Drug Delivery using Nano-Material based Enzymes


Drug Delivery using Nano-Material based Enzymes

Fatima Mujahid, Sara Mahmood, Sumreen Hayat, Muhammad Saqalein, Bilal Aslam, Mohsin Khurshid, Saima Muzammil

From the last two decades the world has progressed enormously to upgrade the wellbeing of humans by revamping the disease diagnostic and treatment. To accomplish this task, the nano-biotechnology has significantly aided in the complete transformation of disease treatment. Nanomaterials have been of great interest for better drug delivery, due to their significant catalytic activities, feasibility, and reduced production cost. Moreover, the implementation of enzyme like properties, to increase better drug delivery has gained enormous attention. Modification of the nano-scaled materials to nanozymes and enzyme-responsive nanoparticles is considered as revolutionary concept in the field of theragnostic. This chapter elaborates the diversified range of nano-material based enzymes, their synthesis methods, modification strategies, and factors influencing the catalytic activity of these enzymes. Therapeutic applications of nano-material based enzymes and their limitations have also been discussed.

Drug Delivery, Nanozymes, Nanomedicine

Published online , 23 pages

Citation: Fatima Mujahid, Sara Mahmood, Sumreen Hayat, Muhammad Saqalein, Bilal Aslam, Mohsin Khurshid, Saima Muzammil, Drug Delivery using Nano-Material based Enzymes, Materials Research Foundations, Vol. 126, pp 192-214, 2022

