Piezoelectric Materials based Phototronics


Piezoelectric Materials based Phototronics

Mamata Singh, Ahumuza Benjamin, N.P. Singh, Vivek Mishra

In 2010, the fundamentals of piezo-phototronics were introduced. By applying stress, a piezo potential is formed in a non-central symmetrical crystal due to ion polarisation. Due to the co-existence of semiconductor and piezoelectricity characteristics, piezo potential induced in the crystal is of significant impact on charge transfer at the junction/interface. The phototronic product uses the piezo capability to manage carrier formation, separation, transportation, and recombination to improve the performance of optoelectronic devices such as photon detectors, solar cells and LED. Today, most of the unique applications in this field can be found in sensing, human-computer interfacing, actuating nanorobotics by effectively integrating piezo-phototronic devices and piezotronic with silicon-based CMOS technology. This chapter gives an insight into the fundamentals of piezo-phototronics.

Piezoelectricity, Piezo-Phototronics, Semiconductor, Photoexcitation, Piezotronics

Published online 2022/09/01, 21 pages

Citation: Mamata Singh, Ahumuza Benjamin, N.P. Singh, Vivek Mishra, Piezoelectric Materials based Phototronics, Materials Research Foundations, Vol. 131, pp 117-137, 2022

DOI: https://doi.org/10.21741/9781644902073-4

Part of the book on Advanced Functional Piezoelectric Materials and Applications

[1] J. Curie, P. Curie, No Title, (1880). https://doi.org/10.3406/bulmi.1880.1564. https://doi.org/10.3406/bulmi.1880.1564
[2] Introduction to Piezoelectricity and Piezoelectric Ceramics – Kadco Ceramics, (n.d.). https://www.kadcoceramics.com/introduction-to-piezoelectricity-and-piezoelectric-ceramics/ (accessed June 26, 2021).
[3] Piezoelectricity – Wikipedia, (n.d.). https://en.wikipedia.org/wiki/Piezoelectricity#Application (accessed June 11, 2021).
[4] A. Ramadoss, B. Saravanakumar, S.W. Lee, Y.S. Kim, S.J. Kim, Z.L. Wang, Piezoelectric-Driven Self-Charging Supercapacitor Power Cell, ACS Nano. 9 (2015) 4337-4345. https://doi.org/10.1021/acsnano.5b00759
[5] What is Piezoelectricity? | OnScale, (n.d.). https://onscale.com/piezoelectricity/what-is-piezoelectricity/ (accessed June 26, 2021).
[6] T. Bailey, J.E. Ubbard, Distributed piezoelectric-polymer active vibration control of a cantilever beam, Journal of Guidance, Control, and Dynamics. 8 (1985) 605-611. https://doi.org/10.2514/3.20029
[7] K.S. Hong, H. Xu, H. Konishi, X. Li, Piezoelectrochemical effect: A new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers, Journal of Physical Chemistry C. 116 (2012) 13045-13051. https://doi.org/10.1021/jp211455z
[8] Piezoelectricity – Engineering LibreTexts, (n.d.). https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Electronic_Properties/Piezoelectricity (accessed June 11, 2021).
[9] The Piezoelectric Effect – Piezoelectric Motors & Motion Systems, (n.d.). https://www.nanomotion.com/nanomotion-technology/piezoelectric-effect/ (accessed June 11, 2021).
[10] Piezoelectric Material – an overview | ScienceDirect Topics, (n.d.). https://www.sciencedirect.com/topics/materials-science/piezoelectric-material (accessed June 11, 2021).
[11] M.A. Migliorato, D. Powell, A.G. Cullis, T. Hammerschmidt, G.P. Srivastava, Composition and strain dependence of the piezoelectric coefficients in Inx Ga1-x As alloys, Physical Review B – Condensed Matter and Materials Physics. 74 (2006).
