Lee, and Y. Iwasa, A solid nitrogen-cooled demonstration: coil for MRI applications, IEEE Trans. Appl. Supercond. 18 (2008) 912-915. https://doi.org/10.1109/TASC.2008.920836
[27] J. Bascunan, H. Lee, E. S. Bobrov, S. Hahn, Y. Iwasa, M. Tomsic and M. Rindfleisch, A 0.6 T/650 mm RT bore solid nitrogen cooled demonstration coil for MRI a status report, IEEE Trans. Appl. Supercond. 16 (2006) 1427-1430. https://doi.org/10.1109/TASC.2005.864456
[28] W. Yao, J. Bascuan, S. Hahn and Y. Iwasa, MgB2 Coils for MRI Applications, IEEE Trans. Appl. Supercond. 20 (2010) 756-759. https://doi.org/10.1109/TASC.2009.2038890
[29] D. K. Park, S. Hahn, J. Bascunan and Y. Iwasa, Active protection of an MgB2 test coil, IEEE Trans. Appl. Supercond. 21 (2011) 2402-2405. https://doi.org/10.1109/TASC.2010.2095812
[30] D. Bessette and N. Mitchell, Review of the results of the ITER toroidal field conductor R & D and qualification, IEEE Trans. Appl. Supercond. 18 (2008) 1109-1113. https://doi.org/10.1109/TASC.2008.921277
[31] X. Xu, M. Sumption, X. Peng, and E. W. Collings, Refinement of Nb3Sn grain size by the generation of ZrO2 precipitates in Nb3Sn wires, Appl. Phys. Lett. 104 (2014) 82602. https://doi.org/10.1063/1.4866865
[32] X. Xu, A review and prospects for Nb3Sn superconductor development, Supercond. Sci. Technol. 30 (2017) 093001. https://doi.org/10.1088/1361-6668/aa7976
[33] N. Banno Y. Miyamoto, K. Tachikawa, Multifilamentary Nb3Sn Wires Fabricated Through Internal Diffusion Process Using Brass Matrix, IEEE Trans. Appl. Supercond. 26 (2016) 6001504. https://doi.org/10.1109/TASC.2016.2531123
[34] X. Xu, M. D. Sumption, and X. Peng, Internally oxidized Nb3Sn superconductor with very fine grain size and high critical current density, Adv. Mater. 27 (2015) 1346. https://doi.org/10.1002/adma.201404335
[35] S. Balachandran, C. Tarantini, P. J. Lee, F. Kametani, Y. F. Su, B. Walkker, W. L. Starch and D. B. Larbalestier, Beneficial influence of Hf and Zr additions to Nb4at%Ta on the vortex pinning of Nb3Sn with and without an O source, Supercond. Sci. Technol. 32 (2019) 044006. https://doi.org/10.1088/1361-6668/aaff02
[36] D. Uglietti, A review of commercial high-temperature superconducting materials for large magnets: from wires and tapes to cables and conductors, Supercond. Sci. Technol. 32 (2019) 053001. https://doi.org/10.1088/1361-6668/ab06a2
[37] S. Kobayashi, K. Yamazaki, T. Kato, K. Ohkura, E. Ueno, K. Fujino, J. Fujikami, N. Ayai, M. Kikuchi, K. Hayashi and K. Sao, Controlled over-pressure sintering process of Bi2223 wires, Physica C: Superconductivity and its applications, 426 (2005) 1132-1137. https://doi.org/10.1016/j.physc.2005.02.097