DOI: https://doi.org/10.21741/9781644901977-7

Part of the book on Nanomaterial-Supported Enzymes

[1] V. Salles, S. Bernard, R. Chiriac, P. Miele, Structural and thermal properties of boron nitride nanoparticles, Journal of the European Ceramic Society 32 (2012) 1867-1871. https://doi.org/10.1016/j.jeurceramsoc.2011.09.002
[2] D. Lombardo, M.A. Kiselev, M.T. Caccamo, Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine, Journal of Nanomaterials 2019 (2019). https://doi.org/10.1155/2019/3702518
[3] A.K. Barui, R. Kotcherlakota, C.R. Patra, Biomedical applications of zinc oxide nanoparticles, Inorganic frameworks as smart nanomedicines, Elsevier2018, pp. 239-278. https://doi.org/10.1016/B978-0-12-813661-4.00006-7
[4] C.L. Ventola, Progress in nanomedicine: approved and investigational nanodrugs, Pharmacy and Therapeutics 42 (2017) 742.
[5] T.H. Kim, H.H. Jiang, Y.S. Youn, C.W. Park, K.K. Tak, S. Lee, H. Kim, S. Jon, X. Chen, K.C. Lee, Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity, International journal of pharmaceutics 403 (2011) 285-291. https://doi.org/10.1016/j.ijpharm.2010.10.041
[6] C. Chakraborty, A.R. Sharma, G. Sharma, S.-S. Lee, Zebrafish: A complete animal model to enumerate the nanoparticle toxicity, Journal of nanobiotechnology 14 (2016) 1-13. https://doi.org/10.1186/s12951-016-0217-6
[7] W.N. Souery, C.J. Bishop, Clinically advancing and promising polymer-based therapeutics, Acta biomaterialia 67 (2018) 1-20. https://doi.org/10.1016/j.actbio.2017.11.044
[8] Q. Wu, A. Nouara, Y. Li, M. Zhang, W. Wang, M. Tang, B. Ye, J. Ding, D. Wang, Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans, Chemosphere 90 (2013) 1123-1131. https://doi.org/10.1016/j.chemosphere.2012.09.019
[9] C. Wang, T. Chang, S. Dong, D. Zhang, C. Ma, S. Chen, H. Li, Biopolymer films based on chitosan/potato protein/linseed oil/ZnO NPs to maintain the storage quality of raw meat, Food Chemistry 332 (2020) 127375. https://doi.org/10.1016/j.foodchem.2020.127375
[10] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nature nanotechnology 2 (2007) 577-583. https://doi.org/10.1038/nnano.2007.260
[11] J. Li, C. Shi, X. Wang, C. Liu, X. Ding, P. Ma, X. Wang, H. Jia, Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to copper oxide nanoparticles (CuO NPs)-induced oxidative stress, Plant Physiology and Biochemistry 156 (2020) 257-266. https://doi.org/10.1016/j.plaphy.2020.09.020
[12] W. Liu, L. Tian, J. Du, J. Wu, Y. Liu, G. Wu, X. Lu, Triggered peroxidase-like activity of Au decorated carbon dots for colorimetric monitoring of Hg 2+ enrichment in Chlorella vulgaris, Analyst 145 (2020) 5500-5507. https://doi.org/10.1039/D0AN00930J
[13] P. Rai, V.P. Singh, J. Peralta-Videa, D.K. Tripathi, S. Sharma, F.J. Corpas, Hydrogen sulfide (H2S) underpins the beneficial silicon effects against the copper oxide nanoparticles (CuO NPs) phytotoxicity in Oryza sativa seedlings, Journal of Hazardous Materials 415 (2021) 124907. https://doi.org/10.1016/j.jhazmat.2020.124907
[14] Y. Wang, P. Zhang, W. Fu, Y. Zhao, Morphological control of nanoprobe for colorimetric antioxidant detection, Biosensors and Bioelectronics 122 (2018) 183-188. https://doi.org/10.1016/j.bios.2018.09.058
[15] S. Singh, Nanomaterials exhibiting enzyme-like properties (Nanozymes): Current advances and future perspectives, Frontiers in chemistry 7 (2019) 46. https://doi.org/10.3389/fchem.2019.00046
[16] P.K. Tiwari, A.K. Singh, V.P. Singh, S.M. Prasad, N. Ramawat, D.K. Tripathi, D.K. Chauhan, A.K. Rai, Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings, Ecotoxicology and environmental safety 176 (2019) 321-329. https://doi.org/10.1016/j.ecoenv.2019.01.120
[17] K. Dai, T. Peng, D. Ke, B. Wei, Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation, Nanotechnology 20 (2009) 125603. https://doi.org/10.1088/0957-4484/20/12/125603
[18] D. Böhme, A.G. Beck‐Sickinger, Drug delivery and release systems for targeted tumor therapy, Journal of Peptide Science 21 (2015) 186-200. https://doi.org/10.1002/psc.2753
[19] C.Y. Park, J.M. Seo, H. Jo, J. Park, K.M. Ok, T.J. Park, Hexagonal tungsten oxide nanoflowers as enzymatic mimetics and electrocatalysts, Scientific reports 7 (2017) 1-11. https://doi.org/10.1038/s41598-016-0028-x
[20] R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze, R. Wever, H.C. Schröder, W.E. Müller, W. Tremel, V2O5 nanowires with an intrinsic peroxidase‐like activity, Advanced Functional Materials 21 (2011) 501-509. https://doi.org/10.1002/adfm.201001302