[12] O. Thomas, J.F. Deü, J. Ducarne, Vibrations of an elastic structure with shunted piezoelectric patches: Efficient finite element formulation and electromechanical coupling coefficients, International Journal for Numerical Methods in Engineering. 80 (2009) 235-268. https://doi.org/10.1002/nme.2632
[13] M.A. Dubois, P. Muralt, Measurement of the effective transverse piezoelectric coefficient e31,f of AlN and Pb(Zrx,Ti1-x)O3 thin films, Sensors and Actuators, A: Physical. 77 (1999) 106-112. https://doi.org/10.1016/S0924-4247(99)00070-9
[14] H.Y.S. Al-Zahrani, J. Pal, M.A. Migliorato, Non-linear piezoelectricity in wurtzite ZnO semiconductors, Nano Energy. 2 (2013) 1214-1217. https://doi.org/10.1016/j.nanoen.2013.05.005
[15] N. Izyumskaya, Y.I. Alivov, S.J. Cho, H. Morkoç, H. Lee, Y.S. Kang, Processing, structure, properties, and applications of PZT thin films, Critical Reviews in Solid State and Materials Sciences. 32 (2007) 111-202. https://doi.org/10.1080/10408430701707347
[16] M.G. Kang, W.S. Jung, C.Y. Kang, S.J. Yoon, Recent progress on PZT based piezoelectric energy harvesting technologies, Actuators. 5 (2016). https://doi.org/10.3390/act5010005
[17] K. il Park, J.H. Son, G.T. Hwang, C.K. Jeong, J. Ryu, M. Koo, I. Choi, S.H. Lee, M. Byun, Z.L. Wang, K.J. Lee, Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates, Advanced Materials. 26 (2014) 2514-2520. https://doi.org/10.1002/adma.201305659
[18] V. Jella, S. Ippili, J.H. Eom, S.V.N. Pammi, J.S. Jung, V.D. Tran, V.H. Nguyen, A. Kirakosyan, S. Yun, D. Kim, M.R. Sihn, J. Choi, Y.J. Kim, H.J. Kim, S.G. Yoon, A comprehensive review of flexible piezoelectric generators based on organic-inorganic metal halide perovskites, Nano Energy. 57 (2019) 74-93. https://doi.org/10.1016/j.nanoen.2018.12.038
[19] J. Hao, W. Li, J. Zhai, H. Chen, Progress in high-strain perovskite piezoelectric ceramics, Materials Science and Engineering R: Reports. 135 (2019) 1-57. https://doi.org/10.1016/j.mser.2018.08.001
[20] S. Zhang, R. Xia, T.R. Shrout, G. Zang, J. Wang, Piezoelectric properties in perovskite 0.948(K0.5Na 0.5)NbO3-0.052LiSbO3 lead-free ceramics, Journal of Applied Physics. 100 (2006). https://doi.org/10.1063/1.2382348
[21] A.S. Bhalla, R. Guo, R. Roy, The perovskite structure – A review of its role in ceramic science and technology, Materials Research Innovations. 4 (2000) 3-26. https://doi.org/10.1007/s100190000062
[22] Z.L. Wang, From nanogenerators to piezotronicsa-A decade-long study of ZnO nanostructures, MRS Bulletin. 37 (2012) 814-827. https://doi.org/10.1557/mrs.2012.186
[23] L. Wang, Z.L. Wang, Advances in piezotronic transistors and piezotronics, Nano Today. 37 (2021) 101108. https://doi.org/10.1016/j.nantod.2021.101108
[24] L. Wang, Z.L. Wang, Advances in piezotronic transistors and piezotronics, Nano Today. 37 (2021). https://doi.org/10.1016/j.nantod.2021.101108
[25] Q. Zhang, S. Zuo, P. Chen, C. Pan, Piezotronics in two-dimensional materials, InfoMat. 3 (2021) 987-1007. https://doi.org/10.1002/inf2.12220
[26] Z.L. Wang, W. Wu, Piezotronics and piezo-phototronics: Fundamentals and applications, National Science Review. 1 (2014) 62-90. https://doi.org/10.1093/nsr/nwt002
[27] S. Xu, W. Guo, S. Du, M.M.T. Loy, N. Wang, Piezotronic effects on the optical properties of ZnO nanowires, Nano Letters. 12 (2012) 5802-5807. https://doi.org/10.1021/nl303132c