[38] F. Kametani, T. Shen, J. Jiang, C. Scheuerlein, A. Malagoli, M. Di Michiel, Y. Huang, H. Miao, J. A. Parrell, E. E. Hellstrom and D. C. Larbalestier, Bubble formation within filaments of melt-processed Bi2212 wires and its strongly negative effect on the critical current density, Supercond. Sci. Technol. 24 (2011) 075009. https://doi.org/10.1088/0953-2048/24/7/075009
[39] J. Jiang, W. L. Starch, M. Hannion, F. Kametani, U. P. Trociewitz, E. E. Hellstrom and D. C. Larbalestier, Doubled critical current density in Bi-2212 round wires by reduction of the residual bubble density, Supercond. Sci. Technol. 24 (2011) 082001. https://doi.org/10.1088/0953-2048/24/8/082001
[40] J. Jiang, G. Bradford, S. I. Hossain, M. D. Brown, J. Cooper, E. Miller, Y. Huang, H. Miao, J. A. Parrell, M. White, and A. Hunt, High-performance Bi-2212 round wires made with recent powders, IEEE Trans. Appl. Supercond. 29 (2019) 1-5. https://doi.org/10.1109/TASC.2019.2895197
[41] K. Sato, S. Kobayashi, and T. Nakashima, Present status and future perspective of bismuth-based high-temperature superconducting wires realizing application systems, Jpn. J. Appl. Phys. 51 (2011) 010006. https://doi.org/10.1143/JJAP.51.010006
[42] L. Xiao, S. Dai, L. Lin, J. Zhang, W. Guo, D. Zhang, Z. Gao, N. Song, Y. Teng, Z. Zhu, Z. Zhang, G. Zhang, F. Zhang, X. Xu, W. Zhou, Q. Qiu, and H. Li, Development of the World’s First HTS Power Substation, IEEE Trans. Appl. Supercond. 22 (2012) 5000104 https://doi.org/10.1109/TASC.2011.2176089
[43] S. Awaji, K. Watanabe, H. Oguro, H. Miyazaki, S. Hanai, T. Tosaka, and S. Loka, First performance test of a 25 T cryogen-free superconducting magnet, Supercond. Sci. Technol. 30 (2017) 065001. https://doi.org/10.1088/1361-6668/aa6676
[44] T. Nakashima, S. Kobayashi, T. Kagiyama, M. Yamazaki, S. Kikuchi, K. Yamade, K. Hayashi, K. Sato, G. Osabe, and J. Fuikami, Overview of the recent performance of DI-BSCCO wire, Cryogenics 52 (2012) 713-718. https://doi.org/10.1016/j.cryogenics.2012.06.018
[45] D. C. Larbalestier, J. Jiang, U. A. Trociewitz, F. Kametani, C. Scheuerlein, M. D. Canassy, M. Matras, P. Chen, N. C. Craig, P. J. Lee, and E. E. Hellstrom, Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T, Nat. Mater. 13 (2014) 375-381. https://doi.org/10.1038/nmat3887
[46] J. Zheng, Y. Song, X. Liu, J. Li, Y. Wan, M. Ye, K. Ding, S. Wu, W. Xu and J. Wei, Concept design of hybrid superconducting magnet for CFETR tokamak reactor, Proc. IEEE 25th SOFE (2013) 1-6. https://doi.org/10.1109/SOFE.2013.6635364
[47] J. G. Qin, Y. Wu, J. G. Li, C. Dai, F. Liu, H. J. Liu, P. H. Liu, C. S. Li, Q. B. Hao, C. Zhou and S. Liu, Manufacture and test of Bi-2212 cable-in-conduit conductor, IEEE Trans. Appl. Supercond. 27 (2017) 1-5. https://doi.org/10.1109/TASC.2017.2652306