[21] S. Liu, F. Lu, R. Xing, J.J. Zhu, Structural effects of Fe3O4 nanocrystals on peroxidase‐like activity, Chemistry-A European Journal 17 (2011) 620-625. https://doi.org/10.1002/chem.201001789
[22] A.A. Vernekar, T. Das, S. Ghosh, G. Mugesh, A remarkably efficient MnFe2O4‐based oxidase nanozyme, Chemistry-An Asian Journal 11 (2016) 72-76. https://doi.org/10.1002/asia.201500942
[23] Q. Cai, S. Lu, F. Liao, Y. Li, S. Ma, M. Shao, Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite, Nanoscale 6 (2014) 8117-8123. https://doi.org/10.1039/c4nr01751j
[24] A. Vinosha, E. Jeronsia, K. Raja, A. christina Fernandez, S. Krishnan, J. Das, Investigation of optical, electrical and magnetic properties of cobalt ferrite nanoparticles by naive co-precipitation technique, Optik 127 (2016) 9917-9925. https://doi.org/10.1016/j.ijleo.2016.07.063
[25] W. Shi, X. Zhang, S. He, Y. Huang, CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose, Chemical Communications 47 (2011) 10785-10787. https://doi.org/10.1039/c1cc14300j
[26] M. Karimi, A. Ghasemi, P.S. Zangabad, R. Rahighi, S.M.M. Basri, H. Mirshekari, M. Amiri, Z.S. Pishabad, A. Aslani, M. Bozorgomid, Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems, Chemical Society Reviews 45 (2016) 1457-1501. https://doi.org/10.1039/C5CS00798D
[27] V.P. Torchilin, Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery, Nature reviews Drug discovery 13 (2014) 813-827. https://doi.org/10.1038/nrd4333
[28] M. Li, G. Zhao, W.-K. Su, Q. Shuai, Enzyme-Responsive Nanoparticles for Anti-tumor Drug Delivery, Frontiers in Chemistry 8 (2020). https://doi.org/10.3389/fchem.2020.00647
[29] Q. Zhou, S. Shao, J. Wang, C. Xu, J. Xiang, Y. Piao, Z. Zhou, Q. Yu, J. Tang, X. Liu, Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy, Nature nanotechnology 14 (2019) 799-809. https://doi.org/10.1038/s41565-019-0485-z
[30] A.P. Blum, J.K. Kammeyer, A.M. Rush, C.E. Callmann, M.E. Hahn, N.C. Gianneschi, Stimuli-responsive nanomaterials for biomedical applications, Journal of the american chemical society 137 (2015) 2140-2154. https://doi.org/10.1021/ja510147n
[31] J. Li, L. Feng, L. Fan, Y. Zha, L. Guo, Q. Zhang, J. Chen, Z. Pang, Y. Wang, X. Jiang, Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides, Biomaterials 32 (2011) 4943-4950. https://doi.org/10.1016/j.biomaterials.2011.03.031
[32] X. Wang, H. Tang, C. Wang, J. Zhang, W. Wu, X. Jiang, Phenylboronic acid-mediated tumor targeting of chitosan nanoparticles, Theranostics 6 (2016) 1378. https://doi.org/10.7150/thno.15156
[33] S. Ruan, M. Yuan, L. Zhang, G. Hu, J. Chen, X. Cun, Q. Zhang, Y. Yang, Q. He, H. Gao, Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles, Biomaterials 37 (2015) 425-435. https://doi.org/10.1016/j.biomaterials.2014.10.007
[34] N. Singh, M. Geethika, S.M. Eswarappa, G. Mugesh, Manganese‐Based Nanozymes: Multienzyme Redox Activity and Effect on the Nitric Oxide Produced by Endothelial Nitric Oxide Synthase, Chemistry-A European Journal 24 (2018) 8393-8403. https://doi.org/10.1002/chem.201800770
[35] R. Tian, J. Sun, Y. Qi, B. Zhang, S. Guo, M. Zhao, Influence of VO2 nanoparticle morphology on the colorimetric assay of H2O2 and glucose, Nanomaterials 7 (2017) 347. https://doi.org/10.3390/nano7110347
[36] Z. Sun, N. Zhang, Y. Si, S. Li, J. Wen, X. Zhu, H. Wang, High-throughput colorimetric assays for mercury (II) in blood and wastewater based on the mercury-stimulated catalytic activity of small silver nanoparticles in a temperature-switchable gelatin matrix, Chemical Communications 50 (2014) 9196-9199. https://doi.org/10.1039/C4CC03851G
[37] F. Tian, J. Zhou, B. Jiao, Y. He, A nanozyme-based cascade colorimetric aptasensor for amplified detection of ochratoxin A, Nanoscale 11 (2019) 9547-9555. https://doi.org/10.1039/C9NR02872B
[38] G.-W. Wu, S.-B. He, H.-P. Peng, H.-H. Deng, A.-L. Liu, X.-H. Lin, X.-H. Xia, W. Chen, Citrate-capped platinum nanoparticle as a smart probe for ultrasensitive mercury sensing, Analytical chemistry 86 (2014) 10955-10960. https://doi.org/10.1021/ac503544w
[39] W. Zhang, S. Hu, J.-J. Yin, W. He, W. Lu, M. Ma, N. Gu, Y. Zhang, Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers, Journal of the American Chemical Society 138 (2016) 5860-5865. https://doi.org/10.1021/jacs.5b12070
[40] A. Zhu, K. Sun, H.R. Petty, Titanium doping reduces superoxide dismutase activity, but not oxidase activity, of catalytic CeO2 nanoparticles, Inorganic chemistry communications 15 (2012) 235-237. https://doi.org/10.1016/j.inoche.2011.10.034