[28] S. Xu, W. Guo, S. Du, M.M.T. Loy, N. Wang, Piezotronic effects on the optical properties of ZnO nanowires, Nano Letters. 12 (2012) 5802-5807. https://doi.org/10.1021/nl303132c
[29] R. Yu, L. Dong, C. Pan, S. Niu, H. Liu, W. Liu, S. Chua, D. Chi, Z.L. Wang, Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics, Advanced Materials. 24 (2012) 3532-3537. https://doi.org/10.1002/adma.201201020
[30] X. Li, W. Yu, X. Gao, H. Liu, N. Han, X. Zhang, PVDF microspheres@PLLA nanofibers-based hybrid tribo/piezoelectric nanogenerator with excellent electrical output properties, Materials Advances. 2 (2021) 6011-6019. https://doi.org/10.1039/D1MA00464F
[31] R.T. Tung, Recent advances in Schottky barrier concepts, Materials Science and Engineering: R: Reports. 35 (2001) 1-138. https://doi.org/10.1016/S0927-796X(01)00037-7
[32] L.J. Brillson, Y. Lu, ZnO Schottky barriers and Ohmic contacts, Journal of Applied Physics. 109 (2011). https://doi.org/10.1063/1.3581173
[33] J. Meng, Z. Li, Schottky-Contacted Nanowire Sensors, Advanced Materials. 32 (2020). https://doi.org/10.1002/adma.202000130
[34] Z.L. Wang, W. Wu, Piezotronics and piezo-phototronics: fundamentals and applications, National Science Review. 1 (2014) 62-90. https://doi.org/10.1093/nsr/nwt002
[35] Y. Zhang, Y. Yang, Z.L. Wang, Piezo-phototronics effect on nano/microwire solar cells, Energy and Environmental Science. 5 (2012) 6850-6856. https://doi.org/10.1039/c2ee00057a
[36] W. Han, Y. Zhou, Y. Zhang, C.Y. Chen, L. Lin, X. Wang, S. Wang, Z.L. Wang, Strain-gated piezotronic transistors based on vertical zinc oxide nanowires, ACS Nano. 6 (2012) 3760-3766. https://doi.org/10.1021/nn301277m
[37] P. Puneetha, S.P.R. Mallem, Y.W. Lee, J.H. Lee, J. Shim, Strain-induced piezotronic effects in nano-sized GaN thin films, Nano Energy. 88 (2021). https://doi.org/10.1016/j.nanoen.2021.106305
[38] Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, Z.L. Wang, Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor, Journal of Applied Physics. 105 (2009). https://doi.org/10.1063/1.3125449
[39] W. Liu, M. Lee, L. Ding, J. Liu, Z.L. Wang, Piezopotential gated nanowire-nanotube hybrid field-effect transistor, Nano Letters. 10 (2010) 3084-3089. https://doi.org/10.1021/nl1017145
[40] C.R. Crowell, S.M. Sze, Current transport in metal-semiconductor barriers, Solid State Electronics. 9 (1966) 1035-1048. https://doi.org/10.1016/0038-1101(66)90127-4
[41] Z.L. Wang, Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics, Nano Today. 5 (2010) 540-552. https://doi.org/10.1016/j.nantod.2010.10.008
[42] C. Pan, M. Chen, R. Yu, Q. Yang, Y. Hu, Y. Zhang, Z.L. Wang, Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging, Advanced Materials. 28 (2016) 1535-1552. https://doi.org/10.1002/adma.201503500
[43] S. Tu, Y. Guo, Y. Zhang, C. Hu, T. Zhang, T. Ma, H. Huang, Piezocatalysis and Piezo-Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application, Advanced Functional Materials. 30 (2020). https://doi.org/10.1002/adfm.202005158
[44] Y. Liu, Y. Zhang, Q. Yang, S. Niu, Z.L. Wang, Fundamental theories of piezotronics and piezo-phototronics, Nano Energy. 14 (2014) 257-275. https://doi.org/10.1016/j.nanoen.2014.11.051