[48] C. Senatore, M. Alessandrini, A. Lucarelli, R. Tediosi, D. Uglietti, and Y. Iwasa, Progresses and challenges in the development of high-field solenoidal magnets based on RE123 coated conductors, Supercond. Sci. Technol. 27 (2014) 103001. https://doi.org/10.1088/0953-2048/27/10/103001
[49] X. Obradors and T. Puig, Coated conductors for power applications: materials challenges, Supercond. Sci. Technol. 27 (2014) 044003. https://doi.org/10.1088/0953-2048/27/4/044003
[50] J. L. MacManus-Driscoll and S. C. Wimbush, Processing and application of high-temperature superconducting coated conductors, Nat. Rev. Mater. 6 (2021) 587-604. https://doi.org/10.1038/s41578-021-00290-3
[51] Y. Shiohara, T. Taneda, and M. Yoshizumi, Overview of Materials and Power Applications of Coated Conductors Project, Jpn. J. Appl. Phys. 51 (2012) 010007. https://doi.org/10.7567/JJAP.51.010007
[52] C. Senatore, C. Barth, M. Bonura, M. Kulich and G. Mondonico, Field and temperature scaling of the critical current density in commercial REBCO coated conductors, Supercond. Sci. Technol. 29 (2016) 014002. https://doi.org/10.1088/0953-2048/29/1/014002
[53] M. Durrschnabel, Z. Aabdin, M. Bauer, R. Semerad, W. Prusseit, and O. Eibl, DyBa2Cu3O7−x superconducting coated conductors with critical currents exceeding 1000 A cm−1, Supercond. Sci. Technol. 25 (2012) 105007. https://doi.org/10.1088/0953-2048/25/10/105007
[54] H. S. Kim, S. S. Oh, H. S. Ha, D. Youm, S. H. Moon, J. H. Kim, S. X. Dou, Y. U. Heo, S. H. Wee, and A. Goyal, Ultra-high performance, high-temperature superconducting wires via cost-effective, scalable, co-evaporation process, Scientific reports, Sci. 4 (2014) 1-6. https://doi.org/10.1038/srep04744
[55] G. Majkic, R. Pratap, A. Xu, E. Galstyan, H. C. Higley, S. O. Prestemon, X. Wang, D. Abraimov, J. Jaroszynski, and V. Selvamanickam, Engineering current density over 5 Ka mm−2 at 4.2 K, 14 T in thick film REBCO tapes, Supercond. Sci. Technol. 31 (2018)10LT01. https://doi.org/10.1088/1361-6668/aad844
[56] K. Zhang, S. Hellmann, M. Calvi, T. Schmidt, Magnetization Simulation of Rebco Tape Stack With a Large Number of Layers Using the Ansys A-V-A Formulation, IEEE Trans. Appl. Supercond. 30 (2020) 4700805. https://doi.org/10.1109/TASC.2020.2965506
[57] C. Lee, H. Son, Y. Won, Y. Kim, C. Ryu, M. Park, and M. Iwakuma, Progress of the first commercial project of high-temperature superconducting cables by KEPCO in Korea, Supercond. Sci. Technol. 33 (2020) 044006. https://doi.org/10.1088/1361-6668/ab6ec3
[58] S. Hahn, K. Kim, K. Kim, X. Hu, T. Painter, I. Dixon, S. Kim, K. R. Bhattarai, S. Noguchi, J. Jaroszynski, and D. C. Larbalestier, 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet, Nature 570 (2019) 496-499. https://doi.org/10.1038/s41586-019-1293-1