[41] H. Wang, C. Liu, Z. Liu, J. Ren, X. Qu, Specific oxygenated groups enriched graphene quantum dots as highly efficient enzyme mimics, Small 14 (2018) 1703710. https://doi.org/10.1002/smll.201703710
[42] C. Xu, W. Bing, F. Wang, J. Ren, X. Qu, Versatile dual photoresponsive system for precise control of chemical reactions, ACS nano 11 (2017) 7770-7780. https://doi.org/10.1021/acsnano.7b01450
[43] Y. Gao, K. Chen, J.-l. Ma, F. Gao, Cerium oxide nanoparticles in cancer, OncoTargets and therapy 7 (2014) 835. https://doi.org/10.2147/OTT.S62057
[44] S. Santra, S.D. Jativa, C. Kaittanis, G. Normand, J. Grimm, J.M. Perez, Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent, ACS nano 6 (2012) 7281-7294. https://doi.org/10.1021/nn302393e
[45] J. Mu, L. Zhang, M. Zhao, Y. Wang, Catalase mimic property of Co3O4 nanomaterials with different morphology and its application as a calcium sensor, ACS applied materials & interfaces 6 (2014) 7090-7098. https://doi.org/10.1021/am406033q
[46] K. Sobańska, P. Pietrzyk, Z. Sojka, Generation of reactive oxygen species via electroprotic interaction of H2O2 with ZrO2 gel: ionic sponge effect and pH-switchable peroxidase-and catalase-like activity, ACS Catalysis 7 (2017) 2935-2947. https://doi.org/10.1021/acscatal.7b00189
[47] V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.-F. Berret, The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce 3+ surface area concentration, Nanoscale 10 (2018) 6971-6980. https://doi.org/10.1039/C8NR00325D
[48] W. Zhang, J. Dong, Y. Wu, P. Cao, L. Song, M. Ma, N. Gu, Y. Zhang, Shape-dependent enzyme-like activity of Co3O4 nanoparticles and their conjugation with his-tagged EGFR single-domain antibody, Colloids and Surfaces B: Biointerfaces 154 (2017) 55-62. https://doi.org/10.1016/j.colsurfb.2017.02.034
[49] X.-Q. Zhang, S.-W. Gong, Y. Zhang, T. Yang, C.-Y. Wang, N. Gu, Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity, Journal of Materials Chemistry 20 (2010) 5110-5116. https://doi.org/10.1039/c0jm00174k
[50] J.L. de Beer, I. Bergval, A. Schuitema, R.M. Anthony, M. Fauville-Dufaux, B.E. Ferro, V. Ritacco, J. van Ingen, A. Zomer, D. van Soolingen, A unique mutation in the rpoC-gene exclusively detected in Mycobacterium tuberculosis isolates of the largest cluster of multidrug resistant cases of the Beijing genotype in Europe, Molecular typing of Mycobacterium tuberculosis complex 105.
[51] A. MacNeil, P. Glaziou, C. Sismanidis, A. Date, S. Maloney, K. Floyd, Global epidemiology of tuberculosis and progress toward meeting global targets-worldwide, 2018, Morbidity and Mortality Weekly Report 69 (2020) 281. https://doi.org/10.15585/mmwr.mm6911a2
[52] D.L. Clemens, B.-Y. Lee, M. Xue, C.R. Thomas, H. Meng, D. Ferris, A.E. Nel, J.I. Zink, M.A. Horwitz, Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles, Antimicrobial agents and chemotherapy 56 (2012) 2535-2545. https://doi.org/10.1128/AAC.06049-11
[53] H.H. Gustafson, D. Holt-Casper, D.W. Grainger, H. Ghandehari, Nanoparticle uptake: the phagocyte problem, Nano today 10 (2015) 487-510. https://doi.org/10.1016/j.nantod.2015.06.006
[54] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: a cancer journal for clinicians 71 (2021) 209-249. https://doi.org/10.3322/caac.21660
[55] K. Bukowski, M. Kciuk, R. Kontek, Mechanisms of multidrug resistance in cancer chemotherapy, International journal of molecular sciences 21 (2020) 3233. https://doi.org/10.3390/ijms21093233
[56] R. Vankayala, K.C. Hwang, Near‐infrared‐light‐activatable nanomaterial‐mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment, Advanced Materials 30 (2018) 1706320. https://doi.org/10.1002/adma.201706320
[57] S. Thangudu, C.-H. Su, Peroxidase Mimetic Nanozymes in Cancer Phototherapy: Progress and Perspectives, Biomolecules 11 (2021) 1015. https://doi.org/10.3390/biom11071015
[58] A. Manke, L. Wang, Y. Rojanasakul, Mechanisms of nanoparticle-induced oxidative stress and toxicity, BioMed research international 2013 (2013). https://doi.org/10.1155/2013/942916
[59] M.L. Circu, T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis, Free Radical Biology and Medicine 48 (2010) 749-762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022
[60] L. Zeng, Y. Han, Z. Chen, K. Jiang, D. Golberg, Q. Weng, Biodegradable and Peroxidase‐Mimetic Boron Oxynitride Nanozyme for Breast Cancer Therapy, Advanced Science (2021) 2101184. https://doi.org/10.1002/advs.202101184