[45] C. Pan, J. Zhai, Z.L. Wang, Piezotronics and Piezo-phototronics of Third Generation Semiconductor Nanowires, Chemical Reviews. 119 (2019) 9303-9359. https://doi.org/10.1021/ACS.CHEMREV.8B00599/ASSET/IMAGES/ACS.CHEMREV.8B00599.SOCIAL.JPEG_V03. https://doi.org/10.1021/acs.chemrev.8b00599
[46] Q. Yang, W. Wang, S. Xu, Z.L. Wang, Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect, Nano Letters. 11 (2011) 4012-4017. https://doi.org/10.1021/nl202619d
[47] Q. Yang, W. Wang, S. Xu, Z.L. Wang, Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect, Nano Letters. 11 (2011) 4012-4017. https://doi.org/10.1021/nl202619d
[48] J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, Z.L. Wang, Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires, Nano Letters. 8 (2008) 3973-3977. https://doi.org/10.1021/nl802497e
[49] L. Zhu, Q. Lai, W. Zhai, B. Chen, Z.L. Wang, Piezo-phototronic effect enhanced polarization-sensitive photodetectors based on cation-mixed organic-inorganic perovskite nanowires, Materials Today. 37 (2020) 56-63. https://doi.org/10.1016/j.mattod.2020.02.018
[50] V. Consonni, A.M. Lord, Polarity in ZnO nanowires: A critical issue for piezotronic and piezoelectric devices, Nano Energy. 83 (2021). https://doi.org/10.1016/j.nanoen.2021.105789
[51] G.S. Weldegrum, P. Singh, B.R. Huang, T.Y. Chiang, K.W. Tseng, C.J. Yu, C. Ji, J.P. Chu, ZnO-NWs/metallic glass nanotube hybrid arrays: Fabrication and material characterization, Surface and Coatings Technology. 408 (2021). https://doi.org/10.1016/j.surfcoat.2020.126785
[52] C. Pan, J. Zhai, Z.L. Wang, Piezotronics and Piezo-phototronics of Third Generation Semiconductor Nanowires, Chemical Reviews. 119 (2019) 9303-9359. https://doi.org/10.1021/acs.chemrev.8b00599
[53] M. Nehra, N. Dilbaghi, G. Marrazza, A. Kaushik, R. Abolhassani, Y.K. Mishra, K.H. Kim, S. Kumar, 1D semiconductor nanowires for energy conversion, harvesting and storage applications, Nano Energy. 76 (2020). https://doi.org/10.1016/j.nanoen.2020.104991
[54] Y. Peng, M. Que, J. Tao, X. Wang, J. Lu, G. Hu, B. Wan, Q. Xu, C. Pan, Progress in piezotronic and piezo-phototronic effect of 2D materials, 2D Materials. 5 (2018). https://doi.org/10.1088/2053-1583/aadabb
[55] Q. Cheng, J. Pang, D. Sun, J. Wang, S. Zhang, F. Liu, Y. Chen, R. Yang, N. Liang, X. Lu, Y. Ji, J. Wang, C. Zhang, Y. Sang, H. Liu, W. Zhou, WSe2 2D p-type semiconductor-based electronic devices for information technology: Design, preparation, and applications, InfoMat. 2 (2020) 656-697. https://doi.org/10.1002/inf2.12093
[56] X. Zhao, Q. Li, L. Xu, Z. Zhang, Z. Kang, Q. Liao, Y. Zhang, Interface Engineering in 1D ZnO-Based Heterostructures for Photoelectrical Devices, Advanced Functional Materials. 32 (2022). https://doi.org/10.1002/adfm.202106887
[57] Y. He, A. Sobhani, S. Lei, Z. Zhang, Y. Gong, Z. Jin, W. Zhou, Y. Yang, Y. Zhang, X. Wang, B. Yakobson, R. Vajtai, N.J. Halas, B. Li, E. Xie, P. Ajayan, Layer Engineering of 2D Semiconductor Junctions, Advanced Materials. 28 (2016) 5126-5132. https://doi.org/10.1002/adma.201600278
[58] M. Collet, M. Ouisse, M.N. Ichchou, R. Ohayon, Semi-active optimization of 2D wave dispersion into shunted piezo-composite systems for controlling acoustic interaction, Smart Materials and Structures. 21 (2012). https://doi.org/10.1088/0964-1726/21/9/094002