[59] Y. Suetomi, S. Takahashi, T. Takao, H. Maeda , and Y. Yanagisawa, A novel winding method for a no-insulation layer-wound REBCO coil to provide a short magnetic field delay and self-protect characteristics, Supercond. Sci. Technol. 32 (2019) 045003. https://doi.org/10.1088/1361-6668/ab016e
[60] E. Berrospe-Juarez, V. M. R. Zermeno, F. Trillaud, A. V. Gavrilin, F. Grilli, D. V. Abraimov, D. K. Hilton and H. W. Weijers, Estimation of losses in the (RE) BCO two-coil insert of the NHMFL 32 T all-superconducting magnet, IEEE Trans. Appl. Supercond. 28 (2018) 1-5. https://doi.org/10.1109/TASC.2018.2791545
[61] J. Liu, Q. Wang, L. Qin, B. Zhou, K. Wang, Y. Wang, L. Wang, Z. Zhang, Y. Dai, H. Liu, and X. Hu, World record 32.35-tesla direct-current magnetic field generated with an all-superconducting magnet, Supercond. Sci. Technol. 33 (2020) 03LT01. https://doi.org/10.1088/1361-6668/ab714e
[62] D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, A. A. Squitieri and M. T.Naus, Strongly linked current flow in polycrystalline forms of the superconductor MgB2, Nature 410 (2001) 186-189. https://doi.org/10.1038/35065559
[63] Y. E. Shujun H. Kumakura, The development of MgB2 superconducting wires fabricated with an internal Mg diffusion (IMD) process, Supercond. Sci. Technol. 29 (2016) 113004. https://doi.org/10.1088/0953-2048/29/11/113004
[64] S. X. Dou, S. Soltanian, J. Horvat, X. L. Wang, S. H. Zhou, M. Ionescu, H. K. Liu, P. Munroe and M. Tomsic, Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping, Appl. Phys. Lett 81 (2002) 3419-3421. https://doi.org/10.1063/1.1517398
[65] Y. Ma, X. Zhang, G. Nishijima, K. Watanabe, S. Awaji and X. Bai, Significantly enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon addition route, Appl. Phys. Lett. 88 (2006) 072502. https://doi.org/10.1063/1.2173635
[66] G. Z. Li, M. D. Sumption, J. B. Zwayer, M. A. Susner, M. A. Rindfleisch, C. J. Thong, M. J. Tomsic and E. W. Collings, Effects of carbon concentration and filament number on advanced internal Mg infiltration-processed MgB2 strands, Supercond. Sci. Technol. 26 (2013) 095007. https://doi.org/10.1088/0953-2048/26/9/095007
[67] D. Wang, D. Xu, X. Zhang, C. Yao, P. Yuan, Y. Ma, H. Oguro, S. Awaji and K. Watanabe, Uniform transport performance of a 100 m-class multifilament MgB2 wire fabricated by an internal Mg diffusion process, Supercond. Sci. Technol. 29 (2016) 065003. https://doi.org/10.1088/0953-2048/29/6/065003
[68] M. Tomsic, M. Rindfleisch, J. Yue, K. McFadden, D. Doll, J. Phillips, M. D. Sumption, M. Bhatia, S. Bohnenstiehl and E. W. Collings, Development of magnesium diboride (MgB2) wires and magnets using in situ strand fabrication method, Physica C 456 (2007) 203-208. https://doi.org/10.1016/j.physc.2007.01.009
[69] R. Flukiger, Advances in MgB2 conductors, Applied Superconductivity Conference 2014, Charlotte, USA.
[70] T. Katase, Y. Ishimaru, A. Tsukamoto, H. Hiramatsu, T. Kamiya, K. Tanabe and H. Hosono, 2011. Advantageous grain boundaries in iron pnictide superconductors, Nat. Commun. 2 (2011) 1-6. https://doi.org/10.1038/ncomms1419
[71] Y. Ma, Progress in wire fabrication of iron-based superconductors, Supercond. Sci. Technol. 25 (2012) 113001. https://doi.org/10.1088/0953-2048/25/11/113001
[72] J. D. Weiss, C. Tarantini, J. Jiang, F. Kametani, A. A. Polyanskii, D. C. Larbalestier and E. E. Hellstrom, High intergrain critical current density in fine-grain (Ba0.6K0.4) Fe2As2 wires and bulks, Nature Mater. 11 (2012) 682-85. https://doi.org/10.1038/nmat3333
[73] A. Malagoli, E. Wiesenmayer, S. Marchner, D. Johrendt, A. Genovese and M. Putti, Role of heat and mechanical treatments in the fabrication of superconducting Ba0.6K0.4Fe2As2 ex situ powder-in-tube tapes, Supercond. Sci. Technol. 28 (2015) 095015. https://doi.org/10.1088/0953-2048/28/9/095015
[74] X. Zhang, C. Yao, H. Lin, Y. Cai, Z. Chen, J. Li, C. Dong, Q. Zhang, D. Wang, Y. Ma and H. Oguro, Realization of practical level current densities in Sr0.6K0.4Fe2As2 tape conductors for high-field applications, Appl. Phys. Lett. 104 (2014) 202601. https://doi.org/10.1063/1.4879557
[75] Z. Gao, K. Togano, Y. Zhang, A. Matsumoto, A. Kikuchi and H. Kumakura, High transport Jc in stainless steel/Ag-Sn double sheathed Ba122 tapes, Supercond. Sci. Technol. 30 (2017) 095012. https://doi.org/10.1088/1361-6668/aa7bb9
[76] B. Shabbir, H. Huang, C. Yao, Y. Ma, S. Dou, T. H. Johansen, H. Hosono and X. Wang, Evidence for superior current carrying capability of iron pnictide tapes under hydrostatic pressure, Phys. Rev. Mater. 1 (2017) 044805. https://doi.org/10.1103/PhysRevMaterials.1.044805
[77] H. Hosono, A. Yamamoto, H. Hiramatsu and Y. Ma, Recent advances in iron-based superconductors toward applications. Mater. Today 21 (2018) 278-302. https://doi.org/10.1016/j.mattod.2017.09.006
[78] C. Yao and Y. Ma, Recent breakthrough development in iron-based superconducting wires for practical applications. Supercond. Sci. Technol. 32 (2019) 023002. https://doi.org/10.1088/1361-6668/aaf351
[79] H. Huang, C. Yao, C. Dong, X. Zhang, D. Wang, Z. Cheng, J. Li, S. Awaji, H. Wen and Y. Ma, High transport current superconductivity in powder-in-tube Ba0.6K0.4Fe2As2 tapes at 27 T, Supercond. Sci. Technol. 31 (2017) 015017. https://doi.org/10.1088/1361-6668/aa9912
[80] S. Pyon, D. Miyawaki, T. Tamegai, S. Awaji, H. Kito, S. Ishida and Y. Yoshida, Enhancement of critical current density in (Ba, Na) Fe2As2 round wires using high-pressure sintering, Supercond. Sci. Technol. 33 (2020) 065001. https://doi.org/10.1088/1361-6668/ab804c
[81] S. Liu, C. Yao, H. Huang, C. Dong, W. Guo, Z. Cheng, Y. Zhu, S. Awaji and Y. Ma, High-performance Ba1−xKxFe2As2 superconducting tapes with grain texture engineered via a scalable fabrication. Sci. China Mater. 64 (2021) 2530-2540. https://doi.org/10.1007/s40843-020-1643-1
[82] G. Sylva, A. Augieri, A. Mancini, A. Rufoloni, A. Vannozzi, G. Celentano, E. Bellingeri, C. Ferdeghini, M. Putti and V. Braccini, Fe (Se, Te) coated conductors deposited on simple rolling-assisted biaxially textured substrate templates. Supercond. Sci. Technol. 32 (2019) 084006. https://doi.org/10.1088/1361-6668/ab0e98