[59] Z.L. Wang, W. Wu, C. Falconi, Piezotronics and piezo-phototronics with third-generation semiconductors, MRS Bulletin. 43 (2018) 922-927. https://doi.org/10.1557/mrs.2018.263
[60] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chemical Reviews. 110 (2010) 6503-6570. https://doi.org/10.1021/cr1001645
[61] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chemical Reviews. 110 (2010) 6503-6570. https://doi.org/10.1021/cr1001645
[62] T. Pham, S. Kommandur, H. Lee, D. Zakharov, M.A. Filler, F.M. Ross, One-dimensional twisted and tubular structures of zinc oxide by semiconductor-catalyzed vapor-liquid-solid synthesis, Nanotechnology. 32 (2021). https://doi.org/10.1088/1361-6528/abc452
[63] B.G. Crutchley, I.P. Marko, J. Pal, M.A. Migliorato, S.J. Sweeney, Optical properties of InGaN-based LEDs investigated using high hydrostatic pressure dependent techniques, Physica Status Solidi (B) Basic Research. 250 (2013) 698-702. https://doi.org/10.1002/pssb.201200514
[64] M. El-Salamony, M.A. Aziz, Solar Panel Effect on Low-Speed Airfoil Aerodynamic Performance, Unmanned Systems. 9 (2021) 333-347. https://doi.org/10.1142/S2301385021500175
[65] B. Dai, G.M. Biesold, M. Zhang, H. Zou, Y. Ding, Z.L. Wang, Z. Lin, Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes, Chemical Society Reviews. 50 (2021) 13646-13691. https://doi.org/10.1039/D1CS00506E
[66] D. Hong, W. Zang, X. Guo, Y. Fu, H. He, J. Sun, L. Xing, B. Liu, X. Xue, High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye, ACS Applied Materials and Interfaces. 8 (2016) 21302-21314. https://doi.org/10.1021/acsami.6b05252
[67] L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang, X. Zhang, J.J. Zou, Z.L. Wang, Advances in Piezo-Phototronic Effect Enhanced Photocatalysis and Photoelectrocatalysis, Advanced Energy Materials. 10 (2020). https://doi.org/10.1002/aenm.202000214
[68] Y. Hu, Y. Zhang, L. Lin, Y. Ding, G. Zhu, Z.L. Wang, Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films, Nano Letters. 12 (2012) 3851-3856. https://doi.org/10.1021/nl301879f
[69] Y. Hu, Y. Zhang, L. Lin, Y. Ding, G. Zhu, Z.L. Wang, Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films, Nano Letters. 12 (2012) 3851-3856. https://doi.org/10.1021/nl301879f
[70] Z. Huo, Y. Zhang, X. Han, W. Wu, W. Yang, X. Wang, M. Zhou, C. Pan, Piezo-phototronic effect enhanced performance of a p-ZnO NW based UV-Vis-NIR photodetector, Nano Energy. 86 (2021). https://doi.org/10.1016/j.nanoen.2021.106090
[71] W. Wu, Z.L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics, Nature Reviews Materials. 1 (2016). https://doi.org/10.1038/natrevmats.2016.31
[72] C. Pan, S. Niu, Y. Ding, L. Dong, R. Yu, Y. Liu, G. Zhu, Z.L. Wang, Enhanced Cu 2S/CdS coaxial nanowire solar cells by piezo-phototronic effect, Nano Letters. 12 (2012) 3302-3307. https://doi.org/10.1021/nl3014082
[73] J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M.H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H.Q. Xu, L. Samuelson, K. Deppert, M.T. Borgström, InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit, Science. 339 (2013) 1057-1060. https://doi.org/10.1126/science.1230969
[74] H. Hoopes, Good vibrations lead to efficient excitations in hybrid solar cells, Gizmag.com, 2013. http://www.gizmag.com/vibration-sound-efficient-hybrid-solar-cell-arrays/29679/ (accessed June 11, 2021).