[83] I. Pallecchi, C. Tarantini, J. Hänisch and A. Yamamoto, Preface to the special issue ‘Focus on 10 Years of Iron-Based Superconductors’, Supercond. Sci. Technol. 33 (2020) 090301. https://doi.org/10.1088/1361-6668/ab9ad2
[84] J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He and X. Chen, Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0), Phys. Rev. B 82 (2010) 180520. https://doi.org/10.1103/PhysRevB.82.180520
[85] X. F. Lu, N. Z. Wang, H. Wu, Y. P. Wu, D. Zhao, X. Z. Zeng, X. G. Luo, T. Wu, W. Bao, G. H. Zhang and F. Q. Huang, Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe, Nat. Mater. 14 (2015) 325-329. https://doi.org/10.1038/nmat4155
[86] C. Yao, Y. Ma, X. Zhang, D. Wang, C. Wang, H. Lin and Q. Zhang, Fabrication and transport properties of Sr0.6K0.4Fe2As2 multifilamentary superconducting wires, Appl. Phys. Lett. 102 (2013) 082602. https://doi.org/10.1063/1.4794059
[87] X. Zhang, H. Oguro, C. Yao, C. Dong, Z. Xu, D. Wang, S. Awaji, K. Watanabe and Y. Ma, Superconducting properties of 100-m class Sr0.6K0.4Fe2As2 tape and pancake coils, IEEE Trans. Appl. Supercond. 27 (2017) 1-5. https://doi.org/10.1109/TASC.2017.2650408
[88] D. Wang, Z. Zhang, X. Zhang, D. Jiang, C. Dong, H. Huang, W. Chen, Q. Xu and Y. Ma, First performance test of a 30 mm iron-based superconductor single pancake coil under a 24 T background field, Supercond. Sci. Technol. 32 (2019) 04LT01. https://doi.org/10.1088/1361-6668/ab09a4
[89] X. Qian, S. Jiang, H. Ding, P. Huang, G. Zou, D. Jiang, X. Zhang, Y. Ma and W. Chen, Performance testing of the iron-based superconductor inserted coils under high magnetic field, Physica C: Superconductivity and its Applications, 580 (2021) 1353787. https://doi.org/10.1016/j.physc.2020.1353787
[90] Z. Zhang, D. Wang, S. Wei, Y. Wang, C. Wang, Z. Zhang, H. Yao, X. Zhang, F. Liu, H. Liu and Y. Ma, First performance test of the iron-based superconducting racetrack coils at 10 T, Supercond. Sci. Technol. 34 (2021) 035021. https://doi.org/10.1088/1361-6668/abb11b
[91] The CEPC Study Group, CEPC Conceptual Design Report, Vol 1 – Accelerator, IHEP-CEPC-DR-2018-01, IHEP-AC-2018-01, August 2018.
[92] Z. Gao, L. Wang, Y. Qi, D. Wang, X. Zhang and Y. Ma. Preparation of LaFeAsO0.9F0.1 wires by the powder-in-tube method, Supercond. Sci. Technol. 21 (2008) 105024. https://doi.org/10.1088/0953-2048/21/10/105024
[93] Y. Qi, X. Zhang, Z. Gao, Z. Zhang, L. Wang, D. Wang and Y. Ma, Superconductivity of powder-in-tube Sr0.6K0.4Fe2As2 wires, Phys. C: Supercond. 469 (2009) 717-720. https://doi.org/10.1016/j.physc.2009.03.008
[94] H. Hilgenkamp and J. Mannhart, Grain boundaries in high-Tc superconductors, Rev. Mod. Phys. 74 (2002) 485. https://doi.org/10.1103/RevModPhys.74.485
[95] C. Yao, H. Lin, Q. Zhang, X. Zhang, D. Wang, C. Dong, Y. Ma, S. Awaji and K. Watanabe, Critical current density and microstructure of iron sheathed multifilamentary Sr1−xKxFe2As2/Ag composite conductors, J. Appl. Phys. 118 (2015) 203909. https://doi.org/10.1063/1.4936370