[75] H. Li, Y. Sang, S. Chang, X. Huang, Y. Zhang, R. Yang, H. Jiang, H. Liu, Z.L. Wang, Enhanced Ferroelectric-Nanocrystal-Based Hybrid Photocatalysis by Ultrasonic-Wave-Generated Piezophototronic Effect, Nano Letters. 15 (2015) 2372-2379. https://doi.org/10.1021/nl504630j
[76] F.B. Madsen, A.E. Daugaard, S. Hvilsted, A.L. Skov, The Current State of Silicone-Based Dielectric Elastomer Transducers, Macromolecular Rapid Communications. 37 (2016) 378-413. https://doi.org/10.1002/marc.201500576
[77] L. Kleinman, Deformation potentials in silicon. I. Uniaxial strain, Physical Review. 128 (1962) 2614-2621. https://doi.org/10.1103/PhysRev.128.2614
[78] B.S. Lee, J. Yoon, C. Jung, D.Y. Kim, S.Y. Jeon, K.H. Kim, J.H. Park, H. Park, K.H. Lee, Y.S. Kang, J.H. Park, H. Jung, W.R. Yu, S.G. Doo, Silicon/Carbon Nanotube/BaTiO3 Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential, ACS Nano. 10 (2016) 2617-2627. https://doi.org/10.1021/acsnano.5b07674
[79] Y. Yang, W. Guo, Y. Zhang, Y. Ding, X. Wang, Z.L. Wang, Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells, Nano Letters. 11 (2011) 4812-4817. https://doi.org/10.1021/nl202648p
[80] Y. Yang, W. Guo, Y. Zhang, Y. Ding, X. Wang, Z.L. Wang, Piezotronic Effect on the Output Voltage of P3HT/ZnO Micro/Nanowire Heterojunction Solar Cells, Nano Letters. 11 (2011) 4812-4817. https://doi.org/10.1021/nl202648p
[81] G. Michael, Y. Zhang, J. Nie, D. Zheng, G. Hu, R. Liu, M. Dan, L. Li, Y. Zhang, High-performance piezo-phototronic multijunction solar cells based on single-type two-dimensional materials, Nano Energy. 76 (2020). https://doi.org/10.1016/j.nanoen.2020.105091
[82] J. Shi, M.B. Starr, H. Xiang, Y. Hara, M.A. Anderson, J.H. Seo, Z. Ma, X. Wang, Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode, Nano Letters. 11 (2011) 5587-5593. https://doi.org/10.1021/nl203729j
[83] S. Xia, Y. Diao, C. Kan, Electronic and optical properties of two-dimensional GaN/ZnO heterojunction tuned by different stacking configurations, Journal of Colloid and Interface Science. 607 (2022) 913-921. https://doi.org/10.1016/j.jcis.2021.09.050
[84] J. Zhang, Tunable local and global piezopotential properties of graded InGaN nanowires, Nano Energy. 86 (2021). https://doi.org/10.1016/j.nanoen.2021.106125
[85] Z.L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, S. Xu, Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics, Materials Science and Engineering R: Reports. 70 (2010) 320-329. https://doi.org/10.1016/j.mser.2010.06.015
[86] Y. Liu, Q. Yang, Y. Zhang, Z. Yang, Z.L. Wang, Nanowire piezo-phototronic photodetector: Theory and experimental design, Advanced Materials. 24 (2012) 1410-1417. https://doi.org/10.1002/adma.201104333
[87] C. Gong, M.H.W. Lam, H. Yu, The fabrication of a photoresponsive molecularly imprinted polymer for the photoregulated uptake and release of caffeine, Advanced Functional Materials. 16 (2006) 1759-1767. https://doi.org/10.1002/adfm.200500907
[88] C.F. Tan, W.L. Ong, G.W. Ho, Self-Biased Hybrid Piezoelectric-Photoelectrochemical Cell with Photocatalytic Functionalities, ACS Nano. 9 (2015) 7661-7670. https://doi.org/10.1021/acsnano.5b03075
[89] H. Chen, G. Noirbent, Y. Zhang, K. Sun, S. Liu, D. Brunel, D. Gigmes, B. Graff, F. Morlet-Savary, P. Xiao, F. Dumur, J. Lalevée, Photopolymerization and 3D/4D applications using newly developed dyes: Search around the natural chalcone scaffold in photoinitiating systems, Dyes and Pigments. 188 (2021). https://doi.org/10.1016/j.dyepig.2021.109213
[90] A. Babaeinesami, H. Tohidi, S.M. Seyedaliakbar, Designing a data-driven leagile sustainable closed-loop supply chain network, International Journal of Management Science and Engineering Management. 16 (2021) 14-26. https://doi.org/10.1080/17509653.2020.1811794
[91] Y. Ji, Y. Liu, Y. Yang, Multieffect Coupled Nanogenerators, Research. 2020 (2020) 1-24. https://doi.org/10.34133/2020/6503157
[92] C. Ren, K.F. Wang, B.L. Wang, Adjusting the electromechanical coupling behaviors of piezoelectric semiconductor nanowires via strain gradient and flexoelectric effects, Journal of Applied Physics. 128 (2020). https://doi.org/10.1063/5.0028923
[93] C. An, H. Qi, L. Wang, X. Fu, A. Wang, Z.L. Wang, J. Liu, Piezotronic and piezo-phototronic effects of atomically-thin ZnO nanosheets, Nano Energy. 82 (2021). https://doi.org/10.1016/j.nanoen.2020.105653
[94] S. Liu, M. Han, X. Feng, Q. Yu, L. Gu, L. Wang, Y. Qin, Z.L. Wang, Statistical Piezotronic Effect in Nanocrystal Bulk by Anisotropic Geometry Control, Advanced Functional Materials. 31 (2021). https://doi.org/10.1002/adfm.202010339
[95] E.K. Lee, H. Yoo, Self‐powered sensors: New opportunities and challenges from two‐dimensional nanomaterials, Molecules. 26 (2021). https://doi.org/10.3390/molecules26165056
[96] R.S. Dahiya, A. Adami, C. Collini, L. Lorenzelli, POSFET tactile sensing arrays using CMOS technology, Sensors and Actuators, A: Physical. 202 (2013) 226-232. https://doi.org/10.1016/j.sna.2013.02.007
[97] M. Ma, Y. Huang, J. Liu, K. Liu, Z. Wang, C. Zhao, S. Qu, Z. Wang, Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting, Journal of Semiconductors. 41 (2020). https://doi.org/10.1088/1674-4926/41/9/091702
[98] M. Chen-Glasser, P. Li, J. Ryu, S. Hong, No Title, InTech, 2018. https://doi.org/10.5772/intechopen.76963. https://doi.org/10.5772/intechopen.76963
[99] B. Mika, Design and testing of piezoelectric sensors, PhD Thesis, Texas A&M University. (2009) 109. http://repositories.tdl.org/tdl-ir/handle/1969.1/ETD-TAMU-1565 (accessed June 11, 2021).
[100] K.K. Sappati, S. Bhadra, Piezoelectric polymer and paper substrates: A review, Sensors (Switzerland). 18 (2018) 3605. https://doi.org/10.3390/s18113605
[101] S.K. Ghosh, T.K. Sinha, B. Mahanty, D. Mandal, Self-poled Efficient Flexible “Ferroelectretic” Nanogenerator: A New Class of Piezoelectric Energy Harvester, Energy Technology. 3 (2015) 1190-1197. https://doi.org/10.1002/ente.201500167