[96] X. Zhang, C. Yao, H. Lin, Y. Cai, Z. Chen, J. Li, C. Dong, Q. Zhang, D. Wang, Y. Ma and H. Oguro, Realization of practical level current densities in Sr0.6K0.4Fe2As2 tape conductors for high-field applications, Appl. Phys. Lett. 104 (2014) 202601. https://doi.org/10.1063/1.4879557
[97] C. Yao, H. Lin, Q. Zhang, X. Zhang, D. Wang, C. Dong, Y. Ma, S. Awaji and K. Watanabe, Critical current density and microstructure of iron sheathed multifilamentary Sr1−xKxFe2As2/Ag composite conductors, J. Appl. Phys. 118 (2015) 203909. https://doi.org/10.1063/1.4936370
[98] A. Gurevich S. Patnaik, V. Braccini, K. H. Kim, C. Mielke, X. Song, L. D. Cooley, S. D. Bu, D. M. Kim, J. H. Choi and L. J. Belenky, Very high upper critical fields in MgB2 produced by selective tuning of impurity scattering, Supercond. Sci. Technol. 17 (2004) 278. https://doi.org/10.1088/0953-2048/17/2/008
[99] J. Jaroszynski, F. Hunte, L. Balicas, Y. J. Jo, I. Raičević, A. Gurevich, D. C. Larbalestier, F. F. Balakirev, L. Fang, P. Cheng and Y. Jia, Upper critical fields and thermally-activated transport of NdFeAsO 0.7 F 0.3 single crystal, Phys. Rev. B 78 (2008) 174523. https://doi.org/10.1103/PhysRevB.78.174523
[100] C. Tarantini, A. Gurevich, J. Jaroszynski, F. Balakirev, E. Bellingeri, I. Pallecchi, C. Ferdeghini, B. Shen, H. H. Wen and D. C. Larbalestier, Significant enhancement of upper critical fields by doping and strain in iron-based superconductors, Physical Review B 84 (2011) 184522. https://doi.org/10.1103/PhysRevB.84.184522
[101] Y. Ando, G. S. Boebinger, A. Passner, L. F. Schneemeyer, T. Kimura, M. Okuya S. Watauchi, J. Shimoyama, K. Kishio, K. Tamasaku and N. Ichikawa, Resistive upper critical fields and irreversibility lines of optimally doped high-Tc cuprates. Phys. Rev. B, 60 (1999) 12475. https://doi.org/10.1103/PhysRevB.60.12475
[102] I. Matsubara, H. Tanigawa, T. Ogura, H. Yamashita. M. Kinoshita and T. Kawai, Upper critical field and anisotropy of the high-Tc Bi2Sr2Ca2Cu3O x phase, Phy. Rev. B 45 (1992) 7414.
[103] L. Quettier, , G. Aubert, , J. Belorgey, C. Berriaud, A. Bourquard, Ph. Bredy, O. Dubois, G. Gilgrass, F.P Juster, H. Lannou, F. Molinié, M. Nusbaum, F. Nunio, A. Payn, T. Schild, M. Schweitzer, L. Scola, A. Sinanna, V. Stepanov and P. Vedrine, Iseult/INUMAC Whole Body 11.7 T MRI Magnet, IEEE Trans. Appl. Supercond. 25 (2015) 4301404 https://doi.org/10.1109/TASC.2014.2369233
[104] P. Tixador, C. E. Bruzek, B. Vincent, A. Malgoli and X. Chaud, Mechanically reinforced Bi-2212 strand, IEEE Trans. Appl. Supercond. 25 (2014) 1-4. https://doi.org/10.1109/TASC.2014.2373642
[105] T. Shen, P. Li, J. Jiang, L. Cooley, J. Tomopkins, D. McRae and R. Walsh, High strength kiloampere Bi2Sr2CaCu2Ox cables for high-field magnet applications, Supercond. Sci. Technol. 28 (2015) 065002. https://doi.org/10.1088/0953-2048/28/6/065002
[106] C. Yao, H. Lin, Q. Zhang, X. Zhang, D. Wang, C. Dong, Y. Ma, S. Awaji and K. Watanabe, Critical current density and microstructure of iron sheathed multifilamentary Sr1-xKxFe2As2/Ag composite conductors, J. Appl. Phys. 118 (2015) 203909. https://doi.org/10.1063/1.4936370